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If G is a group, H a subgroup of G, and () a transitive G-set we ask under what
conditions one can guarantee that H has a regular orbit (= of size |H[) on Q.
Here we prove that if PSL(n,q) € G € PGL(n, q) and H is cyclic then H has a
regular orbit in every non-trivial G-set (with few exceptions). This result is
obtained via a mixture of group theoretical and ring theoretical methods: Let R be
the ring of all » X n matrices over the finite field F and let Z be the subring of
scalar matrices. We show that if 4 and M are proper subrings of R containing Z,
and if 4 is commutative and semisimple, then there exists an element x € SL(n, F)
such that xAx ' "M =Zorn=2= |F|. © 2000 Academic Press

1. INTRODUCTION

Let G be a group, H a subgroup of G, and () a transitive G-set. Under
what conditions can one guarantee that H has a regular orbit (= of size
|H|) on Q? In this paper we prove that if PSL(n,q) € G < PGL(n, q) and
H is cyclic then H has a regular orbit in every non-trivial G-set (with few
exceptions). To avoid trivialities we say that a permutation presentation of
the group G 2 PSL(n,q) is trivial, and that the corresponding G-set is
trivial, if its kernel contains PSL(n, q).

THEOREM 1.1. Let PSL(n,q) € G € PGL(n,q) and let H be a cyclic
subgroup of G. Then H has a regular orbit in every non-trivial G-set €) unless
one of the following holds:

@ (n,q9) €1{2,2),2,3)}, or
b) (n,q) =(4,2), |H| =15, and |1Q| = 8.
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The result is no longer valid for arbitrary abelian group H. Let p be a
prime such that p divides g. Lemma 3.9 in [15] and Proposition 1.6 of [14]
say that if P; is the stabilizer of a subspace of dimension i in G = PSL(n, q)
and H; = O,(P) then H, is abelian and H; has no regular orbit on the
cosets of P, in G unless i +j =n. (For j =1, n > 3 this is obvious as
|H,|>q*" Y >q"—1>|G:P))

There is a related module theoretic problem: If K is a field, under what
conditions does the permutation KG-module K(} restricted to H contain
a regular KH-submodule? For cyclic groups H these problems are equiva-
lent to each other for arbitrary G and K. If H is not cyclic, the second
problem is easier (at least via our approach). We treat the second problem
under a more general setting assuming that H is abelian with cyclic Sylow
p-subgroup.

THEOREM 1.2. Let SL(n, q) € G < GL(n, q) where g = p™ for some m.
Let H be an abelian subgroup of G with cyclic Sylow p-subgroup. Let K be a
field of characteristic 0 or coprime to |G| and let M be a non-trivial
permutation KG-module. Set H = H/H, where Hy={h € H: h|M = 1d}.
Then M, viewed as an H-module, contains a regular KH-submodule unless
one of the following holds:

(@) (n,q) €1{(2,2),(2,3)} or
) (n,q) = 4,2), |H| =15 and dim M = 8.

We heavily use the machinery of ring theory. Formally, we could avoid
this by dealing with the group of units of a ring instead of the ring itself.
However, we see no reason to strive for group theoretical purity. We do
hope that some of the ring theoretical results obtained here might be
useful in other circumstances. The most essential result of ring theoretical
nature is the following:

THEOREM 1.3. Let R = M(n,F) and let Z be the subring of scalar
matrices. Let A, M be proper subrings of R containing Z with A being
commutative and semisimple. Then there exists an element x € SL(n, F) such
that xAx™' N M = Z(R) unless n = 2 = |F|.

Let V' be the standard vector space for GL(n, q) and PSL(n,q) C G C
PGL(n, q). Let Z be the set of one-dimensional subspaces in }' and let
K% denote the respective permutation module. Our method is based on a
theorem saying that if H C G is not transitive on ¢ then the permutation
module associated with the action of G on the cosets of H contains a
submodule isomorphic to K.&. This reduces the problem to analyzing the
case where H is transitive on . Such subgroups H are known (Huppert,
Hering): with few exceptions H normalizes either the projective symplectic
group or the image in G of the group of units of a subring of M(n, q)
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isomorphic to M(n/k,q"*) with k|n. We use ring theoretic machinery to
deal with this second case.

