Intersections of Matrix Algebras and Permutation Representations of PSL(n, q)

J. Siemons and A. Zalesskii
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
Communicated by Jan Saxl

Received July 21, 1999

Abstract

If G is a group, H a subgroup of G, and Ω a transitive G-set we ask under what conditions one can guarantee that H has a regular orbit ($=$ of size $|H|$) on Ω. Here we prove that if $\operatorname{PSL}(n, q) \subseteq G \subseteq P G L(n, q)$ and H is cyclic then H has a regular orbit in every non-trivial G-set (with few exceptions). This result is obtained via a mixture of group theoretical and ring theoretical methods: Let R be the ring of all $n \times n$ matrices over the finite field F and let Z be the subring of scalar matrices. We show that if A and M are proper subrings of R containing Z, and if A is commutative and semisimple, then there exists an element $x \in S L(n, F)$ such that $x A x^{-1} \cap M=Z$ or $n=2=|F|$. © 2000 Academic Press

1. INTRODUCTION

Let G be a group, H a subgroup of G, and Ω a transitive G-set. Under what conditions can one guarantee that H has a regular orbit ($=$ of size $|H|)$ on Ω ? In this paper we prove that if $P S L(n, q) \subseteq G \subseteq P G L(n, q)$ and H is cyclic then H has a regular orbit in every non-trivial G-set (with few exceptions). To avoid trivialities we say that a permutation presentation of the group $G \supseteq \operatorname{PSL}(n, q)$ is trivial, and that the corresponding G-set is trivial, if its kernel contains $\operatorname{PSL}(n, q)$.

Theorem 1.1. Let $\operatorname{PSL}(n, q) \subseteq G \subseteq P G L(n, q)$ and let H be a cyclic subgroup of G. Then H has a regular orbit in every non-trivial G-set Ω unless one of the following holds:
(a) $(n, q) \in\{(2,2),(2,3)\}$, or
(b) $\quad(n, q)=(4,2),|H|=15$, and $|\Omega|=8$.

The result is no longer valid for arbitrary abelian group H. Let p be a prime such that p divides q. Lemma 3.9 in [15] and Proposition 1.6 of [14] say that if P_{i} is the stabilizer of a subspace of dimension i in $G=\operatorname{PSL}(n, q)$ and $H_{i}=O_{p}\left(P_{i}\right)$ then H_{i} is abelian and H_{i} has no regular orbit on the cosets of P_{j} in G unless $i+j=n$. (For $j=1, n>3$ this is obvious as $\left.\left|H_{i}\right| \geq q^{2(n-1)}>q^{n}-1 \geq\left|G: P_{1}\right|.\right)$

There is a related module theoretic problem: If K is a field, under what conditions does the permutation $K G$-module $K \Omega$ restricted to H contain a regular $K H$-submodule? For cyclic groups H these problems are equivalent to each other for arbitrary G and K. If H is not cyclic, the second problem is easier (at least via our approach). We treat the second problem under a more general setting assuming that H is abelian with cyclic Sylow p-subgroup.

Theorem 1.2. Let $S L(n, q) \subseteq G \subseteq G L(n, q)$ where $q=p^{m}$ for some m. Let H be an abelian subgroup of G with cyclic Sylow p-subgroup. Let K be a field of characteristic 0 or coprime to $|G|$ and let M be a non-trivial permutation $K G$-module. Set $\bar{H}=H / H_{0}$ where $H_{0}=\{h \in H: h \mid M=\mathrm{Id}\}$. Then M, viewed as an \bar{H}-module, contains a regular $K \bar{H}$-submodule unless one of the following holds:
(a) $(n, q) \in\{(2,2),(2,3)\}$ or
(b) $(n, q)=(4,2),|H|=15$ and $\operatorname{dim} M=8$.

We heavily use the machinery of ring theory. Formally, we could avoid this by dealing with the group of units of a ring instead of the ring itself. However, we see no reason to strive for group theoretical purity. We do hope that some of the ring theoretical results obtained here might be useful in other circumstances. The most essential result of ring theoretical nature is the following:

Theorem 1.3. Let $R=M(n, F)$ and let Z be the subring of scalar matrices. Let A, M be proper subrings of R containing Z with A being commutative and semisimple. Then there exists an element $x \in \operatorname{SL}(n, F)$ such that $x A x^{-1} \cap M=Z(R)$ unless $n=2=|F|$.

Let V be the standard vector space for $G L(n, q)$ and $\operatorname{PSL}(n, q) \subseteq G \subseteq$ $\operatorname{PGL}(n, q)$. Let \mathscr{L} be the set of one-dimensional subspaces in V and let $K \mathscr{L}$ denote the respective permutation module. Our method is based on a theorem saying that if $H \subset G$ is not transitive on \mathscr{L} then the permutation module associated with the action of G on the cosets of H contains a submodule isomorphic to $K \mathscr{L}$. This reduces the problem to analyzing the case where H is transitive on \mathscr{L}. Such subgroups H are known (Huppert, Hering): with few exceptions H normalizes either the projective symplectic group or the image in G of the group of units of a subring of $M(n, q)$
isomorphic to $M\left(n / k, q^{k}\right)$ with $k \mid n$. We use ring theoretic machinery to deal with this second case.

This shows that in order to extend Theorem 1.2 by replacing the abelian group H by a more complicated group B one would first have to guarantee the existence of the regular $K B$-submodule in $K \mathscr{L}$ and then to deal with two other cases. As much as we are aware, very little is known about the action of subgroups of $\operatorname{PGL}(n, q)$ on the cosets of $X \subset$ $\operatorname{PGL}(n, q)$ when X is a quotient of $\operatorname{SL}\left(n / k, q^{k}\right)$ with $k>1$. The problem of characterizing the groups $H \subset G L(n, q)$ which have a regular orbit on \mathscr{L} is known to be very difficult. Some progress has been made when $(|H|, q)=1$ and q is large enough; see Liebeck [13] and Goodwill [4]. Our notation necessarily varies a little as we progress but it is explained at the beginnings of Sections 2, 3, 5, and 7 for each of those parts of the paper.

2. SOME GENERAL OBSERVATIONS ON PERMUTATION MODULES

Here we collect the general facts about permutation actions and modules we shall use in this paper. First recall the usual notation. Let G be some group and Ω a G-set. The image of $\omega \in \Omega$ under $g \in G$ is denoted by $g \omega$ and if $H \subseteq G$ then $H \omega$ is the orbit of ω under H. The stabilizer of ω in G is G_{ω} and if $\Gamma \subseteq \Omega$ then $g \Gamma:=\{g \gamma: \gamma \in \Gamma\}$. We assume throughout that all G-sets are finite. The number of G-orbits on Ω of given size k is denoted by $n_{\Omega}(G, k)$ or just $n(G, k)$. If K is a field then $K G$ is the group ring over K and $K \Omega$ denotes the natural $K G$-module with Ω as a basis. We use $K G$ also to indicate the regular module of G over K. If a normal subgroup $G^{*} \subseteq G$ acts trivially on a submodule M then we often regard M as a $K\left(G / G^{*}\right)$-module.

2.1. Embedding Permutation Modules

Let Δ and Ω be two G sets. We are interested in conditions which guarantee the existence of a $K G$-embedding $K \Omega \hookrightarrow K \Delta$. In general this is not an easy task. However, when G is doubly transitive on Ω then this problem presents itself as a simple alternative:

Theorem 2.1. Suppose that G acts doubly transitively on Ω and also transitively on Δ, where $|\Omega| \geq 2$. (Neither action needs to be faithful.) Let K be a field whose characteristic does not divide the order of G. Then one and only one of the following occurs:
(i) There exists an injective $K G$-homomorphism $\varphi: K \Omega \rightarrow K \Delta$.
(ii) For any $\omega \in \Omega$ and $\delta \in \Delta$ we have $G=G_{\omega} \cdot G_{\delta}$.

We refer to (i) as the embedding case and to (ii) as the factorization case. The condition $G=G_{\omega} \cdot G_{\delta}$ means that G_{δ} is transitive on Ω or, equivalently, that G_{ω} is transitive on Δ. This theorem is from [3] and as its proof is very short we will repeat it here.

Proof. If (ii) holds then G_{ω} has two orbits on Ω but only one orbit on Δ. However, an injective G-homomorphism $\varphi: K \Omega \rightarrow K \Delta$ would imply that the multiplicity of the trivial $K G_{\omega}$-module in $K \Omega$ is no larger that the multiplicity of the trivial $K G_{\omega}$-module in $K \Delta$. These multiplicities are the numbers of G_{ω}-orbits on Ω and Δ, respectively, and so there can be no such embedding.

Fix some $\omega \in \Omega$ and suppose that G_{ω} has an orbit $\Phi \neq \Delta$ on Δ. Define a $K G$-homomorphism $\varphi: K \Omega \rightarrow K \Delta$ by extending $\varphi(\omega):=\sum_{\delta \in \Phi} \delta$ linearly to all of $K \Omega$. It remains to show that φ is injective. As G is doubly transitive $K \Omega=A \oplus B$ decomposes into the one-dimensional module $A=\left\langle\sum_{\omega \in \Omega} \omega\right\rangle$ and the irreducible module $B=\left\langle\omega-\omega^{*}: \omega, \omega^{*} \in \Omega\right\rangle$. So there are only few possibilities for the kernel C of φ : as $\varphi \neq 0$ it remains to show that $C \neq A$ and $C \neq B$. Clearly, $\varphi\left(\sum_{\omega \in \Omega} \omega\right)$ is of the form $x \cdot \sum_{\delta \in \Delta} \delta$ and a simple counting argument shows that $x=$ $|\Omega||\Phi||\Delta|^{-1}$. So x is a divisor of $|G|$ and $\neq 0$ in F. This rules out $C \supseteq A$. As $\Phi \neq \Delta$ we have $\varphi(\omega) \notin\left\langle\sum_{\delta \in \Delta} \delta\right\rangle \subseteq \varphi(F \Omega)$ so that $\varphi(K \Omega)$ is not 1-dimensional. This rules out $C \supseteq B$ and so φ is injective.

2.2. Regular Decompositions

Here we analyze permutation modules in terms of regular modules. Let G be a group, Ω a G-set, and K some field. We arrange the normal subgroups of G as $G=G_{r}, G_{r-1}, \ldots, G_{1}:=1$ in such a fashion that $s>t$ implies $\left|G_{s}\right| \geq\left|G_{r}\right|$. Then let n_{1} be the multiplicity of the regular $K\left(G / G_{1}\right)$-module in $K \Omega$ and let $n_{1} K G=: R_{1}$ be the corresponding submodule of $K \Omega$. Next let n_{2} be the multiplicity of the regular $K\left(G / G_{2}\right)$ module in $K \Omega / R_{1}$ and let $R_{2} \supseteq R_{1}$ be the $K G$-submodule of $K \Omega$ for which $R_{2} / R_{1}=n_{2} K\left(G / G_{1}\right)$, etc. In this fashion we obtain the regular sequence $R_{r} \supseteq R_{r-1} \supseteq \cdots \supseteq R_{1}$ of $K G$-submodules corresponding to G_{r}, \ldots, G_{1} and we shall say that $K \Omega$ has a regular decomposition if there is an arrangement of the G_{i} for which the corresponding regular sequence ends in $K \Omega$.

Lemma 2.2. Let K be a field, G a group, and Ω a G-set. Suppose that G^{*} is normal in G with G / G^{*} cyclic of order n and that $K \Omega$ contains the regular $K\left(G / G^{*}\right)$ module. Then G has an orbit $\Omega^{*} \subseteq \Omega$ which is the union of n orbits of G^{*}, all of the same size.

Proof. Let $g \in G$ be a generator of G / G^{*} and suppose that φ : $K\left(G / G^{*}\right) \hookrightarrow K \Omega$ is a $K G$-embedding of the regular G / G^{*} module. Then $\varphi\left(G^{*}\right)$ can be written as

$$
\begin{aligned}
\varphi\left(G^{*}\right)= & \lambda_{0} A+\lambda_{1} g A+\cdots+\lambda_{r-1} g^{r-1} A \\
& +\mu_{0} B+\mu_{1} g B+\cdots+\mu_{s-1} B g^{s-1} \\
& +\cdots \\
& +\nu_{0} C+\nu_{1} g C+\cdots+\nu_{t-1} g^{t-1} C,
\end{aligned}
$$

where $A:=\Sigma\left\{\alpha^{*} \in \alpha^{G^{*}}\right\}, B, \ldots, C$ denote sums of the points in suitable G^{*}-orbits, where further all $g^{i} A, g^{j} B, \ldots, g^{k} C$ are pairwise distinct with all coefficients $\lambda, \mu, \ldots, \nu \in K$ non-zero. Clearly s, t, \ldots, u are divisors of n.
Note that $\left(1+g+\cdots g^{s-1}\right) \cdot\left(\lambda_{0} A+\lambda_{1} g A+\cdots+\lambda_{r-1} g^{r-1} A\right)=\left(\lambda_{0}\right.$ $\left.+\lambda_{1}+\cdots+\lambda_{s-1}\right) \cdot \bar{A}$, where \bar{A} is the sum of all points in α^{G}, and so this expression is G-invariant. Similarly $\left(1+g+\cdots+g^{s-1}\right)(1+g+\cdots+$ $\left.g^{t-1}\right) \cdots\left(1+g+\cdots+g^{u-1}\right) \cdot \varphi\left(G^{*}\right)$ and hence $\left(1+g+\cdots+g^{s-1}\right)(1+g$ $\left.+\cdots+g^{t-1}\right) \cdots\left(1+g+\cdots+g^{u-1}\right) \cdot\left(G^{*}\right)$ are G-invariant. However, up to a scalar multiple $\left(1+g+\cdots+g^{n-1}\right) \cdot G^{*}$ is the only such element in $K\left(G / G^{*}\right)$. Therefore $\left(1+g+\cdots+g^{s-1}\right)\left(1+g+\cdots+g^{t-1}\right) \cdots(1+g+$ $\left.\cdots+g^{u-1}\right) \cdot\left(G^{*}\right)=\lambda\left(1+g+\cdots+g^{n-1}\right) \cdot G^{*}$ for some $\lambda \in K$. From this we conclude that the polynomial $x^{n}-1$ divides $\left(x^{s}-1\right)\left(x^{t}-1\right) \cdots\left(x^{u}-\right.$ 1) and so a primitive nth root of unity in a suitable extension field is among the roots of order s, t, \ldots, u. Thus $n \in\{s, t, \ldots, u\}$ which completes the proof.

