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Abstract

We consider the problem of reconstructing a partitionx of the integern from the set of itst-
subpartitions. These are the partitions of the integern − t obtained by deleting a total oft from the
parts ofx in all possible ways. It was shown (in a forthcoming paper) that all partitions ofn can be
reconstructed fromt-subpartitions ifn is sufficiently large in relation tot. In this paper we deal with
efficient reconstruction,in the following sense: if all partitions ofn are t−-reconstructible, what is
the minimum numberN = N−(n, t) such that every partition ofn can be identified from anyN + 1
distinct subpartitions?We determine the functionN−(n, t) and describe the corresponding algorithm
for reconstruction. Superpartitions may be defined in a similar fashion and we determine also the
maximum numberN+(n, t) of t-superpartitions common to two distinct partitions ofn.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let P(n) denote the set of all partitions of the integern. Thus, ifx ∈ P(n) thenx =
[x1, x2, . . . , xl] is amultiset of integersxi with0�xi and

∑l
i=1 xi=n.Toavoid cumbersome

distinctions we identify two partitions if they differ by parts of size 0 only. Ifx ∈ P(n) and
if t is an integer with 0� t �n then we say thatx′ := [x1 − e1, x2 − e2, . . . , xl − el] is a
t-subpartition if 0�ei �xi and

∑l
i=1 ei = t .
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The set of allt-subpartitions ofx is denoted byDt(x) and we say thatx is reconstructible
from its t-subpartitions, or thatx is t−-reconstructible, if and only if the following is true:
WheneverDt(x) = Dt(y) for somey ∈ P(n), thenx = y. For instance,x = [3,2,2,1]
hasD2(x) = {[3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1]} and by elementary arguments one
can show thatx is 2−-reconstructible. On the other hand,D5(x) = {[3], [2,1], [1,1,1]} =
D5([5,2,1]) and sox is not 5−-reconstructible. Note also that in contrast to other recon-
struction problemsherewehave no information about themultiplicitywithwhich a partition
occurs inDt(x).
The problem of reconstructing partitions was proposed in[4,1]. Intuitively, if t is small in

relation ton then the partitions ofn should bet−-reconstructible, and this is proved in[5].
In this paper we deal with an additional issue: if all partitions ofn aret−-reconstructible,
is there anN = N−(n, t) such that an arbitraryx ∈ P(n) can be identified from anyN + 1
distinct members ofDt(x)? This is the problem ofefficient reconstructionfirst considered
in Levenshtein’s seminal paper[2] on the reconstruction of sequences. Here we also answer
the question of efficient reconstruction of partitions. To state these results we need some
additional definitions.
If x = [x1, x2, . . . , xl] ∈ P(n) and if 0� t and 0�e1, e2, . . . , el′ are integers withl′ � l

and
∑l′

i=iei = t thenx′ = [x1+ e1, x2+ e2, . . . , xl + el, el+1, . . . , el′ ] is at-superpartition
of x. The set of allt-superpartitions ofx is denoted byUt(x). The partitionx is said to be
reconstructiblefrom its t-superpartitions, ort+-reconstructible, if and only if the following
is true: wheneverUt(x) = Ut(y) for somey ∈ P(n) thenx = y. Forn� t �0 we define

N−(n, t) := max
x,y∈P(n); x �=y

|Dt(x) ∩ Dt(y)| and

D(n, t) := max
x∈P(n)

|Dt(x)|,

and for arbitraryt �0 we define

N+(n, t) := max
x,y∈P(n); x �=y

|Ut(x) ∩ Ut(y)| ,

U(n, t) := max
x∈P(n)

|Ut(x)|.

Clearly,N−(n, t)�D(n, t) andN+(n, t)�U(n, t), and ifx ∈ P(n) satisfiesN−(n, t) <

|Dt(x)| thenx is t−-reconstructible. In fact, the functionN−(n, t)measuresefficient recon-
structibility in the sense that for an arbitrary partitionx ∈ P(n) anyN−(n, t) + 1 or more
distinct members ofDt(x) determinex uniquely, as intended above. A similar statement
holds forN+(n, t) andt+-reconstructibility.

Theorem 1.1. Letn�2andt �1.ThenN−(n, t)=D(n−1, t−1) for n� t andN+(n, t)=
U(n + 1, t − 1) for all t.

This theorem is the exact analogue of themain result of Levenshtein in[2] on the efficient
reconstruction of a sequence from its sub- and supersequences. In particular, every partition
x ∈ P(n) is reconstructible from any two of its 1-subpartitions, asD(n − 1, t − 1) = 1
for t = 1. In Section 2 it is shown thatD(n, t) = |P(n − t)| for some values ofn and t.
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In the same sections we obtain the proof of the theorem above and we give algorithms to
reconstruct the partitions in each case.
We may regard partitions asYoung diagrams and hence as elements of theYoung lattice.