This shows that in order to extend Theorem 1.2 by replacing the abelian
group H by a more complicated group B one would first have to
guarantee the existence of the regular KB-submodule in K% and then to
deal with two other cases. As much as we are aware, very little is known
about the action of subgroups of PGL(n,q) on the cosets of X C
PGL(n, q) when X is a quotient of SL(n/k, q"*) with k > 1. The problem
of characterizing the groups H € GL(n, gq) which have a regular orbit on
< is known to be very difficult. Some progress has been made when
(|1H|,q) = 1 and ¢ is large enough; see Liebeck [13] and Goodwill [4]. Our
notation necessarily varies a little as we progress but it is explained at the
beginnings of Sections 2, 3, 5, and 7 for each of those parts of the paper.

2. SOME GENERAL OBSERVATIONS ON
PERMUTATION MODULES

Here we collect the general facts about permutation actions and mod-
ules we shall use in this paper. First recall the usual notation. Let G be
some group and () a G-set. The image of w € ) under g € G is denoted
by gw and if H C G then How is the orbit of w under H. The stabilizer of
win G is G, and if ' € Q then gI" == {gy : y € I'}. We assume through-
out that all G-sets are finite. The number of G-orbits on () of given size k
is denoted by n,(G, k) or just n(G, k). If K is a field then KG is the
group ring over K and K() denotes the natural KG-module with () as a
basis. We use KG also to indicate the regular module of G over K. If a
normal subgroup G* C G acts trivially on a submodule M then we often
regard M as a K(G/G*)-module.

2.1. Embedding Permutation Modules

Let A and Q be two G sets. We are interested in conditions which
guarantee the existence of a KG-embedding K{) — KA. In general this is
not an easy task. However, when G is doubly transitive on () then this
problem presents itself as a simple alternative:

THEOREM 2.1.  Suppose that G acts doubly transitively on ) and also
transitively on A, where |Q| > 2. (Neither action needs to be faithful) Let K
be a field whose characteristic does not divide the order of G. Then one and
only one of the following occurs:

(1) There exists an injective KG-homomorphism ¢: KQ — KA.
(i) Forany w € Q and & € A we have G = G, - Gj.
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We refer to (i) as the embedding case and to (ii) as the factorization case.
The condition G = G, - G; means that Gj is transitive on () or, equiva-
lently, that G, is transitive on A. This theorem is from [3] and as its proof
is very short we will repeat it here.

Proof.  If (ii) holds then G, has two orbits on Q but only one orbit on
A. However, an injective G-homomorphism ¢: KQ — KA would imply
that the multiplicity of the trivial KG -module in K() is no larger that the
multiplicity of the trivial KG -module in KA. These multiplicities are the
numbers of G_-orbits on () and A, respectively, and so there can be no
such embedding.

Fix some w € ) and suppose that G has an orbit ® # A on A. Define
a KG-homomorphism ¢: KQ — KA by extending ¢(w) = L5.46 lin-
early to all of KQ. It remains to show that ¢ is injective. As G is doubly
transitive K = 4 ® B decomposes into the one-dimensional module
A =(X, cqwy and the irreducible module B = (w — 0* : 0, 0* € Q).
So there are only few possibilities for the kernel C of ¢: as ¢ # 0 it
remains to show that C # A and C # B. Clearly, ¢(X_ . o) is of the
form x-X;.,6 and a simple counting argument shows that x =
|Q]|®|]A]"". So x is a divisor of |G|and # 0 in F. This rules out C D A.
As @ # A we have ¢o(w) & (L5.,8) € ¢(FQ) so that ¢(KQ) is not
1-dimensional. This rules out C 2 B and so ¢ is injective. [

2.2. Regular Decompositions

Here we analyze permutation modules in terms of regular modules. Let
G be a group, ) a G-set, and K some field. We arrange the normal
subgroups of G as G = G,,G,_y,...,G, =1 in such a fashion that s > ¢
implies |G,| >|G,|. Then let n, be the multiplicity of the regular
K(G/G{)-module in KQ and let n,KG =: R, be the corresponding sub-
module of KQ. Next let n, be the multiplicity of the regular K(G/G,)
module in KQ/R, and let R, 2 R, be the KG-submodule of KQ for
which R,/R, = n,K(G/G),), etc. In this fashion we obtain the regular
sequence R, D R,_, 2 - 2R, of KG-submodules corresponding to
G,,...,G, and we shall say that KQ has a regular decomposition if there is
an arrangement of the G, for which the corresponding regular sequence
ends in KQ.

