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Abstract

We consider the problem of reconstructing a partitoaf the integem from the set of itst-
subpartitions These are the partitions of the integer ¢ obtained by deleting a total #ffrom the
parts ofx in all possible ways. It was shown (in a forthcoming paper) that all partitiomsocafn be
reconstructed frortrsubpartitions ifn is sufficiently large in relation ta In this paper we deal with
efficient reconstructionn the following sense: if all partitions af ares~-reconstructible, what is
the minimum numbeN = N~ (n, r) such that every partition af can be identified from any + 1
distinct subpartitions? We determine the functién (n, t) and describe the corresponding algorithm
for reconstruction. Superpartitions may be defined in a similar fashion and we determine also the
maximum numbenN * (n, 1) of t-superpartitions common to two distinct partitionsnof
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let Z(n) denote the set of all partitions of the integerThus, ifx € 2(n) thenx =
[x1, x2, ..., x;]isamultiset of integers; with 0 < x; andzﬁz1 x;=n.Toavoid cumbersome
distinctions we identify two partitions if they differ by parts of size 0 only If #(n) and
if tis an integer with & ¢ <n then we say that’ := [x; —e1,x2 —e2,...,x; —¢]isa
t-subpartitionif 0 <e; <x; andY ' _; e; =1.
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The set of alk-subpartitions ok is denoted byD, (x) and we say thatis reconstructible
from itsz-subpartitions, or that is t ~-reconstructibleif and only if the following is true:
WheneverD;(x) = D;(y) for somey € #(n), thenx = y. For instancex = [3, 2, 2, 1]
hasD,(x) ={[3,2,1],[3,1,1,1],[2, 2, 2], [2, 2,1, 1]} and by elementary arguments one
can show thax is 2~ -reconstructible. On the other hands(x) = {[3], [2, 1], [1, 1, 1]} =
Ds([5, 2, 1]) and sox is not 5 -reconstructible. Note also that in contrast to other recon-
struction problems here we have no information about the multiplicity with which a partition
occurs inD; (x).

The problem of reconstructing partitions was proposdd,ity. Intuitively, if tis small in
relation ton then the partitions ofi should be ~-reconstructible, and this is proved[si.

In this paper we deal with an additional issue: if all partitions@ires ~-reconstructible,

is there anV = N~ (n, t) such that an arbitrary € 2(n) can be identified from anyy + 1

distinct members oD, (x)? This is the problem défficient reconstructiofirst considered

in Levenshtein’s seminal papf] on the reconstruction of sequences. Here we also answer
the question of efficient reconstruction of partitions. To state these results we need some
additional definitions.

If x =[x1,x2,...,x] € Z(n)and if 0<r and 0< ey, e2, . . ., ey are integers with' >1
andZﬁ/:ie,- =trthenx' =[x1+e1,x2+e2,...,x1+e, €11, ...,er]isar-superpartition
of x. The set of alk-superpartitions ok is denoted by, (x). The partitionx is said to be
reconstructibléfrom itsz-superpartitions, art-reconstructibleif and only if the following
is true: whenevet/; (x) = U,(y) for somey € 2(n) thenx = y. Forn >t >0 we define

N~ (n,t):=  max |D;(x)ND;(y)l and
x,y€P(n); x#y

D(I’l,t) = max |Dl(-x)|!
x€P(n)

and for arbitrary >0 we define

N*t(n, 1) = max  |U(x)NUW)I,
x,yeP(n); x#£y

Un, 1) = max |U(x)l.
xe?(n)

Clearly, N~ (n,t)<D(n,t) andN*(n,t) <U(n, t), and ifx € 2(n) satisfiesN ~(n, 1) <
|D;(x)] thenxisr~-reconstructible. In fact, the functia¥i— (n, r) measuresfficient recon-
structibility in the sense that for an arbitrary partitiore 2(n) any N~ (n, t) + 1 or more
distinct members oD, (x) determinex uniquely, as intended above. A similar statement
holds forN*(n, ) andt*-reconstructibility.

Theorem 1.1. Letn >2andsr >1.ThenN ~(n,t)=D(n—1,t—1)forn>tandN+(n, t)=
Umn+11t—1) forallt.