In this lattice the set of elements of rankn isP(n), see[6, Chapter 7]for instance, and for
x ∈ P(n) the setD1(x) are the partitions which appear in the Murnaghan–Nakayama rule.
Therefore, partition reconstruction can be placed into the larger context of reconstruction
problems in lattices. In a recent paper Stanley[7] determines the number of standardYoung
diagrams ofn + t cells which contain a given partition ofn. It may well be possible to use
these techniques to give formulae for the values ofD(n, t) andU(n, t) in general.
One further general comment should bemade.As we have seen, partitions and sequences

both belong to a class of reconstruction problems where reconstruction is guaranteed, and
where even the problem of efficient reconstruction has a satisfactory answer. One may
therefore ask which other kinds of reconstruction problems belong to that class. For orbit
reconstruction of permutation groupswe know that also cyclic, and possibly solvable groups
belong to this class. In[3] we consider the reconstruction problems associated with finite
primitive groups. In this generality efficient reconstruction cannot be expected any longer.

2. Subpartition reconstruction

If x ∈ P(n) is a partition, we shall always assume thatx is in standard formx =
[x1, x2, . . . , xl] with xi �xi+1 for i = 1,2, . . . , l − 1. Also, we let‖x‖ := ∑

1� i � l xi be
the number partitioned byx. If alsoy=[y1, y2, . . . , ym] is a partition, possibly of a different
integer, theintersectionx ∩ y is the partition

x ∩ y = [min{x1, y1},min{x2, y2}, . . . ,min{xv, yv}],
wherev =min{l, m}. Similarly, theunionx ∪ y is the partition

x ∪ y = [max{x1, y1},max{x2, y2}, . . . ,max{xw, yw}],
wherew =max{l, m} and where we assume thatxl′ = 0 for l′ > l andym′ = 0 form′ > m.
These definitionsmake sense since we are assuming that our partitions are in standard form.
Note that then alsox ∪ y andx ∩ y are in standard form and further thatx ∩ y = x if and
only if x ∪ y = y. We can now define a partial order on partitions by

x ⊆ y if and only if x ∩ y = x.

For any integerm >0 we define the partition

S(m) := [m, �m/2�, �m/3�, . . . �m/(m − 2)�, �m/(m − 1)�,1]
of s(m) := ∑m

i=1�m/i�. It is easy to see that for anyu ∈ P(m) there exist subpartitions
of S(m) that are equal tou andS(m) is the smallest partition with this property. That is to
say, ifx is a partition of some integerm′ < s(m) then there are partitionsu ∈ P(m) which
are not subpartitions ofx. We can now prove

Lemma 2.1. Let x be a partition of n. Thenx ∩ S(n − t) determinesDt(x) uniquely. That
is, if x andy ∈ P(n) thenDt(x) = Dt(y) if and only ifx ∩ S(n − t) = y ∩ S(n − t).



208 P. Maynard, J. Siemons / Discrete Mathematics 293 (2005) 205–211

Proof. First we prove that ifx ∩S(n− t)=y ∩S(n− t) thenDt(x)=Dt(y). It is sufficient
to show that ifx ∩ S(n − t) = u thenDt(x) = Dr(u), wherer = ‖u‖ + t − n. Certainly,
Dr(u) ⊆ Dt(x). Thus, assume that there is somez ∈ Dt(x) with z /∈ Dr(u). However, then
we would havez ∩ S(n − t) �= z for somez ∈ P(n − t), a contradiction.
Next assume thatx ∩ S(n − t) �= y ∩ S(n − t). Let x ∩ S(t) = S = [s1, s2, . . . , sl] and

y ∩S(t)=T =[t1, t2, . . . , tl′ ] for somel, l′ ∈ N. Let the first instance of inequality of these
sequences be, without loss,si > ti for somei ∈ {1,2, . . . ,min{l, l′}}. Consider the partition
u=[si, si , . . . , si] of the integerisi . Nowsi ��(n− t)/i� and so‖u‖� i�(n− t)/i��n− t .
Therefore there is somev ∈ Dt(x) such thatu ∩ v = u. It is clear thatv /∈ Dt(y). �

We can use Lemma 2.1 to manufacture non-reconstructible partitions: takex, y ∈ P(n)

with x �= y andx ∩ S(m) = y ∩ S(m) for somem ∈ N. ThenDn−m(x) = Dn−m(y) and
sox andy are not reconstructible from their(n − m)-subpartitions. For example, take the
partitionS(m) for anym ∈ N and considerx, y ∈ Ui(S(m)), different partitions of the
integers(m)+i for anyi ∈ N. By Lemma2.1 we haveDv(x)=Dv(y)=Du(S(m))=P(m)

whereu = s(m) − m andv = u + i.
Next we need the following simple lemma.