LEMMA 2.2. Let K be a field, G a group, and Q a G-set. Suppose that G*
is normal in G with G /G* cyclic of order n and that K contains the regular
K(G/G*) module. Then G has an orbit Q* C Q which is the union of n
orbits of G*, all of the same size.
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Proof. Let g€ G be a generator of G/G* and suppose that ¢:
K(G/G*) = KQ is a KG-embedding of the regular G /G* module. Then
o(G*) can be written as

o(G*) =24 + Mjgd + - +A,_,874

+ B + pigB + - +p BgT!
+ cee
+ v,C + v,gC+ - +v,_,8""'C,

where 4 = Y{a* € a®"}, B,...,C denote sums of the points in suitable
G*-orbits, where further all g'4, g’B, ..., g“C are pairwise distinct with all
coefficients A, w, ..., v € K non-zero. Clearly s,¢,...,u are divisors of n.

Note that (1 +g+ g DA+ Ngd + - +A,_, g4 = (),
+A, + - +A,_,) -4, where A is the sum of all points in a“, and so this
expression is G-invariant. Similarly (1 +g+ - +g* D0 + g+ - +
g D U+g+ - +g " o(G*) and hence (1 + g+ - +g* N1 + g
+ o 4g™ DA+ g+ - +g“ Y- (G*) are G-invariant. However, up
to a scalar multiple (1 + g + -~ +g"~ ') - G* is the only such element in
K(G/G*). Therefore (1 +g+ - +g " D1 +g+ - +g"™"H- U +g+
gt (GF) =M1 + g+ - +g" 1) - G* for some A € K. From this
we conclude that the polynomial x” — 1 divides (x* — D(x" — 1) -+ (x* —
1) and so a primitive nth root of unity in a suitable extension field is
among the roots of order s, ¢,...,u. Thus n € {s, ¢, ..., u} which completes
the proof. |

THEOREM 2.3. Let K be a field, G a cyclic group, and Q) a G-set. Then
KQ has a regular decomposition. In particular, if KO =R DR, ;2 -
R, is any regular decomposition, with multiplicities n,,...,n,, then n,;
no(G, k,) is the number of orbits of length k;, =|G:G,| and R, , =
no(G,k,. ) K(G/G)+ R, forl <i<r—1.

Proof. Let G =G, G,_,,...,G, =1 be arranged in such a way that
s > t implies |G| > |G,|. If G has just one orbit on ) then KQ = K(G/G,)
and the result holds. So suppose that there are several orbits and let
0,Q,,...,Q, be all the orbits of maximal size m < |Q]. Let s be the
least index for which |G : G,| = m. We claim that R, =R, = -+ = R__,
= 0. For if K(G/G)) with 1 <j < was involved in K} then by Lemma
2.2 G would have to have an orbit whose size is a multiple of |G: G}, a
contradiction.

Among the groups G,,...,G, of index m we find the stabilizer G, of
ae,UO,U---UQ,. A G/G,=G/G, for any s <u <t we see
that R, = n,K(G /G,) where n; > n, accounting for the n orbits of length
m. Put Q* = O\ U;Q, so that KQ = KQ, + --- +KQ, + KQ*. Using

(1}
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Lemma 2.2 again we see that the regular K(G /G,)-module is not involved
in KO* and this implies that n, < n. Clearly, also n,,, = - =n,=0
and the result now follows by induction. [

We note two immediate corollaries. The second one is the version of
this theorem which is most relevant for this paper.

COROLLARY 2.4 (Brauer’s permutation lemma [2]). Two permutations
have isomorphic permutation modules if and only if they have the same cycle

type.

COROLLARY 2.5. If G is cyclic and acts faithfully on Q) then the multiplic-
ity of the regular KG-module in K is equal to the number of regular orbits of
G on Q.

Combining the results on regular modules with the theorem on embed-
dings in the preceding sections yields the following:

THEOREM 2.6. Suppose that G acts doubly transitively on €. Let B, ...,
B,, € G be representatives of all those conjugacy classes of subgroups which
act transitively on Q. Fori = 1,..., m denote the cosets of B, in G by A, and
let H be a subgroup of G.

(1) Suppose that H is cyclic. If H has at least k regular orbits on each
A, withi=1,...,m and on Q then H has at least k regular orbits on any
G-set.