Theorem 2.3. Let K be a field, G a cyclic group, and Ω a G-set. Then $K \Omega$ has a regular decomposition. In particular, if $K \Omega=R_{r} \supseteq R_{r-1} \supseteq \cdots \supseteq$ R_{1} is any regular decomposition, with multiplicities n_{1}, \ldots, n_{r}, then $n_{i}=$ $n_{\Omega}\left(G, k_{i}\right)$ is the number of orbits of length $k_{i}:=\left|G: G_{i}\right|$ and $R_{i+1}=$ $n_{\Omega}\left(G, k_{i+1}\right) \cdot K\left(G / G_{i}\right)+R_{i}$ for $1 \leq i \leq r-1$.

Proof. Let $G=: G_{r}, G_{r-1}, \ldots, G_{1}:=1$ be arranged in such a way that $s>t$ implies $\left|G_{s}\right| \geq\left|G_{t}\right|$. If G has just one orbit on Ω then $K \Omega=K\left(G / G_{1}\right)$ and the result holds. So suppose that there are several orbits and let $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{n}$ be all the orbits of maximal size $m<|\Omega|$. Let s be the least index for which $\left|G: G_{s}\right|=m$. We claim that $R_{1}=R_{2}=\cdots=R_{s-1}$ $=0$. For if $K\left(G / G_{j}\right)$ with $1 \leq j<s$ was involved in $K \Omega$ then by Lemma 2.2 G would have to have an orbit whose size is a multiple of $\left|G: G_{j}\right|$, a contradiction.

Among the groups G_{s}, \ldots, G_{t} of index m we find the stabilizer G_{α} of $\alpha \in \Omega_{1} \cup \Omega_{2} \cup \cdots \cup \Omega_{n}$. As $G / G_{\alpha} \cong G / G_{u}$ for any $s \leq u \leq t$ we see that $R_{s}=n_{s} K\left(G / G_{s}\right)$ where $n_{s} \geq n$, accounting for the n orbits of length m. Put $\Omega^{*}=\Omega \backslash \bigcup_{i} \Omega_{i}$ so that $K \Omega=K \Omega_{1}+\cdots+K \Omega_{n}+K \Omega^{*}$. Using

Lemma 2.2 again we see that the regular $K\left(G / G_{s}\right)$-module is not involved in $K \Omega^{*}$ and this implies that $n_{s} \leq n$. Clearly, also $n_{s+1}=\cdots=n_{t}=0$ and the result now follows by induction.

We note two immediate corollaries. The second one is the version of this theorem which is most relevant for this paper.

Corollary 2.4 (Brauer's permutation lemma [2]). Two permutations have isomorphic permutation modules if and only if they have the same cycle type.

Corollary 2.5. If G is cyclic and acts faithfully on Ω then the multiplicity of the regular $K G$-module in $K \Omega$ is equal to the number of regular orbits of G on Ω.

Combining the results on regular modules with the theorem on embeddings in the preceding sections yields the following:

Theorem 2.6. Suppose that G acts doubly transitively on Ω. Let B_{1}, \ldots, $B_{m} \subseteq G$ be representatives of all those conjugacy classes of subgroups which act transitively on Ω. For $i=1, \ldots, m$ denote the cosets of B_{i} in G by Δ_{i} and let H be a subgroup of G.
(i) Suppose that H is cyclic. If H has at least k regular orbits on each Δ_{i} with $i=1, \ldots, m$ and on Ω then H has at least k regular orbits on any G-set.
(ii) Let K be a field whose characteristic does not divide the order of G. Suppose that $\left.K \Delta_{i}\right|_{H}$, for each $i=1, \ldots, m$, and $\left.K \Omega\right|_{H}$ have a submodule isomorphic to a direct sum of m copies of the regular KH -submodule. Then for any G-set Λ the restriction $\left.K \Lambda\right|_{H}$ contains a submodule isomorphic to a direct sum of m copies of the regular KH -submodule.

Proof. For (i) select any field whose characteristic is co-prime to $|G|$. Then apply Theorem 2.1 and Corollary 2.5. Similarly, part (ii) follows from Theorems 2.1 and 2.3.

3. THE NATURAL ACTION OF $\operatorname{PGL}(n, q)$

In order to apply the ideas arrived at in the last section we need some preliminary information about the natural action of the projective general linear groups. So let V be the n-dimensional vector space underlying $G L(n, q)$ and let \mathscr{L} denote the set of all one-dimensional subspaces of V. The center of $G L(n, q)$ is denoted by Z and the group $\operatorname{PGL}(n, q)=$
$G L(n, q) / Z$ acts on \mathscr{L}. This action is doubly transitive on \mathscr{L} and \mathscr{L} is called the natural $\operatorname{PGL}(n, q)$-set. Observe that also the action of $\operatorname{PSL}(n, q)$ on \mathscr{L} is doubly transitive.

3.1. Regular Orbits of Abelian Subgroups in the Natural Action

Proposition 3.1. Let $q=p^{\alpha}$. Let H be an abelian subgroup of $\operatorname{PGL}(n, q)$ with cyclic Sylow p-subgroup. Then H has a regular orbit on \mathscr{L}.

Proof. Let $H=B \times U$ where U is the Sylow p-subgroup of H. Observe first that the claim is true if H is irreducible. Indeed, in this case $H=B$ is contained in K^{*} where $K=\langle H\rangle$ is a field by Schur's lemma; clearly, $|K v|=|K|$ for each $0 \neq v \in V$ so K^{*} / Z^{*} has a regular orbit on the one-dimensional subspaces of V. Next suppose that H is indecomposable. Put $K=\langle B\rangle$. Then K is a field for otherwise K has a non-trivial idempotent e so H preserves both $e V$ and $(e-\mathrm{Id}) V$. View V as a vector space V_{K} over K. Then U is contained in $G L\left(V_{K}\right)$ as U and K elementwise commute. As U is cyclic, it has a regular orbit on the one-dimensional subspaces of V_{K}, equivalently, on irreducible K-submodules in V. Let $W \neq 0$ be an irreducible K-submodule such that the orbit $\{u W\}_{u \in U}$ is of length $|U|$. Let $0 \neq w \in W$. Then $B w$ contains $|B|$ elements and all of them are in W. As for $u, u^{\prime} \in U$ the spaces $u W$ and $u^{\prime} W$ have no nonzero element in common; the orbit $U B w$ is regular. Moreover, if $B_{Z}=B \cap Z$ then the number of one-dimensional subspaces in $B w$ is $\left|B / B_{Z}\right|$. Therefore $H /(H \cap Z)$ has a regular orbit on the one-dimensional subspaces of V. Finally, assume that $V=V_{1} \oplus V_{2}$ where V_{1}, V_{2} are H-modules. Set $H_{i}=H \mid V_{i}$ for $i=1,2$. By induction, there are vectors $v_{i} \in V_{i}$ such that $\left|H_{i} v_{i}\right|=\left|H_{i}\right|$ and the orbit $H_{i}\left\langle v_{i}\right\rangle$ is of size $\left|H_{i} /\left(Z_{i} \cap H_{i}\right)\right|$ where Z_{i} is the set of scalar matrices in $\operatorname{End}\left(V_{i}\right)$. Then the H-orbit of $v=v_{1}+v_{2}$ has size $|H|$. In order to show that the H-orbit of the line $Z v$ is of size $|H /(H \cap Z)|$ just observe that $a v \in Z v$ if and only if $a \in Z$. Indeed, if $a v=z v$ for $z \in Z$ then $a v_{i}=z v_{i}$ for $i=1,2$. By the above, $a \mid V_{i}$ is scalar, say, z_{i}. Then $a v_{i}=z_{i} v_{i}=z v_{i}$; hence $z_{i}=z$.

3.2. Embedding the Natural $\operatorname{PGL}(n, q)$ Permutation Module

Now suppose that $\operatorname{PGL}(n, q)$ acts on some set Δ and that K is a field whose characteristic does not divide $|P G L(n, q)|$. We are interested in embeddings $\varphi: K \mathscr{L} \rightarrow K \Delta$ and so we investigate the factorizations of the projective linear group. These have been determined by Hering [5]; see also [12].

Theorem 3.2. Let $\operatorname{SL}(n, q) \subseteq G \subseteq G L(n, q)$ be a subgroup and let B be a maximal subgroup of G which is transitive on $V \backslash\{0\}$ and does not contain

SL($n, q)$. Then B is conjugate to one of the following groups:
(i) $\quad N_{G}\left(L^{*}\right)$ where L is a subfield of R containing Z with $|L: Z|=n$,
(ii) $\quad N_{G}\left(S L\left(n / l, q^{l}\right)\right)$ where l is a prime dividing n,
(iii) $N_{G}(S p(n, q))=H S p(n, q)$ for $n>2$ even,
(iv) $N_{G}\left(Q_{8}\right)$ for $n=2$ and $q=5,7,23$,
(v) $N_{G}(S L(2,5))$ for $n=2$ and $q=9,11,19,29,59$, and
(vi) A_{7} for $(n, q)=(4,2)$.

Remark. The transitive group $N_{G}\left(D_{8} \circ Q_{8}\right)$ for $G=S L(4,3)$ given in [12] is contained in $\operatorname{HSp}(4,3)$. In (ii) $S L\left(n / l, q^{l}\right)$ is understood to be the image of the embedding induced by an embedding of $F_{q^{\prime}}$ into $M(l, q)$.

The following is therefore immediate from Theorem 2.1:
Theorem 3.3. Let $G=\operatorname{PSL}(n, q)$ act naturally on the points \mathscr{L} of projective space and let Δ be some transitive primitive G-set. Suppose that K is a field whose characteristic does not divide $|G|$. Then exactly one of the following holds:
(i) there exists an injective G-homomorphism $K \Omega \rightarrow K \Delta$, or
(ii) there is some $\delta \in \Delta$ such that the pre-image of G_{δ} in $\operatorname{SL}(n, q)$ is conjugate to one of the subgroups listed in Theorem 3.2. (G_{δ} stands for the stabilizer of $\delta \in \Delta$ in G.)

Together with Corollary 2.5 and Proposition 3.1 this yields the main result in the embedding case:

Theorem 3.4. Let $g \in G=\operatorname{PGL}(n, q)$ and let $K \mathscr{L}=R_{r} \supseteq R_{r-1} \supseteq \cdots$ $\supseteq R_{1}$ be a regular decomposition for $\langle g\rangle$ when K is a field whose characteristic does not divide $|P G L(n, q)|$. Suppose that Δ is some G-set and that G_{δ}, for some $\delta \in \Delta$, is not conjugate to any of the groups H in Theorem 3.2. Then $\left.K \Delta\right|_{\langle g\rangle}$ has $K\langle g\rangle$-submodules isomorphic to R_{i} for $i=1, \ldots, r$. In particular, g has at least $n_{\mathscr{E}}(g,|g|) \geq 1$ regular orbits on Δ.

4. COUNTING REGULAR ORBITS AND THE BASE OF INDUCTION

Let $B, H \subset G$ be finite groups. First we derive an upper bound for the order of G in terms of B and H if H acts on the cosets of B without a regular orbit. This bound is very rough but sometimes useful.

Let T be a subgroup contained in $H \cap B$. Let $r(T, B)$ denote the number of G-conjugates of B that contain T, and let $n(T, B)$ be the
number of the subgroups in B that are G-conjugate to T. Consider the set

$$
X=\left\{\left(g T g^{-1}, h B h^{-1}\right): g, h \in G \text { and } g T g^{-1} \subseteq h B h^{-1}\right\} .
$$

Then there are $\left|G: N_{G}(T)\right|$ conjugates of T and each is contained in $r(T, B)$ conjugates of B. Therefore $|X|=\left|G: N_{G}(T)\right| \cdot r(T, B)$. On the other hand, there are $\left|G: N_{G}(B)\right|$ conjugates of B, each containing $n(T, B)$ conjugates of T. So $|X|=\left|G: N_{G}(B)\right| \cdot n(T, B)$ and hence

$$
r(T, B)=\frac{\left|N_{G}(T)\right|}{\left|N_{G}(B)\right|} \cdot n(T, B) .
$$

Theorem 4.1. Suppose that G is a finite group with subgroups B and H such that H has no regular orbit on the cosets of B in G. Let S_{1}, \ldots, S_{m} be representatives of all conjugacy classes of subgroups of prime order contained in $B \cap H$. Then

$$
|G| \leq \sum_{i=1}^{m} N_{G}\left(S_{i}\right) \cdot n\left(S_{i}, B\right) \cdot n\left(S_{i}, H\right)
$$

Proof. By assumption we have: ($*$) $\forall g \in G$ the intersection $H \cap g B g^{-1}$ is non-trivial. Let S_{1}, \ldots, S_{m} be representatives of all conjugacy classes of subgroups of prime order contained in $B \cap H$. If H intersects a conjugate of B then this intersection contains a conjugate T of some S_{i} and there will be $r(T, B)=r\left(S_{i}, B\right)$ conjugates of B containing T. Therefore H intersects non-trivially at most $\sum_{i=1}^{m} r\left(S_{i}, B\right) \cdot n\left(S_{i}, H\right)$ conjugates of B and so $\sum_{i=1}^{m} r\left(S_{i}, B\right) \cdot n\left(S_{i}, H\right) \geq\left|G: N_{G}(B)\right|$ if $(*)$ holds. From the expression for $r\left(S_{i}, B\right)$ one obtains the required inequality.