Lemma 2.2. For anyn, t, i ∈ N withn� t we haveD(n, t)�D(n+i, t +i).Furthermore,
for anyn, t, i ∈ N with 1� i < n we haveU(n, t) < U(n − i, t + i).

Proof. Assume thaty ∈ P(n). For the first inequality observe thatDt(y) ⊆ Dt+i (x) for
anyx ∈ Ui(y) for any i ∈ N. This implies thatD(n, t)�D(n + i, t + i). Secondly, for
1� i < n we haveUt(y) ⊂ Ut+i (x) for anyx ∈ Di(y) and soU(n, t) < U(n − i, t + i).

�

We note that in general we cannot have strict inequality in the first inequality. Indeed, it
follows from Lemma 2.1 that

D(n, t) = D(n + i, t + i) = |P(n − t)|
for anyi ∈ N, if n�s(n − t).

Theorem 2.3. If n�2 andn� t �1, thenN−(n, t) = D(n − 1, t − 1). Furthermore, there
exist partitions x and y of n such thatD1(x)∩D1(y) consists of a single partition z ofn−1
for which|Dt−1(z)| = N−(n, t).

Proof. First we show thatN−(n, t)�D(n − 1, t − 1). Let zbe a partition ofn − 1 corre-
sponding toD(n − 1, t − 1), i.e.,|Dt−1(z)| is maximal among the partitions ofn − 1. We
note that for any 1�m ∈ N andp ∈ P(m) we have|U1(p)|�2. Thus letx, y ∈ U1(z)

with x �= y. CertainlyDt−1(z) ⊆ Dt(x), Dt (y) and hence it follows that

N−(n, t)� |Dt(x) ∩ Dt(y)|� |Dt−1(z)| = D(n − 1, t − 1). (1)

Next we show thatN−(n, t)�D(n − 1, t − 1). Thus assume thatx, y ∈ P(n), x �= y

are such that|Dt(x) ∩ Dt(y)| is maximal. Setw := x ∩ y. ThenDt(x) ∩ Dt(y) ⊆ Dv(w),
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wherev = ‖x ∩ y‖ + t − n. In particular,

|Dt(x) ∩ Dt(y)|� |Dv(w)|�D(‖x ∩ y‖, v)�D(n − 1, t − 1).

The last inequality following from Lemma 2.2 upon takingi = n − 1− ‖x ∩ y‖.
To prove the final part we consider again the partitionsx, y constructed at the beginning

of the proof. It now follows that the inequalities of (1) are actually equalities and|Dt(x) ∩
Dt(y)| = |Dt−1(z)| = D(n − 1, t − 1). �

In particular, for anyx ∈ P(n) it follows that if |Dt(x)|�D(n − 1, t − 1) + 1 thenx is
reconstructible from itst-subpartitions.

Corollary 2.4. Any two different1-subpartitions of a partition allow its reconstruction.
All partitions ofn�3 are reconstructible from their1-subpartitions.

Proof. Taking t = 1 in Theorem 2.3 we getN−(n,1) = D(n − 1,0) = 1. This proves the
first statement. For the second, note that the only partitions ofn that have only one different
type of 1-subpartition arexl = [l, l, l, . . . , l] ∈ P(n) for any l | n. Forn�3 it is not hard
to see thatD1(xi) �= D1(xj ) for any i, j | n with i �= j . Forn = 2 the two partitions of 2
given by[1,1] and [2] clearly have the same 1-subpartitions, hence the restriction.�

Algorithm for recovering a partition from its subpartitions. The followingsimplepro-
cedure reconstructs a partitionx ∈ P(n) if one knowsnand at leastN−(n, t)+1 members
from the setDt(x).

(i) Takeany y1, y2, . . . , yl ∈ Dt(x), wherel = N−(n, t) + 1 and put them in standard
form.

(ii) Form the unionx = ⋃
i=1,...,l yi .

We claim thatx=x, as follows. Since all partitions are in standard form, we have thatyi ⊆ x

and so
⋃

i=1,...,l yi ⊆ x. Assume that
⋃

i=1,...,l yi = x′ ⊂ x with, say,‖x′‖ = n′ < n. By
Theorem2.3 andLemma2.2 it follows thatl > D(n−1, t−1)�D(n′, n′+t−n)� |Dv(x

′)|,
wherev=n′+ t −n. Conversely, sinceyi ⊆ x′ for i=1,2, . . . , l it follows that|Dv(x

′)|� l,
a contradiction.