(i) Let K be a field whose characteristic does not divide the order of G.
Suppose that KA |y, for each i = 1,...,m, and KQl|y have a submodule
isomorphic to a direct sum of m copies of the regular KH-submodule. Then for
any G-set A the restriction KAly contains a submodule isomorphic to a direct
sum of m copies of the regular KH-submodule.

Proof. For (i) select any field whose characteristic is co-prime to |G|.
Then apply Theorem 2.1 and Corollary 2.5. Similarly, part (ii) follows from
Theorems 2.1 and 2.3. |

3. THE NATURAL ACTION OF PGL(n,q)

In order to apply the ideas arrived at in the last section we need some
preliminary information about the natural action of the projective general
linear groups. So let IV be the n-dimensional vector space underlying
GL(n, q) and let . denote the set of all one-dimensional subspaces of V.
The center of GL(n,q) is denoted by Z and the group PGL(n,q) =
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GL(n,q)/Z acts on . This action is doubly transitive on ¥ and & is
called the natural PGL(n, q)-set. Observe that also the action of PSL(n, q)
on . is doubly transitive.

3.1. Regular Orbits of Abelian Subgroups in the Natural Action

PROPOSITION 3.1.  Let g = p®. Let H be an abelian subgroup of PGL(n, q)
with cyclic Sylow p-subgroup. Then H has a regular orbit on Z.

Proof. Let H= B X U where U is the Sylow p-subgroup of H. Ob-
serve first that the claim is true if H is irreducible. Indeed, in this case
H = B is contained in K* where K = (H) is a field by Schur’s lemma;
clearly, |Kv| = |K| for each 0 # v € V' so K*/Z* has a regular orbit on
the one-dimensional subspaces of V. Next suppose that H is indecompos-
able. Put K = (B). Then K is a field for otherwise K has a non-trivial
idempotent e so H preserves both el and (e — Id)V. View V as a vector
space Vi over K. Then U is contained in GL(V}) as U and K elementwise
commute. As U is cyclic, it has a regular orbit on the one-dimensional
subspaces of 1V}, equivalently, on irreducible K-submodules in V. Let
W # 0 be an irreducible K-submodule such that the orbit {uW}, ., is of
length |U|. Let 0 # w € W. Then Bw contains |B| elements and all of
them are in W. As for u,u’ € U the spaces ulW and u'W have no nonzero
element in common; the orbit UBw is regular. Moreover, if B, =B N Z
then the number of one-dimensional subspaces in Bw is |B/B,|. There-
fore H/(H N Z) has a regular orbit on the one-dimensional subspaces of
V. Finally, assume that V=V, @ V, where V,,V, are H-modules. Set
H, = H|V, for i = 1,2. By induction, there are vectors v; € V; such that
|Hv;| = |H,| and the orbit H,{v;) is of size |H,/(Z; N H,)| where Z, is the
set of scalar matrices in End(}}). Then the H-orbit of v = v, + v, has size
|H|. In order to show that the H-orbit of the line Zv is of size |H/(H N Z))
just observe that av € Zv if and only if a € Z. Indeed, if av = zv for
z € Z then av; = zv; for i = 1,2. By the above, a |V, is scalar, say, z,.
Then av, = z;v;, = zv;; hence z; = z. |

3.2. Embedding the Natural PGL(n, q) Permutation Module

Now suppose that PGL(n, g) acts on some set A and that K is a field
whose characteristic does not divide |PGL(n, g)l. We are interested in
embeddings ¢: K.¥ — KA and so we investigate the factorizations of the
projective linear group. These have been determined by Hering [5]; see
also [12].

THEOREM 3.2. Let SL(n, q) € G € GL(n, q) be a subgroup and let B be
a maximal subgroup of G which is transitive on V \{0} and does not contain



458 SIEMONS AND ZALESSKII

SL(n, q). Then B is conjugate to one of the following groups:

(i)  Ng(L*) where L is a subfield of R containing Z with |L : Z| = n,
(i) N (SL(n/l,q")) where lis a prime dividing n,
(i) N;(Sp(n,q)) = HSp(n, q) for n > 2 even,
(iv) Ng;(Qy) forn =2 and q = 5,7,23,
(v) N,(SL(2,5)) forn =2 and q = 9,11,19,29,59, and
i) A, for (n,q) = (4,2).

Remark. The transitive group N;(Dge Q) for G = SL(4,3) given in
[12] is contained in HSp(4,3). In (i) SL(n /I, q") is understood to be the
image of the embedding induced by an embedding of F, into M(/, ¢).