This theorem is the exact analogue of the main result of Levensht@han the efficient
reconstruction of a sequence from its sub- and supersequences. In particular, every partition
x € P(n) is reconstructible from any two of its 1-subpartitions,/26& — 1,7 — 1) =1
for r = 1. In Section 2 it is shown thad(n, 1) = |?(n — t)| for some values oh andt.
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In the same sections we obtain the proof of the theorem above and we give algorithms to
reconstruct the partitions in each case.

We may regard partitions as Young diagrams and hence as elements of the Young lattice.
In this lattice the set of elements of ranks #(n), se€[6, Chapter 7for instance, and for
x € P(n) the setD1(x) are the partitions which appear in the Murnaghan—Nakayama rule.
Therefore, partition reconstruction can be placed into the larger context of reconstruction
problems in lattices. In a recent paper Staifiydetermines the number of standard Young
diagrams of: + ¢ cells which contain a given partition of It may well be possible to use
these techniques to give formulae for the value®¢f, 1) andU (n, ¢) in general.

One further general comment should be made. As we have seen, partitions and sequences
both belong to a class of reconstruction problems where reconstruction is guaranteed, and
where even the problem of efficient reconstruction has a satisfactory answer. One may
therefore ask which other kinds of reconstruction problems belong to that class. For orbit
reconstruction of permutation groups we know that also cyclic, and possibly solvable groups
belong to this class. If8] we consider the reconstruction problems associated with finite
primitive groups. In this generality efficient reconstruction cannot be expected any longer.

2. Subpartition reconstruction

If x € Z(n) is a partition, we shall always assume thais in standard formx =
[x1, x2, ..., x;]withx; >x; 1 fori =1,2,...,1 — 1. Also, we let| x| := Zlgiglxi be
the number partitioned by If alsoy =[y1, y2, ..., y]iS @ partition, possibly of a different
integer, theéntersectionx N y is the partition

x Ny = [minfxa, y1}, min{x2, y2}, ..., minfxy, yy}1,
wherev = min{/, m}. Similarly, theunionx U y is the partition

X U y = [max{xls yl}v max{x27 )’2}: M) max{xuh Yw}],

wherew = max{/, m} and where we assume that= 0 for!’ > [ andy,,, = 0 form’ > m.

These definitions make sense since we are assuming that our partitions are in standard form.
Note that then als@ U y andx N y are in standard form and further thath y = x if and

only if x U y = y. We can now define a partial order on partitions by

x Cy ifandonlyifxnNy=x.
For any integem > 0 we define the partition
S(m) :=[m, [m/2], \m/3],...m/(m —2)], [m/(m —1)], 1]

of s(m) := Y ;- 1lm/i]. Itis easy to see that for any € #(m) there exist subpartitions
of S(m) that are equal to andS(m) is the smallest partition with this property. That is to
say, ifx is a partition of some integet’ < s(m) then there are partitions € 2 (m) which
are not subpartitions of We can now prove

Lemma 2.1. Let x be a partition of n. TheaN S(n — r) determinedD; (x) uniquely. That
is,ifxandy € Z(n) thenD;(x) = D;(y)ifand only ifx N S(n —t) = yN S(n — 1).
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Proof. Firstwe prove thatikNS(n —1)=yNSm —1t)thenD,(x) = D,(y). Itis sufficient
to show that ifx N S(n — t) = u thenD,(x) = D, (u), wherer = ||u|| + ¢t — n. Certainly,
D, (u) € D;(x). Thus, assume that there is some D, (x) with z ¢ D, (u). However, then
we would have; N S(n — t) # z for somez € Z(n — t), a contradiction.

Next assume thatN S(n —t) # yNS(n —1t). Letx N S(t) = S = [s1, 52, ..., 57] and

yNSt)=T=[t1, 12, ...,1y]forsome, !’ € N. Let the first instance of inequality of these
sequences be, without loss> #; forsome € {1, 2, ..., min{l, I'}}. Consider the partition
u=[si,si,...,s;]oftheintegeis;. Nows; <|(n—1¢)/i] andsOlu|| <i|(n—1)/i] <n—t.

Therefore there is somee D;(x) such that: N v = u. Itis clear thatv ¢ D,(y). U

We can use Lemma 2.1 to manufacture non-reconstructible partitions: take 2(n)
with x # y andx N S(m) = y N S(m) for somem € N. ThenD,,_,,(x) = D,,_,,(y) and
sox andy are not reconstructible from their — m)-subpartitions. For example, take the
partition S(m) for anym € N and consider, y € U;(S(m)), different partitions of the
integers(m)+i foranyi € N.ByLemma2.1 we hav®,(x)=D,(y)=D, (S(m))=%(m)
whereu = s(m) —m andv=u +1i.