No explicit formula forD(n, t) seems to be known for generaln andt. For t = 1 and
x=[x1, x2, . . . , xl] it is easy to see that|D1(x)| is the number of distinctxi , that is|D1(x)|=
|{x1, x2, . . . , xl}|. ThusN−(n,1) is the greatest integerj for whichj (j +1)/2�n. Already
for t = 2 it is much more difficult to give an explicit value forD(n, t).

3. Superpartition reconstruction

In contrast to reconstruction fromsubpartitions, partitionsarealways reconstructible from
superpartitions.
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Lemma 3.1. Every partition is reconstructible from its t-superpartitions, for any t ∈ N.
In fact, if t is given, then just one suitably chosen member fromUt(x) allows the unique
reconstruction of x. If t is not given then just two suitably chosen members fromUt(x) suffice
to reconstruct x uniquely.

Proof. Assume thatx ∈ P(n) andwithout loss thatn�2 since|P(1)|=1. If t is known, se-
lectq=[q1, q2, . . . , qr ] ∈ Ut(x)with the property thatq1> p1 for anyp=[p1, p2, . . . , pr ′ ]
∈ Ut(x)with p �= q. It is clear then thatx =[(q1− t), q2, . . . , qr ]. To determinetwe select
in addition the (unique) partition inUt(x) which has the largest number of parts. If this
number isl then clearlyt = l − r. This completes the proof.�

The above lemma shows that for anyx ∈ P(x) some twosuitably chosenmembers
fromUt(x) allows the reconstruction ofx. The next theorem gives the minimum number of
arbitrarily chosenmembers fromUt(x) needed to reconstructx.

Theorem 3.2. If n�2andt �1 thenN+(n, t)=U(n+1, t −1). Furthermore, there exist
partitions x and y of n such thatU1(x) ∩ U1(y) consists of a single partition z ofn − 1 for
which|Ut−1(z)| = N+(n, t).

Proof. First we show thatN+(n, t)�U(n+1, t −1). Thus letz ∈ P(n+1) be a partition
corresponding toU(n+1, t −1). Sincen�2 there are at least two different 1-subpartitions
of zunless possiblyz = zv = [v, v, . . . , v] for anyv | n. However, consider the partitions
of n+1 defined bywv =[v +1, v, v, . . . , v, v −1] for v < n andwn =[n,1]. It is not hard
to see thatUm(wv)�Um(zv) for anyv | n andm ∈ N. In particular, we may assume that
there existx, y ∈ D1(z) with x �= y. Then we haveUt−1(z) ⊆ Ut(x), Ut (y). Hence

N+(n, t)� |Ut(x) ∩ Ut(y)|� |Ut−1(z)| = U(n + 1, t − 1). (2)

Next we prove thatN+(n, t)�U(n + 1, t − 1). So letx andy be distinct partitions ofn
such that|Ut(x) ∩ Ut(y)| is maximal. Clearly, anyz ∈ Ut(x) ∩ Ut(y) must contain bothx
andy, i.e.p = (x ∪ y) ⊂ z. It follows that|Ut(x) ∩ Ut(y)|� |Uv(p)|, wherev = n + t − l

andl = ‖x ∪ y‖. In particular,
N+(n, t) = |Ut(x) ∩ Ut(y)|� |Uv(p)|�U(l, n + t − l).

Now if l > n+1, then by Lemma2.2 it follows thatN+(n, t) < U(n+1, t−1), in contradic-
tion to the first part of the proof. It follows thatl=n+1 and thenN+(n, t)�U(n+1, t−1).
To prove the final part, we consider again the partitionsx, y constructed at the beginning

of the proof. It now follows that the inequalities of (2) are equalities and|Ut(x) ∩ Ut(y)| =
|Ut−1(z)| = U(n + 1, t − 1). �

Algorithm for recovering a partition from its superpartitions. The following simple
procedure reconstructs a partitionx ∈ P(n) if one knowsn and at leastN+(n, t) + 1
members from the setUt(x).

(i) Takeanyy1, y2, . . . , yl ∈ Ut(x)wherel=N+(n, t)+1 and put them in standard form.
(ii) Form the intersectionx = ⋂

i=1,...,l yi .
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We claim thatx=x, as follows. Since all partitions are in standard formwe have thatx ⊆ yi

and sox ⊆ ⋂
i=1,...,l yi . Assume that

⋂
i=1,...,l yi = x′ with x ⊂ x′. Say,‖x′‖ = n′ > n. By

Theorem3.2 andLemma2.2 it follows thatl > U(n+1, t−1)�U(n′, n=n′+t)� |Uv(x
′)|,

wherev = n + t − n′. On the other hand, sincex′ ⊆ yi for i = 1,2, . . . , l we also have that
|Uv(x

′)|� l, a contradiction. �
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