The following is therefore immediate from Theorem 2.1:

THEOREM 3.3. Let G = PSL(n,q) act naturally on the points & of
projective space and let A be some transitive primitive G-set. Suppose that K is
a field whose characteristic does not divide |G|. Then exactly one of the
following holds:

(i) there exists an injective G-homomorphism KQ — KA, or

(ii) there is some 8 € A such that the pre-image of Gy in SL(n, q) is
conjugate to one of the subgroups listed in Theorem 3.2. (G5 stands for the
stabilizer of 6 € A in G.)

Together with Corollary 2.5 and Proposition 3.1 this yields the main
result in the embedding case:

THEOREM 3.4. Letg <€ G = PGL(n,q) and let K¥=R,DR,_, D -
D R, be a regular decomposition for {g) when K is a field whose characteris-
tic does not divide |PGL(n, q)|. Suppose that A is some G-set and that Gj,
for some & € A, is not conjugate to any of the groups H in Theorem 3.2. Then
KAl gy has K{g)-submodules isomorphic to R; fori=1,...,r. In particu-
lar, g has at least n (g, |g) > 1 regular orbits on A.

4. COUNTING REGULAR ORBITS AND THE BASE
OF INDUCTION

Let B, H C G be finite groups. First we derive an upper bound for the
order of G in terms of B and H if H acts on the cosets of B without a
regular orbit. This bound is very rough but sometimes useful.

Let T be a subgroup contained in H N B. Let r(T, B) denote the
number of G-conjugates of B that contain 7, and let n(T, B) be the
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number of the subgroups in B that are G-conjugate to 7. Consider the set
X ={(gTg ", hBh™'): g,h € G and gTg"' C hBh™'}.

Then there are |G: N;(T)| conjugates of T and each is contained in
r(T, B) conjugates of B. Therefore |X|=|G: Ng(T)|-r(T,B). On the
other hand, there are |G : N;(B)| conjugates of B, each containing n(T, B)
conjugates of 7. So | X| = |G : N5(B)|-n(T, B) and hence

[ No(T)|

"0B) = INa(B))]

-n(T, B).

THEOREM 4.1.  Suppose that G is a finite group with subgroups B and H
such that H has no regular orbit on the cosets of B in G. Let §,,...,S,, be

representatives of all conjugacy classes of subgroups of prime order contained
in BN H. Then

Gl < ¥ No(S,) -n(S,, B) -n(S,, H).
i=1

Proof. By assumption we have: (#) Vg € G the intersection H N gBg ™!
is non-trivial. Let §,,...,S,, be representatives of all conjugacy classes of
subgroups of prime order contained in B N H. If H intersects a conjugate
of B then this intersection contains a conjugate 7' of some S; and there
will be r(T, B) = r(S;, B) conjugates of B containing 7. Therefore H
intersects non-trivially at most X ,r(S,, B) - n(S;, H) conjugates of B and
so X7 ,r(S;, B) - n(S;, H) > |G : N5(B)| if () holds. From the expression
for r(S;, B) one obtains the required inequality. |

ExamprLes. (1) If B is cyclic then n(S;, B) =1 so that |G| <
E:'nleG(Si) : n(S,'; H)

(2) Suppose that any two conjugates T,,T, € H of S, are conjugate
in H. Then n(S,, H) = |H : Ny(S)land so |G : H| < X" |IN5(S,) /Ny, (S)l.

Now we turn to the proof of Theorem 1.1 when (n,q) = (2,q) for
arbitrary g and (n,q) = (4,2). This will serve as a basis for induction
later on.

LemMa 4.2. Let PSL(2,q) € G € PGL(2, q) with 3 < q and let B € G
with B 2 PSL(2,q). If H is an abelian subgroup of G then there is some
g € G for which BN H8 = 1.