Examples. (1) If B is cyclic then $n\left(S_{i}, B\right)=1$ so that $|G| \leq$ $\sum_{i=1}^{m} N_{G}\left(S_{i}\right) \cdot n\left(S_{i}, H\right)$.
(2) Suppose that any two conjugates $T_{1}, T_{2} \subseteq H$ of S_{i} are conjugate in H. Then $n\left(S_{i}, H\right)=\left|H: N_{H}\left(S_{i}\right)\right|$ and so $|G: H| \leq \sum_{i=1}^{m}\left|N_{G}\left(S_{i}\right) / N_{H}\left(S_{i}\right)\right|$.

Now we turn to the proof of Theorem 1.1 when $(n, q)=(2, q)$ for arbitrary q and $(n, q)=(4,2)$. This will serve as a basis for induction later on.

Lemma 4.2. Let $P S L(2, q) \subseteq G \subseteq P G L(2, q)$ with $3<q$ and let $B \subset G$ with $B \nsupseteq \operatorname{PSL}(2, q)$. If H is an abelian subgroup of G then there is some $g \in G$ for which $B \cap H^{g}=1$.

Proof. Suppose that B intersects every conjugate of H non-trivially. We may assume that $H=S_{1} \times S_{2} \times \cdots \times S_{m}$ where the S_{i} are simple cyclic. We may also assume that each S_{i} has a conjugate contained in B
and that $m \geq 2$ for otherwise B is contained the normal subgroup generated by the conjugates of H. First assume that the intersections between B and the conjugates of H are always contained in $\operatorname{PSL}(2, q)$ so that we may as well assume $B, H \subseteq \operatorname{PSL}(2, q)$. It follows from Theorem 8.27 in [6] that H is one of the following: (i) $C_{2} \times C_{2}$, (ii) cyclic of order dividing $(q \pm 1) / k$ where $k=(q-1,2)$ and $N_{G}(H)$ is dihedral of order $2(q \pm$ $1) / k$, or (iii) elementary abelian of order dividing q. Each of these cases can be ruled out by elementary arguments and the use of Theorem 4.1. In the remaining case assume that B meets some conjugate H^{g} such that $H^{g} \cap B:=\langle h\rangle \neq 1$ but $H^{g} \cap B \cap \operatorname{PSL}(2, q)=1$. Then H is contained in the centralizer of the involution h and this can be ruled out in the same fashion.

Lemma 4.3. Let $G=\operatorname{Alt}(8) \cong S L(4,2)$ and $B \subset G$ with $8<|G: B|$. If H is an abelian subgroup of G then there is some $g \in G$ with $B \cap H^{g}=1$.

Proof. Suppose that B intersects every conjugate of H non-trivially. Then $|H|$ has at least two different prime divisors and clearly 7 cannot divide $|H|$. If 5 divides $|H|$ then $H \cong C_{3} \times C_{5}$ as C_{5} is irreducible in $\operatorname{SL}(4,2)$. Hence $B \cap H^{g}$ is of order 3,5 or 15 . Then B contains elements of order 3 and 5 , and for every partition of type $(5,3)$ of the eight points there would be a 3 -cycle or a 5 -cycle in B preserving the two sets of the partition. It follows that B has an orbit of length 7 or 8 and from this that $B \cong \operatorname{Alt}(7)$ or $B \cong \operatorname{Alt}(8)$.

5. INTERSECTIONS OF SUBALGEBRAS

We now begin with the ring theoretical discussion. The notation is as follows. If B is a group then B^{\prime} is the derived subgroup of B and $Z(B)$ is the center of B. If X is a ring with identity then X^{*} is the group of units ($=$ invertible elements) of X and $Z(X)$ is the center of X. We often write X^{\prime} instead of $X^{* \prime}$. The algebra of $(n \times n)$-matrices over a field F is denoted by $M(n, F)$. We set $R=M(n, F)$ and $Z=Z(M(n, F))$. Let $V=F^{(n)}$ be the natural R-module. We set $G=R^{*}=G L(n, F)$. Observe that X is an F-subalgebra of R containing the identity of R if and only if X contains Z. If S is a subset of R then $\langle S\rangle$ denotes the least F-algebra (= Z-algebra) containing S. If $S, T \subseteq R$ are subsets we write $\langle S, T\rangle$ instead of $\langle S \cup T\rangle$. The field of q elements is denoted by \mathbf{F}_{q}. We write $M(n, q)$ and $G L(n, q)$ instead of $M\left(n, \mathbf{F}_{q}\right)$ and $G L\left(n, \mathbf{F}_{q}\right)$, respectively.

Theorem 5.1. (1) Let S be a simple subring of R containing Z. Then the following hold:
(i) If a is an automorphism of S trivial on Z then there exists $g \in G$ such that $a(s)=g s g^{-1}$ for all $s \in S[16$, Sect. 12.6].
(ii) Let $C=C_{R}(S)$. Then C is simple, $S=C_{R}(C)$, and $(S: Z)(C: Z)=n^{2}[16$, Sect. 12.7].
(iii) If S is a field and $k=S: Z$ then $C \cong M(n / k, S)$. Furthermore, C is irreducible and if $S: Z$ is a prime then C is a maximal subring of R.
(iv) Isomorphic simple subrings of R containing Z are conjugate in R [16].
(2) Let T be a semisimple subring of R such that $Z \subset T$, and $L=$ $C_{R}(T)$. Then L is semisimple, $C_{R}(L)=T, Z(T)=Z(L)$. Further, L is simple if and only if T is simple.
(3) If K is a maximal simple subring R such that $Z \subseteq K$ then $Z(K): Z$ is a prime.

Proof. (1) (iii): Obviously V is a vector space over S of dimension n / k and C is exactly $\operatorname{Hom}_{S}(V, V) \cong M(n / k, S)$. Each finitely generated module over $M(n / k, S)$ is a direct sum of simple ones. If V is not irreducible as an C-module then $S=\operatorname{Hom}_{C}(V, V)$ contains a non-trivial idempotent which is not the case.
(2) Let $T=S_{1} \oplus \cdots \oplus S_{k}$ where S_{1}, \ldots, S_{k} are simple. Let $e_{i} \in S_{i}$ be central idempotents of S_{i}. Let $V_{i}=e_{i} V$ and $n_{i}=\operatorname{dim} V_{i}$. Then the centralizer of the set $\left\{e_{1}, \ldots, e_{k}\right\}$ in R is $M\left(n_{1}, F\right) \oplus \cdots \oplus M\left(n_{k}, F\right)$ and $S_{i} \in M\left(n_{i}, F\right)$ is a simple subring. Therefore $L=L_{1} \oplus \cdots \oplus L_{k}$ where L_{i} is the centralizer of S_{i} in $M\left(n_{i}, F\right)$. So the result follows from (1) (ii).
(3) Clearly, K is irreducible so $C=C_{R}(K)$ is a field. Hence $C=$ $Z(K)$. If $C: Z$ is not a prime then C contains a proper subfield C_{1} containing Z and $C_{R}\left(C_{1}\right) \neq k$ by (1) (ii).

TheOrem 5.2 (see 2a). Let H be a non-central subgroup of $G L(n, F)$ invariant under G^{\prime}. Suppose that $(n,|F|) \neq(2,2),(2,3)$. Then H contains $S L(n, F)$.

Corollary 5.3. Let $T=\oplus T_{i}$ where $T_{i} \cong M\left(n_{i}, F_{i}\right)$ and F_{i} are fields of the same characteristic. Let $\phi_{i}: T \rightarrow T_{i}$ be the natural projection. Let H be a subgroup of T^{*} invariant under T^{\prime}. Suppose that H contains an element h of order p. Then H contains a subgroup H such that $\phi_{i}(X)=S L\left(n_{i}, F_{i}\right)$ for those i for which $h \notin \operatorname{ker}\left(\phi_{i}\right)$ and $\phi_{i}(X)=\mathrm{Id}$ for all other i.

The following lemma is a very particular case of a result in [1].
Lemma 5.4. Let S be a proper subring of R. Suppose that $g^{-1} S g=S$ for all $g \in G^{\prime}$. Then either $S \subset Z$, or $(n,|F|)=(2,2)$ and S is the field of four elements.

Proof (sketch). If $(n,|F|) \in\{(2,2),(2,3)\}$ then the lemma can be verified directly. Suppose that $(n,|F|) \neq(2,2),(2,3)$. Observe that $S \cap G \nsubseteq$ $Z(G)$ unless $|F|=2$ and S is a direct sum of the fields of two elements. In the first case S^{*} contains G^{\prime} by Theorem 5.2. It is well known that for $(n,|F|) \neq(2,2)$ the group G^{\prime} is absolutely irreducible. Therefore $\left\langle G^{\prime}\right\rangle=$ $M(n, F)$ and so $S=M(n, F)$. This is a contradiction. Let S be a direct sum of k copies of the field of two elements. Then $n \geq k>1$ and hence G^{\prime} permutes these k summands. It follows that G^{\prime} has a normal subgroup L such that G^{\prime} / L is isomorphic to a subgroup of Sym_{k}, the symmetric group of degree k. It follows from Theorem 5.2 that $L \subseteq Z(G)$. This is impossible as $|P S L(n, F)|>k$! for $n \geq k$.

Corollary 5.5. Let $L \neq Z$ be a minimal subring of R containing Z. Then $g^{-1} L g \cap M \subseteq Z$ for some $g \in G^{\prime}$, unless $(n,|F|)=(2,2)$ and $M=L$ $\cong \mathrm{F}_{4}$.
Proof. Let $g \in G^{\prime}$. If $g^{-1} L g \cap M \not \subset Z$ then $g^{-1} L g \subseteq M$ by minimality of L. If this is true for all $g \in G^{\prime}$ then $L \subset Y=\bigcap_{g \in G^{\prime}} g M g^{-1} \neq Z$. By Lemma $5.4(n,|F|)=(2,2)$ and $L \cong \mathbf{F}_{4}$ as $Y=g Y^{-1}$ for all $g \in G^{\prime}$. In the exceptional case the claim is obvious.

Lemma 5.6. Let $A \subset R$ be a semisimple commutative F-algebra and let D be any maximal proper F-subalgebra of A. If $Z \cong \mathbf{F}_{2}$ and A contains a proper subfield L such that $Z \subset L \cong \mathbf{F}_{4}$ suppose additionally that D contains L. Let $A=A_{1} \oplus \cdots \oplus A_{l}$ and $D=D_{1} \oplus \cdots \oplus D_{k}$, where A_{1}, \ldots, A_{l} and D_{1}, \ldots, D_{k} are fields. Then $k \leq l \leq k+1$ and the summands A_{i}, D_{j} can be reordered such that $D_{i}=A_{i}$ for $i=1, \ldots, k-1$.

Proof. Obviously, $k \leq l$ and after reordering the A_{i} 's one can assume that $D_{1} \subset A_{1} \oplus \cdots \oplus A_{i_{1}}, D_{2} \subset A_{i_{1}+1} \oplus \cdots \oplus A_{i_{2}}, \ldots, D_{k} \subset A_{i_{k-1}+1} \oplus \cdots$ $\oplus A_{i_{k}}$. As D is maximal, after reordering the D_{i} 's and A_{i} 's we have $D_{1}=A_{1}, \ldots, D_{k-1}=A_{k-1}, D_{k} \subset A_{k} \oplus \cdots \oplus A_{l}$. Moreover, it follows from the maximality of D that the last sum should contain at most two summands, i.e., $k=l$ or $l=k+1$. If $k=l$ then $D_{k} \subset A_{k}$ is a field extension. If $l=k+1$ then $A_{k} \cong A_{k+1} \cong D_{k}$ (as $Z \subset D$ the identity of $A_{k}+A_{k+1}$ is contained in D_{k}).

Proof of Theorem 1.3. Suppose the contrary. Take for R a minimal counterexample; i.e., we assume that the theorem holds for $m<n$. Further, as every F-subalgebra of A is semisimple, we assume that A is a
minimal counterexample, in the sense that for any proper F-subalgebra B of A the theorem holds; i.e., there exists an element $x \in S L(n, F)$ such that $x B x^{-1} \cap M \subseteq Z$.

The cases $n=1$ and $n=|F|=2$ are obvious. Thus we assume in what follows that $n>1$, and that $|F|>2$ when $n=2$.