Next we need the following simple lemma.

Lemma 2.2. Foranyn, t,i € Nwithn>rwehaveD(n, t) < D(n+i, t+i). Furthermore
foranyn,t,i e Nwith1<i <nwehavel(n,t) <Um —i,t +1i).

Proof. Assume thaty € Z(n). For the first inequality observe tha (y) € D,; (x) for

anyx € U;(y) foranyi € N. This implies thatD(n, 1) < D(n + i, t + i). Secondly, for

1<i <n we havelU;(y) C U;y;(x) foranyx € D;(y) and soU (n,t) <Um —i,t +i).
O

We note that in general we cannot have strict inequality in the first inequality. Indeed, it
follows from Lemma 2.1 that

Dn,t)=Dn+i,t+1i)=|2n —1)|
foranyi e N, if n>s(n —1).

Theorem 2.3.If n>2andn>t>1,thenN~(n,t) = D(n — 1, t — 1). Furthermore there
exist partitions x and y of n such th&% (x) N D1(y) consists of a single partition z af— 1
for which|D;_1(z)|= N~ (n, 1).

Proof. First we show thav—(n,7)>D(n — 1,t — 1). Letzbe a partition oz — 1 corre-
spondingtoD(n — 1,¢ — 1), i.e.,|D,_1(z)| is maximal among the partitions of— 1. We
note that for any Xm € N andp € 2(m) we have|U1(p)| >2. Thus letx, y € Ui(z)
with x # y. CertainlyD,;_1(z) € D;(x), D;(y) and hence it follows that

N~ (n, 1) 2D (x) N D;(y)| Z|Di-1(2)| = D(n — 1,1 = 1). 1)

Next we show thatv~(n,r) <D — 1,t — 1). Thus assume that y € Z(n), x # y
are such thatD, (x) N D;(y)| is maximal. Sew := x Ny. ThenD,(x) N D;(y) C Dy(w),
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wherev = ||x N y|| + ¢ — n. In particular,

|D(x) N Di(MI<[Dy(w)| < D(lx Nyl v) <D — 1,1 —1).

The last inequality following from Lemma 2.2 upon takingn — 1 — ||x N y||.

To prove the final part we consider again the partitignsconstructed at the beginning
of the proof. It now follows that the inequalities of (1) are actually equalities| &ngx) N
D)) =IDi-1(x)|=D(n -1t =1). O

In particular, for anyx € Z(n) it follows that if | D, (x)| > D(n — 1,t — 1) + 1 thenxis
reconstructible from its-subpartitions.

Corollary 2.4. Any two differentl-subpartitions of a partition allow its reconstruction.
All partitions ofn > 3 are reconstructible from theit-subpartitions

Proof. Takings =1 in Theorem 2.3 we ge¥—(n, 1) = D(n — 1, 0) = 1. This proves the
first statement. For the second, note that the only partitionghait have only one different
type of 1-subpartition are; =[1,1,1,...,1] € Z(n) for anyl | n. Forn >3 itis not hard
to see thaD1(x;) # Di1(x;) for anyi, j | n with i # j. Forn = 2 the two partitions of 2
given by[1, 1] and [2] clearly have the same 1-subpartitions, hence the restrictidn.

Algorithm for recovering a partition from its subpartitions. The following simple pro-
cedure reconstructs a partitione 2 (n) if one knowsnand at leasV ~ (n, ) + 1 members
from the setD, (x).

(i) Takeanyy1, y2,...,y € D;(x), wherel = N~ (n,t) + 1 and put them in standard
form.
(i) Formthe unionx = J;_; ;v

We claim thatv =X, as follows. Since all partitions are in standard form, we havethat x
11111 1 vi © x.Assume that J;_; ;v =x" C x with, say,||x'|| =n" <n. By
Theorem2.3and Lemma?2.2itfollowsthat D(n—1,t—1)> D(n’,n'+t—n) >|D,(x")|,
wherev=n’+1t—n. Conversely, since; C x'fori=1, 2, ..., [itfollows that| D, (x")| >1,
a contradiction.