Proof. Suppose that B intersects every conjugate of H non-trivially.
We may assume that H =§, X S, X --- X S, where the §; are simple
cyclic. We may also assume that each §; has a conjugate contained in B
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and that m > 2 for otherwise B is contained the normal subgroup gener-
ated by the conjugates of H. First assume that the intersections between B
and the conjugates of H are always contained in PSL(2, ¢) so that we may
as well assume B, H € PSL(2, g). It follows from Theorem 8.27 in [6] that
H is one of the following: (i) C, X C,, (i) cyclic of order dividing
(g + 1) /k where k = (q — 1,2) and N;(H) is dihedral of order 2(g +
1)/k, or (iii) elementary abelian of order dividing g. Each of these cases
can be ruled out by elementary arguments and the use of Theorem 4.1. In
the remaining case assume that B meets some conjugate H® such that
H$NB:=<h)# 1but H¥ N B N PSL(2,q) = 1. Then H is contained in
the centralizer of the involution 4 and this can be ruled out in the same
fashion. |

LEMMA 4.3. Let G = Alt(8) = SL(4,2) and B < G with 8 <|G: Bl. If
H is an abelian subgroup of G then there is some g € G with B N H® = 1.

Proof. Suppose that B intersects every conjugate of H non-trivially.
Then |H| has at least two different prime divisors and clearly 7 cannot
divide |H|. If 5 divides |H| then H = C; X C5 as Cs is irreducible in
SL(4,2). Hence B N H¢ is of order 3, 5 or 15. Then B contains elements
of order 3 and 5, and for every partition of type (5, 3) of the eight points
there would be a 3-cycle or a 5-cycle in B preserving the two sets of the
partition. It follows that B has an orbit of length 7 or 8 and from this that
B = Alt(7) or B = Alt(8). 1

5. INTERSECTIONS OF SUBALGEBRAS

We now begin with the ring theoretical discussion. The notation is as
follows. If B is a group then B’ is the derived subgroup of B and Z(B) is
the center of B. If X is a ring with identity then X* is the group of units
(= invertible elements) of X and Z(X) is the center of X. We often write
X' instead of X*'. The algebra of (n X n)-matrices over a field F is
denoted by M(n,F). We set R=M(n,F) and Z = Z(M(n, F)). Let
V = F" be the natural R-module. We set G = R* = GL(n, F). Observe
that X is an F-subalgebra of R containing the identity of R if and only if
X contains Z. If S is a subset of R then {S) denotes the least F-algebra
(= Z-algebra) containing S. If S,7 C R are subsets we write <S,7T)
instead of (S U T). The field of g elements is denoted by F,. We write
M(n, q) and GL(n, q) instead of M(n,F,) and GL(n,F,), respectively.
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THEOREM 5.1. (1) Let S be a simple subring of R containing Z. Then the
following hold:

(@) If a is an automorphism of S trivial on Z then there exists g € G
such that a(s) = gsg~ ' for all s € S [16, Sect. 12.6].

(i) Let C = Cg(S). Then C is simple, S = Cr(C), and
(8§:Z)XC:Z) = n®[16, Sect. 12.7].

(i) If Sis a field and k = S : Z then C = M(n /k, S). Furthermore,
C is irreducible and if S : Z is a prime then C is a maximal subring of R.

(iv) Isomorphic simple subrings of R containing Z are conjugate in R
[16].

(2) Let T be a semisimple subring of R such that Z C T, and L =
Ci(T). Then L is semisimple, Cx(L) = T, Z(T) = Z(L). Further, L is
simple if and only if T is simple.

(3) If K is a maximal simple subring R such that Z C K then Z(K): Z
is a prime.

Proof. (1) (iii): Obviously V is a vector space over S of dimension 7n/k
and C is exactly Hom(V,V') = M(n /k, S). Each finitely generated mod-
ule over M(n/k, S) is a direct sum of simple ones. If V' is not irreducible
as an C-module then S = Hom.(V, V) contains a non-trivial idempotent
which is not the case.

2 Let T=S,®:- &S, where §,,...,S, are simple. Let ¢; € §,
be central idempotents of §;. Let V; =¢,)/ and n;, = dimV,. Then the
centralizer of the set {e,,..., e} in R is M(n,,F) & --- & M(n,, F) and
S; € M(n;, F) is a simple subring. Therefore L = L, & --- & L, where L,
is the centralizer of S; in M(n;, F). So the result follows from (1) (ii).

(3) Clearly, K is irreducible so C = Cr(K) is a field. Hence C =
Z(K). If C:Z is not a prime then C contains a proper subfield C,
containing Z and Cr(C,) # k by (1) Gi). 1

THEOREM 5.2 (see 2a). Let H be a non-central subgroup of GL(n, F)
invariant under G'. Suppose that (n,|F|) #+ (2,2),(2,3). Then H contains
SL(n, F).