Let $A=A_{1} \oplus \cdots \oplus A_{l}$ where A_{1}, \ldots, A_{l} are fields. Let D be a maximal proper subring of A containing Z. If $D=Z$ then the theorem follows from Corollary 5.5. So we shall assume that $D \neq Z$. If $Z \cong \mathbf{F}_{2}$ and A contains a proper subfield L with $Z \subset L \cong \mathbf{F}_{4}$ then by Corollary 5.5 $A \neq L$ and we can assume that D is chosen to contain L. Let $D=D_{1}$ $\oplus \cdots \oplus D_{k}$ where D_{1}, \ldots, D_{k} are fields. By Lemma $5.6 k \leq l \leq k+1$ and we can assume that $D_{1}=A_{1}, \ldots, D_{k-1}=A_{k-1}$, and $D_{k} \subset A_{k} \oplus \cdots \oplus A_{l}$. If $k=l$ then $D_{k} \subseteq A_{k}$ is a field extension. If $l=k+1$ then $A_{k} \cong A_{k+1}$ $\cong D_{k}$. If A is minimal we can assume that $D \cap M \subseteq Z$. Let $C=C_{R}(D)$. Then $D=Z(C)$ by $5.1(i i)$ so C is a direct sum of exactly k simple components $C=C_{1}, \ldots, C_{k}$. By reordering the C_{i} 's we can assume that $D_{i}=Z\left(C_{i}\right)$ for $i=1, \ldots, k$. Let e_{i} denote the identity of D_{i} (and C_{i}). By the above, C_{k} contains A_{k}. If $l=k+1$ then C_{k} contains $A_{k}+A_{k+1}$. Set $C_{0}=D_{1} \oplus \cdots \oplus D_{k-1} \oplus C_{k}$. Then $A \subset C_{0}$, and C_{0} is not commutative as $Z(C)=D \neq A$. For $x_{k} \in C_{k}$ let $x=e_{1}+e_{2}+\cdots+e_{k-1}+x_{k}$. Then x_{k} is invertible if and only if x is. Observe that $C_{k} \cong M\left(m, D_{k}\right)$ for some $1<m<n$ by Theorem 5.1. Let σ denote the projection $C_{0} \rightarrow C_{k}$, so $\sigma(x)=x_{k}$.

Set $M_{0}=M \cap C_{0}, M_{\sigma}=\sigma\left(M_{0}\right)$. Observe first that $M_{\sigma} \cong M_{0}$ as $\operatorname{Ker}(\sigma)=D_{1} \oplus \cdots \oplus D_{k-1}$ and $D \cap M \subseteq Z$. Observe next that $M_{\sigma} \neq$ $\sigma\left(C_{k}\right)$. Indeed, if $M_{\sigma}=\sigma\left(C_{k}\right) \cong C_{k}$ then $M_{0} \cong C_{k} \cong M\left(m, D_{k}\right)$; hence $M_{0}=C_{k}$ (as the projections of M_{0} to C_{i} should be zeros). Then M contains D_{k}. This is a contradiction as $D \cap M \subseteq Z$.

Thus $M_{\sigma} \neq \sigma\left(C_{k}\right)$. As $m<n$, the theorem is true for $\sigma\left(C_{k}\right)$ so either there exists $x_{k} \in C_{k}^{\prime}=\operatorname{SL}\left(m, D_{k}\right)$ such that $x_{k}^{-1} \sigma(A) x_{k} \cap M_{\sigma} \subseteq \sigma\left(D_{k}\right)=$ D_{k} or $m=2=\left|D_{k}\right|$ and $\sigma(A) \cong \mathbf{F}_{4}$. In the former case set $x=e_{1}+e_{2}$ $+\cdots+e_{k-1}+x_{k}$. Then $x^{-1} A x \cap M \subseteq M \cap D \subseteq Z$, as desired. Let $m=2$ $=\left|D_{k}\right|$. Then $F=\mathbf{F}_{2}$ and $M_{\sigma} \cong \sigma(A) \cong \mathbf{F}_{4}, l=k$, so D contains no subfield L such that $\mathrm{Id} \in L \cong \mathbf{F}_{4}$. As $M_{0} \cong M_{\sigma}$, we have $M_{0} \cong \mathbf{F}_{4}$. Let σ_{i} with $i<k$ be the natural homomorphism of C_{0} onto $D_{i}, i<k$. Then $\sigma_{i}\left(M_{0}\right) \neq\{0\}$ as M_{0} contains Id. Clearly, $\operatorname{ker}\left(\sigma_{i}\right) \cap M_{0}=\{0\}$ as M_{0} is a field. Hence $\sigma_{i}\left(M_{0}\right) \cong \mathbf{F}_{4}$. Therefore, D_{i} contains a subfield isomorphic to \mathbf{F}_{4} for every $i<k$. It follows that A contains a subfield isomorphic to \mathbf{F}_{4}. This contradicts the assumption about D above.

Lemma 5.7. Let $p=\operatorname{char}(F)$ and let $A \subset G$ be a finite abelian group. Let X be a subring of R such that $Z \subset X$. Suppose that the Sylow p-subgroup A_{p} of A is cyclic. Then there is $g \in G^{\prime}$ such that $g^{-1} A g \cap X \subset Z$.

Proof. Let $A=A_{1} \times A_{p}$. Set $K=\left\langle A_{1}\right\rangle$. Then K is a semisimple ring by Maschke's theorem. It suffices to prove the lemma when $A_{1}=K^{*}$ as this group contains no p-element. Thus assume that $A_{1}=K^{*}$. If $A_{p}=1$ the result follows from Theorem 1.3. Let $A_{p} \neq 1$ and let A_{0} denote the subgroup of A_{p} of order p. Set $C=C_{R}(K)$. Write $C=C_{1} \oplus \cdots \oplus C_{m}$ where each C_{i} for $i=1, \ldots, m$ is a simple ring. Let $\sigma_{i}: C \rightarrow C_{i}$ be the natural projection. By reordering the C_{i} 's we can assume that $\sigma_{i}\left(A_{p}\right) \neq 1$ for $i=1, \ldots, l$ and $\sigma_{i}\left(A_{p}\right)=1$ for $i>l$. Obviously, C_{i} is not commutative for $i \leq l$.

By Theorem 1.3 we can assume that (*) $K \cap X=Z$. Set $X_{0}=X \cap C$ and $X_{C}^{0}=\bigcap_{c \in C^{\prime}} c X_{0} c^{-1}$. If $A \cap X_{C}^{0} \subseteq Z$ then we are one. Suppose that $A \cap X_{C}^{0} \nsubseteq Z$, and let $a \in A \cap X_{C}^{0}$ and $a \notin Z$. By (*) a is not semisimple so some power of a is a non-trivial element of A_{0}. Hence $A_{0} \subset X_{C}^{0}$. We show that this is impossible.

Let $e_{i} \in C_{i}$ be the central idempotent of C_{i}. As $C_{i} \in C$, the element $c=e_{1}+\cdots+e_{i-1}+c_{i}+e_{i+1}+\cdots+e_{m} \in C^{\prime}$ for each $c_{i} \in C_{i}^{\prime}$ and $\sigma_{i}(c)$ $=c_{i}$. For $x \in X_{C}^{0}$ let $x=x_{1}+\cdots+x_{m}$ with $x_{i} \in C_{i}$. Then $c x c^{-1}-\mathrm{Id}=$ $c_{i} x_{i} c_{i}-e_{i}^{-1}$ so $c_{i} x_{i} c_{i}-e_{i} \in C_{i} \cap X_{C}^{0}$. Observe that $C_{i} \cap X_{C}^{0}$ is not in $Z\left(C_{i}\right)$ for $i \leq l$. Indeed, let $1 \neq a \in A_{0}$. Then for $x=a$ the element $\sigma_{i}(x)=x_{i}$ is of order p so $c_{i} x_{i} c_{i}-e_{i} \notin Z\left(C_{i}\right)$ for some $c_{i} \in C_{i}^{\prime}$. So $C_{i} \cap X_{C}^{0}$ is non-central C_{i}^{\prime}-invariant subring of C_{i}. By Lemma $5.4 C_{i} \cap X_{C}^{0}$ $=C_{i}$, except, possibly, in the case $C_{i}=M\left(2, \mathbf{F}_{2}\right)$ when $C_{i} \cap X_{C}^{0}$ is isomorphic to \mathbf{F}_{2}. In both the cases $Z\left(C_{i}\right) \subseteq X_{C}^{0} \subseteq X$ which contradicts (*), unless $m=1, Z\left(C_{i}\right)=Z$. Then $C=R, X_{0}=X$, and X_{C}^{0} is a G^{\prime}-invariant subring of R. By Lemma 5.4 either $X_{C}^{0}=R$ or $R=M\left(2, \mathbf{F}_{2}\right)$. The first case is impossible as $X_{C}^{0}=X \neq R$. The second case $R=M\left(2, \mathbf{F}_{2}\right)$ is straightfoward.

6. SUBRING NORMALIZERS

Notation. In this section $F=\mathbf{F}_{q}$. We first prove the following theorem.
Theorem 6.1. Let $|F|=q$. Let A be a commutative semisimple subring of $R=M(n, F)$ and let M be a proper subring of R, both containing Z. Set $N=N_{R^{*}}\left(M^{*}\right)$. Then there exists an element $x \in G^{\prime}$ with $x A x^{-1} \cap N \subseteq Z=$ $Z(R)$ unless $n=2=|F|$.

We set $F_{l}:=\mathbf{F}_{q^{\prime}}$. For $l \mid n$ there is an embedding of F_{l} into $M(l, F)$ via the regular representation of F_{l} over F (i.e., we consider F_{l} as a vector space over F of dimension l and the action of F_{l} on F_{l} by left multiplication defines the regular representation of $\left.\rho_{l}: F_{l} \rightarrow M(l, F)\right)$. Furthermore, for $l \mid n$ we define a subalgebra R_{l} of R obtained from $M\left(n / l, F_{l}\right)$ by
means of replacing the matrix entries $t_{j k}$ of $t \in M\left(n / l, F_{l}\right)$ by the elements $\rho_{l}\left(t_{j k}\right)$.

Thus if $l \mid n$ then R_{l} is a simple F-subalgebra of R containing the identity of R. Hence R_{l} contains Z. Let Z_{l} be the center of R_{l}, so $Z_{l} \cong F_{l}$, and $Z_{l}: Z=l$. Observe that Z_{l} is a subfield of R containing Z. By Theorem 5.1(2) we have $R_{l}=\mathbf{C}_{R}\left(Z_{l}\right)$. We set $G_{l}=R_{l}^{*}$ so that G_{l} is isomorphic to $G L\left(n / l, F_{l}\right)$ and $G=R^{*}=G L(n, F)$. Clearly, $G_{l}=\mathbf{C}_{G}\left(Z_{l}\right)$. If $(n, q) \neq(2,2)$ then $G_{l}^{\prime} \cong S L\left(n / l, F_{l}\right)$.
Let N_{l} denote the normalizer of G_{l} in G. Observe that $N_{l}=\{g \in$ $G: g x g^{-1} \in R_{l}$ for all $\left.x \in R_{l}\right\}$ as $\left\langle G_{i}\right\rangle=R_{i}$. Obviously, $g Z_{l} g^{-1}=Z_{l}$ for $g \in N_{l}$. It follows that N_{l} / G_{l} is isomorphic to the Galois group of Z_{l} / Z. In particular, $\left|N_{l} / G_{l}\right|$ is cyclic of order l.

Lemma 6.2. Let l be a prime divisor of n and let $x \in N_{l} \backslash R_{l}$. Let $y=\sum_{i=0}^{l-1} \lambda_{i} x^{i}$ where $\lambda_{i} \in R_{l}$. If $y \in R_{l}$ then $y \in Z_{l}$.

Proof. Set $J(y)=\left\{i \in\{0, \ldots, l-1\}: \lambda_{i} \neq 0\right\}$. Suppose the contrary and choose y with minimal $|J(y)|$. If $J(y)=\{0\}$ we are done. Suppose that $J(y) \neq\{0\}$. If $\zeta \in Z_{l}$ then $y \zeta-x^{k} \zeta x^{-k} y=\sum_{k \neq i \in J(y)} \lambda_{i}\left(x_{\zeta}^{i} x^{-i}-x^{k} \zeta x^{-k}\right) x^{i}$ $\in R_{l}$. By minimality of $J(y)$ we have $x_{\zeta}^{i} x^{-i}=x^{k} \zeta x^{-k}$ for $i \in J(y), i \neq k$. This is equivalent to $\zeta=x^{i-k} \zeta x^{k-i}$ for all $\zeta \in Z_{l}$. This is impossible as x realizes a Galois automorphism of Z_{l} / Z.

Lemma 6.3. Let l, ν be prime divisors of n and let K, L be subfields of R containing Z such that $K: Z=\nu$ and $L: Z=l$. Let $N=\mathbf{N}_{G}(L)=\mathbf{N}_{G}(M)$ where $M=C_{G}(L)$. Then $g K^{-1} \cap N=Z$ for some $g \in G^{\prime}$.