No explicit formula forD(n, r) seems to be known for generabndt. Fort = 1 and
x=[x1, x2, ..., x;]itis easy to see th&b1 (x)| is the number of distinat;, thatis| D1(x)|=
[{x1, x2, ..., x7}|. ThusN ~(n, 1) is the greatest integgfor which j (j +1)/2<n. Already
for t+ = 2 it is much more difficult to give an explicit value f@(n, 1).

3. Superpartition reconstruction

In contrastto reconstruction from subpartitions, partitions are always reconstructible from
superpartitions.
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Lemma 3.1. Every partition is reconstructible from its t-superpartitiorisr anys € N.
In fact, if t is given then just one suitably chosen member fropix) allows the unique
reconstruction of x. If tis not given then just two suitably chosen membergfromsuffice
to reconstruct x uniquely

Proof. Assume that € 2(n) and without loss that > 2 since|2(1)|=1. If tis known, se-
lectg=[q1. q2. - - ., q-1 € U;(x) with the property thagy > p1 foranyp=[p1, p2, ..., p»']

€ U;(x) with p # ¢. Itis clearthenthat =[(q1—1), g2, . . ., g-]. To determing we select

in addition the (unique) partition i/, (x) which has the largest number of parts. If this
number id then clearlyr = — r. This completes the proof.[]

The above lemma shows that for anye 2(x) some twosuitably choseimembers
from U, (x) allows the reconstruction af The next theorem gives the minimum number of
arbitrarily chosenmembers frontU; (x) needed to reconstruxt

Theorem 3.2. If n>2andr > 1thenNT(n, 1) =U(n+ 1, t — 1). Furthermoreg there exist
partitions x and y of n such thdf; (x) N U1(y) consists of a single partition z af— 1 for
which|U;_1(z)| = N*(n, 1).

Proof. Firstwe showthaN*(n,1)> U +1,¢t—1). Thus letz € 2(n + 1) be a partition
corresponding td&/ (n + 1, r — 1). Sincen > 2 there are at least two different 1-subpartitions
of zunless possibly =z, = [v, v, ..., v] for anyv | n. However, consider the partitions
of n + 1 defined byw, =[v+1, v, v,...,v,v—1]forv <n andw, =[n, 1]. Itis not hard

to see thal,, (w,) > U, (z,) for anyv | n andm € N. In particular, we may assume that
there existx, y € D1(z) with x # y. Then we havé/;_1(z) € U,(x), U;(y). Hence

NT(, )2 U (x) N U (NI 2 |U-1()| = U + 1,1 = 1). )

Next we prove thaiV*(n, ) <U(n + 1,t — 1). So letx andy be distinct partitions oh
such thafU, (x) N U,(y)| is maximal. Clearly, any € U, (x) N U,(y) must contain botkx
andy, i.e.p = (x Uy) C z. Itfollows that|U, (x) N U;(y)| < |Uy(p)|, wherev =n +1t — [
and/ = ||x U y||. In particular,

NT (1) = U:(x) NU WIS U (p)ISUUn+1 = 1).

Now if [ > n+1, then by Lemma 2.2 it follows that ™ (n, 1) < U (n 41, t — 1), in contradic-
tion to the first part of the proof. It follows thdt=n+1 andtherV* (n, 1) <U (n+1, t —1).

To prove the final part, we consider again the partitignsconstructed at the beginning
of the proof. It now follows that the inequalities of (2) are equalities|dhdx) N U; (y)| =
|Ui—1(»)|=Um+1,t—-1). O

Algorithm for recovering a partition from its superpartitions. The following simple
procedure reconstructs a partitiene 2(n) if one knowsn and at leastV*(n, ) + 1
members from the séf; (x).

(i) Takeanyys, yo, ..., y; € U;(x) wherel =N (n, t)+1 and put them in standard form.
(i) Formthe intersectio =(),_1 ; yi-

,,,,,
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We claim thatt =X, as follows. Since all partitions are in standard form we havediaty;
andsar C (;_y ., vi-Assume thaf),_; ;v =x"withx C x'. Say,||x'| =n">n. By
Theorem 3.2 and Lemma 2.2 itfollows thiat U (n+1, t—1) > U (n’, n=n'+1) > |U, (x|,
wherev =n + ¢ — n’. On the other hand, sinaé C y; fori =1, 2, ..., we also have that
|Uy(x")| >1, a contradiction. [
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