Proof. Observe that $N: M^{*}=l$ by a Galois argument. By Corollary 5.5 there is $g \in G^{\prime}$ such that $g K^{-1} \cap M \subseteq Z$. Set $L=g Z_{l} g^{-1}$. Suppose that $L \cap N \neq Z$. Then $N \cap L$ contains an element $x \notin M$ such that $x^{l} \in M$. Then $\langle x\rangle=L$ as $L: Z$ is prime. Obviously there exists $h \in G^{\prime}$ such that $h x h^{-1} \notin N$. Set $K_{1}=\left\langle h x h^{-1}\right\rangle$. Then K_{1} is a field and $K_{1}: Z=l$. It follows that $K_{1} \cap M \subseteq Z$ (otherwise, $K_{1} \subseteq M$ and $x \in M \subset N$). We show that $K_{1} \cap N \subseteq Z$. Otherwise, let $y \in K_{1} \cap M$ and $y \notin Z$. Then $y^{\prime} \in K_{1} \cap M \subseteq Z$. As K_{1} is finite, the group K_{1}^{*} / Z^{*} is cyclic and hence contains a unique subgroup of order l. Therefore $y=\left(h x h^{-1}\right)^{i} z$ where $z \in Z, i \in \mathbf{N}$, and $(i, p)=1$. As $y \in N$, we have $x \in N$ which is a contradiction.

Lemma 6.4. Let $F \subset P$ be finite fields, $S=M(k, P)$ with $k>1$ and $D=Z(S)$. Let T be a proper F-subalgebra of S such that $\langle T, Z(S)\rangle=S$. Let N be the normalizer of T in G.
(i) For $x \in P$ set $d_{x}=\operatorname{diag}(1, \ldots, 1, x)$. There exists a subfield Q of P and elements $a \in S$ and $x \in P$ such that $a T a^{-1}=d_{x} M(k, Q) d_{x}^{-1}$.
(ii) $\quad N=T^{*} Z(S)^{*}$.
(iii) Let $e \in S$ be an idempotent such that $0 \neq e \neq 1$, and $K=$ $\langle Z(S), e\rangle$. Then there exists $g \in S^{\prime}$ such that $\mathrm{KKg}^{-1} \cap N \subset Z(S)$.
(iv) Let L be a subfield of S containing D. Then $L \cap T \subseteq Z$ implies that $L \cap N \subseteq Z$.

Proof. (i) Obviously, T should be simple, so by Wedderburn's theorem $T \cong M(l, Q)$ where Q / F is a field extension. Then $S=\langle T, Z(S)\rangle \cong$ $M(l, Q) \otimes P \cong M(l, Q \otimes P)$. This implies $k=l$ and $Q \subset P$. Obviously, there exists $c \in G L(k, P)$ such that $c T c^{-1}=M(k, Q)$. Let $x=\operatorname{det}\left(c^{-1}\right)$. Then $a=d_{x} c \in S^{\prime}$ and we are done.
(ii) follows from 5.1(i) and (i) above. Indeed, it suffices to prove (ii) for $T=M(k, Q)$. Let $x \in N$. Then the automorphism $t \mapsto x t x^{-1}(t \in T)$ of T is inner (5.1) and so $x=y c$ where $y \in T$ and $c \in C_{G}(T)$. However, $C_{G}(T)=Z(S)$ so $c \in Z(S)$, as desired.
(iii) Set $M^{x}(k, Q)=d_{x} M(k, Q) d_{x}^{-1}$. By (i) we can assume that $T=$ $M^{x}(k, Q)$ for some $x \in P$. Then the entires of matrices of T are in Q, except in positions (i, j) with $i=n, j \neq n$ and $i \neq n, j=n$ where the entries belong to the set $x Q$ and $x^{-1} Q$, respectively. Let $k=\operatorname{rank}(e)$. Then there exist $h \in S$ such that $h^{-1}=e_{0}=\operatorname{diag}(1, \ldots, 1,0, \ldots, 0)$. Let $u=\operatorname{det}\left(h^{-1}\right)$. Then $g=d_{u} h \in S^{\prime}$. As $k<n$, we have $g e g^{-1}=e_{0}$. Hence we can assume that $e=e_{0}$. Pick $y \in P, y \notin x Q$ and set $a=\mathrm{Id}+y e_{1 k}$ (here $e_{1 k}$ denotes the matrix with 1 positioned at ($1, k$) and zeros elsewhere). Then $\operatorname{det}(a)=1$ so $a \in S^{\prime}$. Set $e_{1}=a e a^{-1}=e_{0}+y e_{1 k}$. Hence we can assume that $e=e_{0}+y e_{1 k}$. Next let $b \in K \cap N, b \notin Z(S)$. Then $b=p_{1}+p_{2} e$ for some $p_{1}, p_{2} \in P,\left(p_{1} \neq 0 \neq p_{2}\right)$ so that $b=\operatorname{diag}\left(p_{1}+\right.$ $\left.p_{2}, \ldots, p_{1}+p_{2}, p_{1}, \ldots, p_{1}\right)+y p_{2} e_{1 k}$. As $b T^{*} b^{-1}=T^{*}$, we have $b T b^{-1}=$ T. Then b induces an automorphism b_{1} of T trivial on $Z(T)$ as $Z(T)$ consists of scalar matrices. Therefore, b_{1} is inner; i.e., $b t b^{-1}=c t c^{-1}$ for some $c \in T^{*}$. Then $c^{-1} b t=t c^{-1} b$ for all $t \in T$, so $c^{-1} b \in C_{G L(k, P)}(T)$. The right hand side group consists of scalar matrices over P by Schur's lemma. Hence $b \in N$ implies the existence of $r \in P$ such that $r p_{1} \in Q$, $r\left(p_{1}+p_{2}\right) \in Q, r y p_{2} \in x Q$. This implies $r p_{2} \in Q$, and then $y \in x Q$. This is impossible unless $p_{2}=0$. However, $p_{2}=0$ means that $b \in Z(T)$, which is a contradiction.
(iv) Suppose the contrary and let $a \in L \cap N$. By (ii) we can express $a=t d$ for some $t \in T$ and $d \in D$. As $d \in L$, we have $t \in L$ so $t \in L \cap T$ $\in Z$.

Proof of Theorem 6.1. Consider a minimal counterexample; i.e., we assume that the theorem holds for $m<n$. The cases $n=1$ and $n=q=2$ are obvious. Thus we assume in what follows that $n>1$ and $n q>4$.

Furthermore, $\langle N\rangle=R$ by Theorem 1.3 applied to $\langle N\rangle$. This implies that M is semisimple. Indeed, if $U=\operatorname{Rad}(M) \neq 0$ then $x U x^{-1}=U$ for each $x \in N$. Therefore $\left\{\sum u_{i} x_{i}\right\}_{u_{i} \in U, x_{i} \in N}$ forms a two sided ideal of $R=\langle N\rangle$, which is a contradiction. (This is in fact the Clifford theorem.) We denote by r the number of simple components of M and set $s=n / r$. Let e_{1}, \ldots, e_{r} be the minimal central idempotents of M. By the Clifford theorem all they have the same rank s. As A is semisimple, we can also assume that A is minimal in the sense that for any proper F-subalgebra B of A there exists an element $x \in G^{\prime}$ such that $x B x^{-1} \cap N \subseteq Z$.

Step 1. Here we prove the theorem for the case where A is a field. Let D be a maximal subfield of A containing Z. Set $A: D=\nu$. Clearly, ν is a prime. By minimality of A we can assume that $D \cap N \subseteq Z$.

Consider first the case $D=Z$. Then $A: Z=\nu$ is a prime.
Suppose first that $r>1$. We can assume that $A=\operatorname{diag}(a, \ldots, a)$, where a runs over a subfield of $M(\nu, F)$. Let us view $R=M(n, F)$ as $M(r, M(s$, $F)$); i.e., we view the matrices of $M(n, F)$ as block matrices with entries in $M(s, F)$. Let Y_{m} denote the $m \times m$-matrix with 1 in position $(1, m)$ and zeros elsewhere. By conjugating N by a suitable element $u \in G^{\prime}$ we can assume that

$$
e_{i}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & E_{s} & 0 & \cdots & 0 & Y_{s} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right) \quad \text { for } i<r,
$$

where E_{s} is the identity matrix of size s and non-zero entries occur in the i th row. The matrix u can be taken to have 1's on the diagonal and in positions $(1, n),((k s)+1, n)$ with $k=1, \ldots, r-1$, and zeros elsewhere. Hence for $i=r$ we have

$$
e_{r}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & Y_{s} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & Y_{s} \\
0 & 0 & \cdots & 0 & E_{s}
\end{array}\right) .
$$

Suppose that $A \cap N \not \subset Z$, and let $X \in A \cap N, \quad X \notin Z$. Then $X=$ $\operatorname{diag}(x, \ldots, x)$, where $x \in G L(\nu, F)$ is irreducible as ν is prime. The conjugacy action of X permutes e_{i} 's. Observe that $X e_{1} X^{-1} \neq e_{1}$ (otherwise, $x Y_{\nu} x^{-1}=Y_{\nu}$ or $x Y_{\nu}=Y_{\nu} x$; as x is irreducible, and $r>1$, this contradicts the Schur lemma). Hence $X e_{1} X^{-1}=e_{j}$ where $j>1$. Suppose that $\nu \leq s$. Then, obviously, $j=r$ and $x Y_{\nu} x^{-1}=Y_{\nu}$. This contradicts Schur's lemma.

Suppose that $\nu>s$. As $\nu>1, r>1$, the top ν rows of the matrix $X e_{1} X^{-1}$ have shape

$$
\left(x E_{\nu} x^{-1}|0| \cdots|0| x Y_{\nu} x^{-1}\right)
$$

Let v_{1}, \ldots, v_{n} be the standard basis in V, the natural module for $M(n, F)$. Set $W=\left\langle v_{1}, \ldots, v_{\nu}\right\rangle$. Then $X \mid W=x$ so $X W=W$. Let t be the maximal natural number such that $e_{t} V \subseteq W$. Set $e_{0}=e_{1}+\cdots+e_{t}$. Then $e_{0} V \subseteq W$ so $X e_{0} X^{-1} V \subseteq W$. It follows that $X e_{0} X^{-1}=e_{0}$ as X permutes e_{i} 's and $\left(\sum e_{j}\right) V=\sum e_{j} V$ with summation over any subset of $\{1, \ldots, r\}$. Hence $e_{0} W$ $=W$ so ν is a multiple of s, say, $\nu=s t$. Suppose first that $\nu<n$. Then $x Y x^{-1}=Y$, where

$$
Y=\left(\begin{array}{ccc}
0 & \cdots & Y_{s} \\
\cdots & \cdots & \cdots \\
0 & \cdots & Y_{s}
\end{array}\right)
$$

is a $(\nu \times \nu)$-matrix with t blocks Y_{s} at the right hand side columns and 0 's elsewhere. By Schur's lemma Y is non-degenerate. This is a contradiction. Suppose next that $\nu=n$. As $\nu=n$ is prime, we have $r=1$. Obviously, we then have $g A g^{-1} \cap M \subset Z$ for each $g \in G^{\prime}$. Choose g such that $g x g^{-1} \notin$ N. Show that $A \cap N \subset Z$. Indeed, if $y \in A \cap N$ is not scalar then y permutes e_{i} 's so $y^{\nu} \in Z$. As A is cyclic, we have $x=y^{j} z$ for some integer $1 \leq j<\nu$ and $z \in Z$. But then $x \in N$ which is a contradiction.

It follows that $r=1$. This means that M is simple. Then $L=Z(M)$ is a field. Let l be some prime dividing $L: Z$, and let L_{1} be a subfield of L such that $L_{1}: Z=l$. As L_{1} is unique, N normalizes L_{1} so $N \subseteq N_{G}\left(L_{1}\right)$. This means that it suffices to prove that $g A g^{-1} \cap N_{G}\left(L_{1}\right) \subseteq Z$ for some $g \in G^{\prime}$. However, this follows from Lemma 6.3.

Next, suppose that $D \neq Z$. Set $S=C_{R}(D)$. By the above $D \cap N \subseteq Z$. Set $M_{0}=M \cap S$. Clearly, $M_{0} \neq S$ (otherwise, $D \subseteq S=M$ which is not the case). Hence M_{0} is a proper Z-subalgebra of S. Besides, $A \subseteq S$ and $A \neq S$ as $A \neq D$ (see 5.1(2)). As $S=M(k, D)$ for some $k<n$, we can use the induction assumption if M_{0} is a D-subalgebra of S. If $\left\langle M_{0}, D\right\rangle \neq S$, we are done by induction as $N_{0}=N \cap S$ normalizes $\left\langle M_{0}, D\right\rangle$. Suppose that $\left\langle M_{0}, D\right\rangle=S$. By Lemma 6.4(iv) $A \cap N \subseteq D$. As $D \cap N \subseteq Z$, we are done.

Step 2. Here we assume that A is not a field. Let $A=A_{1} \oplus \cdots \oplus A_{l}$ where A_{1}, \ldots, A_{l} are fields. Let D be any maximal proper subring of A. If $|F|=2$ and A contains a proper subfield L such that $\mathrm{Id} \in L \cong \mathbf{F}_{4}$, then we can assume that D is chosen to contain L. (Indeed, in this case L^{*} is of order 3. Hence $g^{-1} N g \cap L^{*} \neq 1$ implies that $L^{*} \subset g^{-1} N g$ for all $g \in G^{\prime}$
so $L^{*} \subset \bigcap_{g \in G^{\prime}} g^{-1} N g$. It follows that G^{\prime} has a non-central normal subgroup which is impossible.) Let $D=D_{1} \oplus \cdots \oplus D_{k}$ where D_{1}, \ldots, D_{k} are fields. By Lemma 5.6 we have $k \leq l \leq k+1$ and after reordering the D_{i} 's and A_{i} 's we shall have $D_{1}=A_{1}, \ldots, D_{k-1}=A_{k-1}, D_{k} \subset A_{k} \oplus \cdots \oplus A_{l}$. If $k=l$ then $D_{k} \subset A_{k}$ is a field extension, and if $l=k+1$ then $A_{k} \cong A_{k+1}$ $\cong D_{k}$. As A is minimal, we can assume that $D \cap N \subseteq Z$. Let $C=C_{R}(D)$. Observe that $D=Z(C)$ by Theorem 5.1 , so C is a direct sum of exactly k simple components C_{1}, \ldots, C_{k}. By reordering C_{i} 's we can assume that $D_{i}=Z\left(C_{i}\right)$ for $i=1, \ldots, k$. By the above A_{k} (resp., $A_{k}+A_{k+1}$) belongs to C_{k} if $k=l$ (resp., $l=k+1$). Set $C_{0}=D_{1} \oplus \cdots \oplus D_{k-1} \oplus C_{k}$. Then $A \subset C_{0}$, and C_{0} is not commutative as $Z(C)=D \neq A$. Let $\sigma: C_{0} \rightarrow C_{k}$ be the natural homomorphism; i.e., σ is identical on C_{k} and $\operatorname{ker}(\sigma)=D_{1}$ $\oplus \cdots \oplus D_{k-1}$. It follows that $\sigma\left(C_{0}^{\prime}\right)=C_{k}^{\prime}$. Let $1=f_{1}+\cdots+f_{k}$ where $f_{i} \in C_{i}$ for $i=1, \ldots, k$. Then $f_{i} \in Z\left(C_{i}\right)=D_{i} \subset D=Z(C)$, and f_{i} is the identity of C_{i}. Clearly, $\sigma(c)=f_{k} c$ for $c \in C_{0}$. For $x_{k} \in C_{k}$ let $x=f_{1}$ $+\cdots+f_{k-1}+x_{k}$. Then x_{k} is invertible if and only if so is x. Observe that $C_{k} \cong M\left(m, D_{k}\right)$ for some $m>1$.

Suppose first that $D=Z$. Then $k=1$ and $l=2$ (otherwise, A is a field). Therefore, $A=\langle D, e\rangle$ for some idempotent $e \in A \subseteq S$ where $S=C_{R}(D)$. By Lemma 6.4(iii) there exists $g \in S^{\prime}$ such that $g A g^{-1} \cap N \subseteq$ D. As $D \cap N \subseteq Z$, we are done.

Let now $D \neq Z$. Set $M_{0}=M \cap C_{0}, M_{\sigma}=\sigma\left(M_{0}\right)$. Observe first that $M_{\sigma} \cong M_{0}$ as $\operatorname{Ker}(\sigma)=D_{1} \oplus \cdots \oplus D_{k-1}$ and $D \cap M \subseteq Z$. Observe next that $M_{\sigma} \neq \sigma\left(C_{k}\right)$. Indeed, if $M_{\sigma}=\sigma\left(C_{k}\right) \cong C_{k}$ then $M_{0} \cong C_{k} \cong M(m$, D_{k}); hence $M_{0}=C_{k}$ by Wedderburn's theorem. Then M contains D_{k}. This is a contradiction.

Thus $M_{\sigma} \neq \sigma\left(C_{k}\right)$. Set $N_{0}=N \cap C_{0}$. Then N_{0} normalizes M_{0} and $\sigma\left(N_{0}\right)$ normalizes M_{σ}. As $M(n, q)$ is a minimal counterexample to the theorem, either (a) $m=2=\left|D_{k}\right|$ or (b) there exists $x_{k} \in C_{k}^{\prime}=G L\left(m, D_{k}\right)$ such that $x_{k}^{-1} \sigma(A) x_{k} \cap \sigma(N) \subseteq \sigma\left(D_{k}\right) \cong D_{k}$. Let $\quad x=e_{1}+e_{2}+\cdots+$ $e_{k-1}+x_{k}$. Then in case (b) $x^{-1} A x \cap N \subseteq N \cap D \subseteq Z$, as desired. Let (a) hold. It follows that $M_{\sigma} \cong \sigma(A) \cong \mathbf{F}_{4}, l=k$, and D contains no subfield L such that Id $\in L \cong \mathbf{F}_{4}$. As $M_{0} \cong M_{\sigma}$, we have $M_{0} \cong \mathbf{F}_{4}$. Let $\sigma_{i}, i<k$, be the natural homomorphism of C_{0} onto $D_{i}, i<k$. Then $\sigma_{i}\left(M_{0}\right) \neq\{0\}$ as M_{0} contains Id. As above, $\operatorname{ker}\left(\sigma_{i}\right)=\{0\}$ as $M_{0} \cap D \subseteq Z$. Hence $\sigma_{i}\left(M_{0}\right) \cong$ \mathbf{F}_{4}. Therefore, D_{i} contains a subfield isomorphic to \mathbf{F}_{4} for every $i<k$. It follows that A contains a subfield isomorphic to \mathbf{F}_{4}. This contradicts the assumption about D above. This completes the proof.

Lemma 6.5. Let F be a field of order $2^{2 m}$ with $m>1$. Then F^{*} contains an element of prime order l with $l>2 m$.

Proof. If $m=3$ then $l=7$. Suppose that $m \neq 3$. By Zsigmondy's theorem (see [10, 5.2.14]) there is a prime l such that l divides $2^{2 m}-1$ and does not divide $2^{i}-1$ for $i<2 m$. Let h be an element of order l in F^{*}. It follows that h does not belong to a proper subfield of F. Therefore, the set $\left\{h^{j}\right\}_{j=1, \ldots, l}$ contains a basis of F / F_{2} so $l \geq 2 m$. In fact, $l \neq 2 m$ as $(1+h)\left(1+h+\cdots l^{l-1}\right)=0$; hence $1+h+\cdots+h^{l-1}=0$. Therefore l $\geq 2 m+1$.

Theorem 6.6. Let G, M, N be as in Theorem 6.1 and let $q=r^{\alpha}$ where r is a prime. Let $A \subset G$ be an abelian subgroup with cyclic Sylow r-subgroup A_{q}. Then $g^{-1} A g \cap N \subset Z$ for some $g \in G^{\prime}$.

Proof. As in the proof of Theorem 6.1 we can assume that $\langle N, Z\rangle=R$ so M is semisimple. Besides, if M is not simple, it suffices to prove the result for the case where $M=\operatorname{diag}(M(n / s, F), \ldots, M(n / s, F))$ where s is the number of simple components of M. Then $C_{R}(M)=Z(M)$. Let e_{1}, \ldots, e_{s} be minimal central idempotents of M, so N permutes e_{1}, \ldots, e_{s} and $e_{1} V, \ldots, e_{s} V$ transitively.
Let A_{r} denote the subgroup of A_{q} of order r. Let $A=A_{1} \times A_{q}$ so A_{1} is an r^{\prime}-group. Set $K=\left\langle A_{1}\right\rangle$. By Maschke's theorem K is a semisimple ring. By Theorem 6.1 there is $g \in G^{\prime}$ such that $g K^{-1} \cap N \subset Z$. By replacing K by $g \mathrm{Kg}^{-1}$ we can assume that $K \cap N \subset Z$. Set $C=C_{R}(K)$. Clearly, $C=C_{R}\left(A_{1}\right)$. Write $C=C_{1} \oplus \cdots \oplus C_{m}$, where C_{i} for each $i=$ $1, \ldots, m$ is a simple ring. Let $\sigma_{i}: C \rightarrow C_{i}$ be the natural projection. By reordering the C_{i} 's we can assume that $\sigma_{i}\left(A_{r}\right) \neq 1$ for $i=1, \ldots, l$, and $\sigma_{i}\left(A_{r}\right)=1$ for $i>l$. Observe that C_{i} is not commutative for $i \leq l$. Clearly $l \geq 1$. Let $C_{i}=\operatorname{SL}\left(n_{i}, q_{i}\right)$.

If $c^{-1} A_{q} c \cap N \subset Z$ for some $c \in C^{\prime}$ then we are done (as $A_{r} \cap Z=1$). Suppose that $c^{-1} A_{q} c \cap N \not \subset Z$ for all $c \in C^{\prime}$. Then $A_{r} \subset c N c^{-1}$ for all $c \in C^{\prime}$. Therefore, $A_{r} \subset N_{C}=\bigcap_{c \in C^{\prime}} c N c^{-1}$ so $N_{C} \cap C$ is a C^{\prime}-invariant subgroup of C^{*}. Set $X=N_{C} \cap C$. By Corollary $5.3 X$ contains subgroups $X_{i} \cong S L\left(n_{i}, q_{i}\right)$ such that $\sigma_{i}\left(X_{i}\right)=S L\left(n_{i}, q_{i}\right)$ for $i=1, \ldots, l$ and $X=X_{1}$ $\cdots X_{l}$. As $X \subset N$, we have a homomorphism $\eta: X \rightarrow N / M^{*}$. Let $H=$ ker η. We show that $H \subset Z$. Observe first that $H \subset M$. (Indeed, if M is simple then H centralizes $Z(M)$; as $M=C_{R}(Z(M))$ then $H \subset M$. If M is not simple then H centralizes all e_{1}, \ldots, e_{s} so again $H \subset M$.) As H is normal in X, we have either $H \subset Z(X) \subset K$, or $X_{i} \subseteq H$ for some i, or $X_{i} \cong S L(2,2)$ or $\operatorname{SL}(2,3)$ for some i and $H \cap X_{i}$ is a normal non-central subgroup of X_{i}. As $K \cap M \subseteq Z$, the first possibility does not hold. In the remaining cases $\langle H, Z\rangle$ contains $Z\left(C_{i}\right)$; hence $Z\left(C_{i}\right) \subseteq M$. This contradicts the fact that $K \cap M \subseteq Z$ as $Z\left(C_{i}\right) \subseteq K$ and $Z\left(C_{i}\right) \notin Z$. Thus $H \subseteq Z$.

If M is simple then $N / M^{*} \cong \operatorname{Gal}(Z(M) / Z)$ is cyclic whereas $\eta(X)$ is not cyclic. This is a contradiction. Suppose that M is not simple. By the
previous paragraph, if $x \in X$ and $x \notin Z$ then x acts non-trivially on $\left\{e_{1}, \ldots, e_{s}\right\}$. Let $l(x)$ be the order of x modulo Z^{*}. By a lemma of Higman (see [7, Theorem 1.10, p. 411]) the degree d of the minimal polynomial of x is not less than the maximal length ν of an orbit of x on e_{i} 's (or V_{i}-s). If $l(x)$ is a prime power then $l(x)=\nu$. If $r>2$ or $r=2$ and $C_{i} \neq M(2,2)$ for some $i \in\{1, \ldots, l\}$, we shall deduce a contradiction by showing that this is impossible for some $x \in X$. In the exceptional case we show that N has to be the group of all monomial matrices over \mathbf{F}_{2}. We shall handle this case by an alternative argument.

Each $S L\left(n_{i}, q_{i}\right)$ contains a subgroup $\operatorname{diag}\left(S L\left(2, q_{i}\right), \operatorname{Id}_{n_{i}-2}\right)$. Let $y=$ $\operatorname{diag}\left(h, \operatorname{Id}_{n_{i}-2}\right) \in S L\left(n_{i}, q_{i}\right)$ where h is chosen to be of order $k=r$ if r is odd and of order $k>3$ in Lemma 6.5 if $q_{i}>2$ is even. Let $x \in X_{i}$ be the pre-image of y so $l(x)=k$. Clearly, the minimum polynomial of x is of degree $d=2$ if r is odd which contradicts the above inequality $r=l(x)$ $\leq d$.

Suppose that $r=2, q_{i}>2$. Choose h as in Lemma 6.5. Then the minimum polynomial of x is of degree $d \leq 2 q_{i}$ whereas $|x|>2 q_{i}$. This contradicts the Higman lemma. Thus, we are left with the case where $r=2$ and $q_{i}=2$ for $i=1, \ldots, l$. Then $|F|=2$. We show that each $n_{i}=2$ for $i=1, \ldots, l$. Indeed, if some $n_{i}>2$ then C_{i}^{*} contains the matrix $y=\operatorname{diag}\left(h, \operatorname{Id}_{n_{i}-3}\right)$ where $h^{7}=1$ and $h \in S L(3,2)$. Let x be a pre-image of y in X_{i}. As above, the degree of the minimum polynomial of x is equal to 4 which contradicts Higman's lemma. Thus $n_{i}=2$.

Set $C_{0}=C_{1} \oplus \cdots \oplus C_{l}$ and $e_{0}=e_{1}+\cdots+e_{l}$ and let $n_{0}=\operatorname{rank}\left(e_{0}\right)$. Then $Z\left(C_{0}\right) \cong \mathbf{F}_{2} \oplus \cdots \oplus \mathbf{F}_{2}$ (l summands). Therefore, $Z\left(C_{0}\right)^{*}=1$. Then, under a basis B compatible with the decomposition $V=V_{1} \oplus \cdots \oplus V_{s}$ each element of A_{1} is of shape $\operatorname{diag}\left(e_{0}, t\right)$ for some $t \in G L\left(n-n_{0}, F\right)$. As $C=C_{R}\left(A_{1}\right)$, it follows that $l=1$ so $X=X_{1}$. Let $1 \neq a \in A_{r}$. As $l=1$ and $q_{1}=2$, we have $\operatorname{dim}(\operatorname{Id}-a) V=1$. As a permutes V_{i}, it follows that $\operatorname{dim} V_{j}=1$ for $j=1, \ldots, s$. Then N is conjugate to the group of monomial matrices over \mathbf{F}_{2}, which coincides with the group of permutational matrices for $F=\mathbf{F}_{2}$. Hence V^{N}, the subspace of the vectors fixed by N, is one-dimensional.

For this case we show that there is $g \in G^{\prime}$ such that $g A g^{-1} \cap N \subset Z$. Let $0 \neq v \in V^{N}$. It suffices to show that $C_{A}(g v)=1$ for some $g \in G^{\prime}$. If $n=2$ or 3 then $A=A_{r}$ and the claim is trivial. Suppose that $n>2$. Clearly, there is $g \in G^{\prime}$ such that $e_{1} g v \neq 0$ and (Id $\left.-e_{1}\right) g v \neq 0$. We can assume that this holds for v itself. Next, we shall look for g such that $g e_{1}=e_{1} g$. Under an appropriate basis we can assume that $g=\operatorname{diag}\left(g_{1}, g_{2}\right)$ where $g_{1} \in S L(2,2)$ and $g_{2} \in S L(n-2,2)$. Obviously, there is g_{1} such that A_{r} does not preserve the line $g_{1} e_{1}\langle v\rangle$. Observe that A_{1} acts trivially in $e_{1} V$. As the stabilizer of $\left(\mathrm{Id}-e_{1}\right)\langle v\rangle$ in $M(n-2,2)$ is an \mathbf{F}_{2}-subalge-
bra, we can use Theorem 1.3 to conclude that there is g_{2} such that A_{1} does not preserve the line $g_{2}\left(\mathrm{Id}-e_{1}\right)\langle v\rangle$. It follows that A does not preserve the line $g\langle v\rangle$. This implies the lemma.

Proposition 6.7. (1) Let $A \subset G$ be a cyclic group and p a prime dividing n. Then there exists an element $g \in G^{\prime}$ such that $g A g^{-1} \cap N_{p} \subset Z$.
(2) Let $(n, q) \neq(2,2)$. Let $B \subset H=\operatorname{PSL}(n, q)$ be a cyclic subgroup, and $Y=\left(N_{p} \cap G^{\prime}\right) / Z\left(G^{\prime}\right)$. Then there exists an element $h \in H$ such that $h A h^{-1} \cap Y=1$.

Proof. (1) is a particular case of Theorem 6.6. (2) Let A, \bar{Y} be a pullback of B and Y in $G^{\prime}=S L(n, q)$. Then $A /(A \cap Z)$ is cyclic, and $\bar{N} \subset N_{p}$. By (1) there exists $g \in G^{\prime}$ such that $g A g^{-1} \cap N_{p} \subset Z$. Let H be the projection of g in H. Then $h A h^{-1} \cap Y=1$, as desired.

7. THE SYMPLECTIC GROUP CASE

Notation. We keep the notation $G=G L(n, q)$ and Z for the group of scalar matrices in G. In this section $n>2$ is even and E_{k} is the identity ($k \times k$)-matrix. If $k=n / 2$ we omit the subscript. Set $\Gamma=\left(\begin{array}{c}0 \\ -E\end{array}{ }_{0}^{E}\right)$. If X is a matrix, X^{t} stands for transpose of X. We set $H=S p(n, F)$, the group of all ($n \times n$)-matrices $X \in R$ such that $X \Gamma X^{t}=\Gamma$. The mapping $\tau: X \rightarrow$ $\Gamma X^{t} \Gamma^{-1}$ is an involution (an involuntary anti-automorphism) of R and $H=\left\{X \in R: \tau(X)=X^{-1}\right\}$. It is known that $\mathbf{N}_{G}(H)$ coincides with the general symplectic group $\tilde{H}=\{X \in G: \tau(X) X \in Z\}$. Let $\sigma: G \rightarrow G$ be a mapping defined by $\sigma(X)=\tau\left(X^{-1}\right)$ for $X \in G$. Then σ is an involuntary automorphism of G and $H=G^{\sigma}$ is the subgroup of elements fixed by σ. Let $S=G \cdot\{\sigma\}$ be the semidirect product of G and the cyclic group of order 2 generated by σ. Then $H=\mathbf{C}_{G}(\sigma)$ and $\tilde{H}=\{X \in G:[X, \sigma] \in Z\}$. For $g \in G$ set $\Gamma_{g}=g \Gamma g^{t}$, and define τ_{g} and σ_{g} by $\tau_{g}(X)=\Gamma_{g} X^{t} \Gamma_{g}^{-1}$, $\sigma_{g}(X)=\Gamma_{g}\left(X^{-1}\right)^{t} \Gamma_{g}^{-1}$.
As before, V is the natural $F G$-module and f is an alternating bilinear form defining H. Two vectors $v, w \in V$ are called orthogonal if $f(v, w)=0$. Clearly, if $v, w \in V$ are orthogonal and $h \in \tilde{H}$ then $h v, h w$ are orthogonal. Let W be a subspace of V. We set $W^{\perp}=\{v \in V: f(w, v)=0$ for all $w \in W\}$. The space W is called non-degenerate if $W \cap W^{\perp}=0$ and degenerate otherwise. We say that W is isotropic of $f \mid W=0$. A basis of V under which the matrix of f coincides with Γ is called a Witt basis of V. If F is finite, choose $0 \neq \gamma \in F$ to be non-square. Fix a Witt basis and set $\tilde{h}=\operatorname{diag}\left(\gamma \cdot \operatorname{Id}_{k}, \operatorname{Id}_{k}\right)$. Then $\tilde{h} \in \tilde{H}$ and $\tilde{H}=Z^{*} H\langle h\rangle$. We set $H_{1}=H\langle h\rangle$.

Lemma 7.1. Let $\operatorname{dim} V=4$ and let $V=V_{1} \oplus V_{2}$ be a decomposition of V as a direct sum of two-dimensional subspaces. Let $A \subset G L(4, q)$ be a non-central abelian subgroup stabilizing both V_{1}, V_{2}. Then there exists $g \in$ SL $(4, q)$ such that $g^{-1} A g \cap \tilde{H} \subseteq Z$ except, possibly, when $q=3$ and A is an elementary 2-group.
Proof. Suppose the contrary. By replacing A by $g A g^{-1}$ with $g \in$ $\operatorname{SL}(4, F)$ one can assume that both V_{1}, V_{2} are non-degenerate and orthogonal to each other. Assume that this is the case. Let B_{1}, B_{2} be bases in V_{1}, V_{2}, respectively, and $B=B_{1} \cup B_{2}$. Under the basis B of V let $a=$ $\operatorname{diag}(\alpha, \beta) \in A$ be a non-scalar matrix. Let

$$
S=\left(\begin{array}{cc}
\mathrm{Id}_{2} & \mu \\
0 & \mathrm{Id}_{2}
\end{array}\right) \in S L(4, F)
$$

where $\mu \in M(2, q)$. Then $a_{1}=S a S^{-1}=\left({ }_{0}^{\alpha}{ }_{0}^{\mu \beta-\alpha \mu}{ }_{\beta}^{\alpha \mu}\right)$. If $a_{1} \in \tilde{H}$ then $a_{1} V_{2}$ $=V_{2}$ as $a_{1} V_{1}=V_{1}$ and V_{1}, V_{2} are orthogonal. This only holds if $\mu \beta=\alpha \mu$. Set $A_{1}=A \mid V_{i}$ for $i=1,2$. If $A=Z \cdot \operatorname{diag}(\pm \mathrm{Id}, \pm \mathrm{Id})$ then $A /(A \cap Z)$ is of order 2 so the claim is trivial. Otherwise, by replacing V_{1} and V_{2} we can assume that A_{1} is not scalar.

Choose μ to be a nilpotent matrix such that μV_{1} is not A_{1}-invariant. If A_{2} is not scalar, choose μ with the additional requirement that $\mu^{t} V_{2}$ is not A_{2}^{t}-invariant (here t stands for the transpose). This is always possible unless $q=3$ and A is an elementary 2-group. Indeed, the number of one-dimensional subspaces in V_{1} is $q+1$ so there are at least $q-1$ subspaces in V_{1} that are not A_{1}-invariant. If W is one of them then $\mu V_{1}=W$ and $\mu^{\prime} V_{1}=W$ for $\mu^{\prime} \in M(2, F)$ if and only if μ and μ^{\prime} are proportional. Therefore, if μ and μ^{\prime} are not proportional then $W=\mu V_{1}$ $\neq W^{\prime}=\mu^{\prime} V_{1}$. Then also μ^{t} and $\mu^{t t}$ are not proportional. Therefore, there are at least $q-3$ choices for μ such that $\mu^{2}=0$ and μV_{1} is not A_{1}-invariant and $\mu^{t} V_{2}$ is not A_{2}^{t}-invariant. Hence the choice of μ is always possible if $q>3$. If $q=3$, the choice is possible if A_{1} or A_{2} is not diagonalizable. (Otherwise, A is an elementary 2-group.) If $q=2$ then A is either a cyclic 2-group, or either A_{1} or A_{2} (or both) are irreducible. Then the number of A_{1}-invariant one-dimensional subspaces is at most 1 , and the same for A_{2}^{t} provided A_{2} is not trivial. As $q+1=3$ in this case, we can still satisfy the requirement above.

Next, $\alpha \mu V_{1}=\mu \beta V_{1} \subseteq \mu V_{1}=W$; i.e., W is invariant under α. As $\operatorname{dim} V_{1}=2$, there are at most two proper non-zero A_{1}-submodules in V_{1}. If α is not scalar, $A_{1} W=W$ which contradicts the choice of μ. Therefore, α is scalar. Then β is not scalar, as $\alpha \mu=\mu \beta$ and a_{1} is not scalar. So β, hence $A_{2} t$ is not scalar. Now, as $\mu \beta=\alpha \mu$ and α is scalar, we have $\beta^{t} \mu^{t} V_{2}=\alpha^{t} \mu^{t} V_{2}=\mu^{t} V_{2}$; i.e., $\mu^{t} V_{2}$ is β^{t}-invariant; then it is A_{2}-invariant. This contradicts the choice of μ above.

Lemma 7.2. Let $h \in \tilde{H}$ be a semisimple element with exactly two distinct eigenvalues α, β. Let V_{α}, V_{β} denote the eigenspaces of α, β, respectively. Then either V_{α}, V_{β} are isotropic and of equal dimensions, or V_{α}, V_{β} are non-degenerate and $\alpha=-\beta$.

Proof. (a) Suppose that V_{α}, V_{β} are isotropic. As $V_{\alpha}+V_{\beta}=V$, their dimensions are $\operatorname{dim} V / 2$.
(b) Suppose that (a) does not hold. Then we can assume that V_{α} is not isotropic. There exists $\lambda \in F$ such that $f(h u, h v)=\lambda f(u, v)$ for some $\lambda \in F$ and all $u, v \in V$. There are $u, v \in V_{\alpha}$ such that $f(u, v) \neq 0$. Then $f(h u, h v)=\lambda f(u, v)=\alpha^{2} f(u, v)$ whence $\alpha^{2}=\lambda$. If V_{β} is not isotropic, we similarly have $\beta^{2}=\lambda$ whence $\alpha= \pm \beta$, as desired. If V_{β} is isotropic, let $0 \neq u \in V_{\beta}$. Then $V_{\alpha} \not \subset u^{\perp}$ so there is $v \in V_{\alpha}$ such that $f(u, v) \neq 0$. Then $f(h u, h v)=\lambda f(u, v)=\alpha \beta f(u, v)$ whence $\alpha \beta=\lambda$. As $\alpha^{2}=\lambda$, we have $\alpha=\beta$ which is not the case.

Lemma 7.3. Let $W \subset V$ be a subspace of dimension $d>2$ and let U be a complement of W in V.
(i) There exists $x \in S L(V)$ such that $x W$ is degenerate and is not isotropic.
(ii) Suppose that $d<\operatorname{dim} V-2$. Then there exists $x \in S L(V)$ such that $x \mid W=$ Id and $x U$ is degenerate and is not isotropic.

Proof. (i) is obvious. To prove (ii) we can assume that W is degenerate and is not isotropic. As W is degenerate, there are vectors $w \in W, u \in U$ with $f(w, u)=1$.

Let $w_{1}=w, \ldots, w_{k} \in W$ be a basis in W. To prove (2), suppose that U is either non-degenerate or isotropic. First let U be non-degenerate so $\operatorname{dim} U \geq 4$. Complete $u=u_{1}$ to a hyperbolic basis of U, say, u_{2}, \ldots, u_{k} (where $k=\operatorname{dim} V-d$) so $f\left(u_{1}, u_{2}\right)=f\left(u_{3}, u_{4}\right) \cdots=f\left(u_{k-1}, u_{k}\right)=1$ and the other inner products $f\left(u_{i}, u_{j}\right)$ are zeros. Set $U_{1}=\left\langle u_{1}, u_{2}-w, u_{3}, \ldots\right.$, $\left.u_{k}\right\rangle$. Let x transform the basis $w_{1}, \ldots, w_{d}, u_{1}, \ldots, u_{k}$ to $w_{1}, \ldots, w_{d}, u_{1}, u_{2}$ $-w, u_{3}, \ldots, u_{k}$. Clearly, $x \in S L(V)$ is as desired. Now suppose that U is isotropic. As above, set $U_{1}=\left\langle u_{1}, u_{2}-w, u_{3}, \ldots, u_{k}\right\rangle$ and pick x as above. Then x is as desired. This implies (ii).

Proposition 7.4. Let $n>4$. Suppose that there exists an idempotent 0 , Id $\neq e \in R$ such that ae $=e a$ for all $a \in A$. Then there exists $g \in G^{\prime}$ such that $g^{-1} A g \cap \tilde{H} \subset Z$.

Proof. Set $C=\mathbf{C}_{R}(e), V_{1}=(\operatorname{Id}-e) V$ and $V_{2}=e V$. Let $l=\operatorname{rank}(e)$ and $k=n-l$. Then $C=C_{1} \oplus C_{2}$ where $C_{1} \cong M(k, F)$ and $C_{2} \cong M(l, F)$. Clearly, $A \subset C$. By replacing e by Id $-e$ we can assume $k \leq l$. As $n>4$ we have $l>2$. By Lemma 7.3 there exists $x \in G^{\prime}$ such that $x V_{2}=x e x^{-1} V$
is neither non-degenerate nor isotropic. Besides, if $k>2$, by Lemma 7.3 we can assume that $x V_{1}$ is non-degenerate and is not isotropic. By replacing e by $x e x^{-1}$ and A by $x A x^{-1}$ we can assume that V_{1}, V_{2} themselves have the above property. Set $T=C \cap \tilde{H}$, and let A_{i}, T_{i} denote the projections of A, T, respectively, into C_{i} for $i=1,2$. Then T_{i} preserves the radical of V_{i}, so T_{i} is reducible, and hence does not contain $\operatorname{SL}\left(V_{i}\right)$, except for the case $k \leq 2$. Besides, if $(l, q)=(4,2)$ then T_{2} does not contain a group isomorphic to A_{7} (as it is irreducible in $\operatorname{SL}(4,2)$). We are in a position to use an induction assumption (namely, that Theorem 1.2 is true for $l<n$), in order to conclude that
(*) there exists $x \in S L(l, F)$ such that $x^{-1} A_{2} x \cap T_{2} \subseteq Z(G L(l, F))$
and
(**)
if $k>2$ then there exists $x_{1} \in S L(k, F)$

$$
\text { such that } x_{1}^{-1} A_{1} x_{1} \cap T_{1} \subseteq Z(G L(k, F))
$$

Suppose that $k>2$. By replacing A by $g^{-1} A g$ with $g=\operatorname{diag}\left(x_{1}, x\right)$ we can assume that $A \cap \tilde{H} \subseteq \operatorname{diag}(Z(M(k, F)), Z(M(l, F)))$. This automatically holds for $k=1$. Then each $h \in A \cap \tilde{H}$ is semisimple and has at most two distinct eigenvalues. By Lemma 7.2, this implies that h is scalar, as desired.
Suppose that $k=2$. Then replacing A by $g^{-1} A g$ with $g=\operatorname{diag}(\operatorname{Id}, x)$ we can assume that $A \cap \tilde{H} \subseteq \operatorname{diag}(M(2, F), Z(M(l, F)))$. Let W denote the radical of V_{2}. Then $W \neq 0$. Besides, V_{2} / W is non-degenerate so $\operatorname{dim} V_{2} / W$ is even. As $\operatorname{dim} V_{2}=n-2$ is even, we conclude that $\operatorname{dim} W$ is even; hence $\operatorname{dim} W \geq 2$. As $V_{2} \subseteq W^{\perp}$ and $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V$, we conclude that $V_{2}=W^{\perp}$ and $\operatorname{dim} W=2$. As $h \mid W$ is scalar, $h \mid V / W^{\perp}=$ $h \mid V / V_{2}$ is scalar. But V / V_{2} and V_{1} are isomorphic h-modules. Hence $A_{1} \subseteq Z(M(2, F))$. So Lemma 7.2 again gives a contradiction, unless h is scalar.

Lemma 7.5. Let Y be a G^{\prime}-invariant subgroup of $\tilde{H} \cdot\{\sigma\}$. Then $Y \subseteq Z$ or Y contains G^{\prime}.
Proof. Clearly, $Y \cap \tilde{H}$ is G^{\prime}-invariant. As $n \geq 2$, the lemma follows from 5.2 unless $Y \cap \tilde{H} \subseteq Z$. Observe that $Y:(Y \cap \tilde{H}) \leq 2$. Hence $Y \cap \tilde{H}$ $\subseteq Z$ implies $Y:(Y \cap Z) \leq 2$. Then [G^{\prime}, Y], the group generated by $g y g^{-1} y^{-1}$ with $g \in G^{\prime}, y \in Y$, belongs to Z. Then $g \rightarrow g y g^{-1} y^{-1}$ defines a homomorphism $G^{\prime} \rightarrow Z$ which has to be trivial. Hence Y centralizes G^{\prime}. As $C_{G}\left(G^{\prime}\right)=Z$, we are done.

Lemma 7.6. Let L be a cyclic Galois extension of Z such that $L: Z$ is even. Let $L_{0} \subseteq L$ be the unique subfield such that $L_{0}: Z=2$. Let $K \subset L$ be a
subfield of L such that $K: Z$ is even. Then $L_{0} \subseteq K$ and if α is an automorphism of K trivial on Z then $\alpha\left(L_{0}\right)=L_{0}$.

Proof. Let $\Gamma=\operatorname{Gal}(L / Z)$ and $\Gamma_{1}=C_{\Gamma}(K)$. Then $\Gamma: \Gamma_{1}$ is even. As Γ is cyclic there is a unique subgroup Γ_{2} of Γ of index 2 so $\Gamma_{1} \subseteq \Gamma_{2}$. According to Galois theory, $L_{0}=C_{L}\left(\Gamma_{2}\right) \subseteq C_{L}\left(\Gamma_{1}\right)=K$. As α is trivial on Z, it can be realized as an element of Γ. Obviously, L_{0} is invariant under Γ so $\alpha\left(L_{0}\right)=L_{0}$.

Lemma 7.7. Let $L \subset R=M(n, F)$ be a subfield containing Z. If $L \cap \tilde{H}$ $\nsubseteq Z$ then $L: Z$ is even and L contains a unique subfield D such that $D: Z=2$.

Proof. Let $x \in L \cap \tilde{H}$ and $x \notin Z$. Then we have $\tau(x)=x^{-1} \lambda$ for some $\lambda \in F$. It follows that τ preserves the field $X=\langle x\rangle$. If $\tau \mid X=\mathrm{Id}$ then $x^{2}=\lambda$ so $X: F=2$. If $\tau \mid X \neq \mathrm{Id}$ then τ is an involutory automorphism of X. By Galois theory $X: Z$ is even so $L: Z$ is even. If $\Delta=\operatorname{Gal}(L / Z)$ and Δ_{1} is the unique subgroup of Δ of index 2 then $C_{L}\left(\Delta_{1}\right)$ is the unique quadratic extension of Z in L.

Lemma 7.8. Let $R=M(n, F)$ with n even and let $L \subset R$ be a subfield that is a cyclic Galois extension of Z. Suppose that $(n, q) \neq(2,2),(2,3)$. Then there exists $g \in G^{\prime}$ such that $L \cap g \tilde{H} g^{-1} \subset Z$.

Proof. Suppose the contrary. Then $L \cap g \tilde{H}^{-1} \not \subset Z$ for each $g \in G^{\prime}$. By Lemma 7.7 $L: Z$ is even and contains a unique subfield D such that $D: Z=2$.

Step 1. Suppose first that $D=L$ so $L: Z=2$. As $n>2, L$ is reducible (and completely reducible) in $M(n, F)$; hence there is a non-trivial idempotent $e \in M(n, F)$ that centralizes L. If $n>4$, we are done by Lemma 7.4. The case $n=4$ follows from Lemma 7.1 if $q \neq 3$. If $q=3$ then the group L^{*} is not an elementary abelian 2-group. Hence we are again done by Lemma 7.1.

Step 2. Suppose that $D \neq L$. By minimality of L we have $D \cap \mathrm{gHg}^{-1}$ $\subset Z$ for some $g \in G^{\prime}$. If $x \in L \cap g \tilde{H} g^{-1}$ and $x \notin Z$ then by Lemma 7.7 $X: Z$ is even where $X=\langle x\rangle$. By Lemma 7.6 $D \subseteq X$. As $\tau_{g}(x)=x^{-1} \lambda$ for some $\lambda \in F$, we have $\tau_{g}(X)=X$ so $\tau \mid X$ is an automorphism of X. Hence $\tau_{g}(D)=D$ and $\left.\sigma_{g} D^{*}\right)=L^{*}$. Set $N=\mathbf{N}_{S}\left(D^{*}\right)$. Then $\sigma_{g} \in N$ for any $g \in G^{\prime}$. Let Y be the subgroup of N generated by σ_{g} for $g \in G^{\prime}$. Clearly, Y does not contain G^{\prime}. As $\sigma_{g}=g \sigma g^{-1}$ in S, the group Y is G^{\prime}-invariant. Then Y contains G^{\prime}. This is a contradiction.

Theorem 7.9. Let $A \subset G$ be an abelian group with a cyclic unipotent subgroup $U(A)$. Then there exists $g \in G^{\prime}$ such that $g^{-1} A g \cap \tilde{H} \subseteq Z$.

Proof. Let $A=B \times U(A)$ and set $L=\langle B\rangle$. Then L is a semisimple algebra. If L is not simple then L contains an idempotent satisfying the requirement of 7.4 so the result follows by 7.8. Thus, we can assume that $U(A) \neq 1$. Let $u \in U(A)$ be an element of order p. Set $V_{0}=V$ and $V_{i}=(u-\mathrm{Id}) V_{i-1}$ for $i>0$. Let $V_{k} \neq 0, V_{k+1}=0$. Then $\operatorname{dim} V-k \neq 1$ as $L V_{k}=V_{k}$ and $\operatorname{dim} V_{k}$ is a multiple of $L: Z$. By replacing A by a conjugate we can assume that V_{k} has a non-degenerate subspace of co-dimension ≤ 1. Then $A \cap \tilde{H} \subseteq B$. Indeed, if not then $u \in A \cap \tilde{H}$. Let W be the radical of V_{k}. Then $W \neq 0$, as if $W=0$; then $V=V_{k} \oplus V_{k}^{\perp}$. As $u \mid V_{k}=\mathrm{Id}$, we have $V_{i} \subseteq V_{k}{ }^{\perp}$ for all i. But $V_{k} \notin V_{k}{ }^{\perp}$.

Therefore $\operatorname{dim} W=1$. Let $b \in B \cap \tilde{H}$. Then $b W=W$ as $A V_{k}=V_{k}$ and $b \in A \cap \tilde{H}$. But if $b \notin Z$ then $K=\langle b\rangle$ is a subfield of dimension >1 over Z and $K W=W$, which is impossible. It follows that $B \cap \tilde{H} \subseteq Z$. As $A \cap \tilde{H} \subseteq B$, we are done.

Proof of Theorem 1.2. The theorem follows from the discussion above. Indeed, by Proposition 3.1 and Theorem 3.4 it suffices to prove it for the cases where $M=K(G / B)$ and B is either a line stabilizer of the natural module for $G L(n, q)$ or one of the groups listed in Theorem 3.2. The case where B is a line stabilizer is examined in Proposition 3.1. The case $3.2(\mathrm{vi})$ is considered by Lemma 4.3, while the cases 3.2(iv) and 3.2(v) are treated in Lemma 4.2. The case 3.2(iii) is exposed in Theorem 7.9. The cases 3.2(i) and 3.2 (ii) are done by Theorem 6.6.

Proof of Theorem 1.1. The theorem follows from Theorem 1.2.

REFERENCES

1. S. Amitsur, Invariant submodules of simple rings, Proc. Amer. Math. Soc. 7 (1956), 987-989.
2. R. Brauer, On the connection between the ordinary and modular characters of groups of finite orders, Ann. Math. 42 (1941), 926-935.
2a. L. E. Dickson, Linear groups with an exposition of the Galois Field theory, Teubner, Leipzig, 1901, Reprinted by Dover Publ. Inc., New York, 1958.
3. D. Evans and J. Siemons, On the number of orbits of a group in two permutation actions, Arch. Math. 60 (1993), 420-424.
4. D. Goodwin, "Regular Orbits of Linear Groups," Ph.D. thesis, Imperial College, University of London, 1998.
5. C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Dedic. 2 (1974), 425-460.
6. B. Huppert, "Endliche Gruppen," Springer-Verlag, Berlin, 1965.
7. B. Huppert and N. Blackbern, "Finite Groups II," Springer-Verlag, Berlin, 1982.
8. N. Jacobson, "The Theory of Rings," Am. Math. Soc., Providence, 1943.
9. G. D. James, "Representations of General Linear Groups," London Math. Soc. Lecture Note, Vol. 94, Cambridge Univ. Press, Cambridge, UK, 1984.
10. P. Kleidman and M. Liebeck, "Subgroup Structure of Classical Groups," London Math. Soc. Lecture Notes, Vol. 129, Cambridge Univ. Press, Cambridge, UK, 1990.
11. S. Lang, "Algebra," Addison-Wesley, Reading, MA, 1965.
12. M. Liebeck, Affine permutation groups of rank 3, Proc. London Math. Soc. (3) 54 (1987), 477-516.
13. M. Liebeck, Regular orbits of linear groups, J. Algebra 184 (1996), 1136-1142.
14. M. Liebeck and J. Saxl, Minimal degrees of primitive permutation groups, with application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc. (3) 54 (1987).
15. M. Liebeck, J. Saxl, and G. Seitz, On the overgroups of irreducible subgroups of the finite classical groups, Proc. London Math. Soc. (3) 63 (1991), 266-314.
16. R. Pierce, "Associative Algebras," Springer-Verlag, Berlin, 1982.