COROLLARY 5.3. Let T = @ T, where T, = M(n,, F,) and F, are fields of
the same characteristic. Let ¢;: T — T, be the natural projection. Let H be a
subgroup of T* invariant under T'. Suppose that H contains an element h of
order p. Then H contains a subgroup H such that ¢(X) = SL(n;, F,) for

those i for which h & ker(¢,) and ¢(X) = Id for all other i.
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The following lemma is a very particular case of a result in [1].

LEMMA 5.4. Let S be a proper subring of R. Suppose that g~ 'Sg = S for
all g € G'. Then either S € Z, or (n,|F|) = (2,2) and S is the field of four
elements.

Proof (sketch). 1If (n,|F|) € {(2,2),(2,3)} then the lemma can be veri-
fied directly. Suppose that (n,|F]) # (2,2),(2,3). Observe that SN G ¢
Z(G) unless |F| = 2 and S is a direct sum of the fields of two elements. In
the first case S* contains G’ by Theorem 5.2. It is well known that for
(n,|FD # (2,2) the group G’ is absolutely irreducible. Therefore {(G') =
M(n, F) and so S = M(n, F). This is a contradiction. Let S be a direct
sum of k copies of the field of two elements. Then n > k > 1 and hence
G' permutes these k summands. It follows that G' has a normal subgroup
L such that G'/L is isomorphic to a subgroup of Sym,, the symmetric
group of degree k. It follows from Theorem 5.2 that L < Z(G). This is
impossible as |PSL(n, F)| > k! for n > k. 1

COROLLARY 5.5. Let L # Z be a minimal subring of R containing Z.
Then g 'Lg N M C Z for some g € G', unless (n,|F|) = (2,2) and M = L
= F,.

Proof. let g€ G.1f g7'Lg N M ¢ Z then g~ 'Lg C M by minimality
of L. If this is true for all g € G’ then L €Y = N, gMg™" # Z. By
Lemma 5.4 (n,|F)=(2,2) and L =F, as Y=gYg ! forall g€ G In
the exceptional case the claim is obvious. [

LEMMA 5.6. Let A C R be a semisimple commutative F-algebra and let D
be any maximal proper F-subalgebra of A. If Z = F, and A contains a proper
subfield L such that Z C L = K, suppose additionally that D contains L. Let
A=A, ® - ®A,and D =D, ® -+ & D,, where A,,..., A; and Dy, ...,
D, are fields. Then k <1 < k + 1 and the summands A;, D; can be reordered
such that D; = A; fori =1,...,k — 1.

Proof.  Obviously, k£ < [ and after reordering the A,’s one can assume
that D, cA4,® - ®A,, D,CA; .,,® " ®A,,....D,CA; ;&
®A;. As D is maximal, after reordering the D;s and A;s we have
D, =A4,,....,D,_,=A,_,,D, CA, & - & A,. Moreover, it follows from
the maximality of D that the last sum should contain at most two
summands, ie., k=1[ or [ =k + 1. If k=1 then D, CA, is a field
extension. If / =k + 1 then 4, = A4,,, = D, (as Z C D the identity of

A, + Ay, is contained in D,). |

Proof of Theorem 1.3. Suppose the contrary. Take for R a minimal
counterexample; i.e., we assume that the theorem holds for m < n. Fur-
ther, as every F-subalgebra of A is semisimple, we assume that A4 is a
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minimal counterexample, in the sense that for any proper F-subalgebra B
of A the theorem holds; i.e., there exists an element x € SL(n, F) such
that xBx "' N M C Z.

The cases n = 1 and n = |F| = 2 are obvious. Thus we assume in what
follows that » > 1, and that |F| > 2 when n = 2.

Let A=A, ® --- ® A, where A,,..., A, are fields. Let D be a maximal
proper subring of A4 containing Z. If D = Z then the theorem follows
from Corollary 5.5. So we shall assume that D # Z. If Z=F, and A4
contains a proper subfield L with Z c L = F, then by Corollary 5.5
A # L and we can assume that D is chosen to contain L. Let D = D,
® -+ ® D, where D,..., D, are fields. By Lemma 5.6 k </ <k + 1 and
we can assume that D, =A4,,...,D,_=A,_,,and D, CA, & -+ ® A,.
If k=1 then D, C A, is a field extension. If / =k + 1 then A, = A4,
= D,. If A is minimal we can assume that D N M C Z. Let C = Cx(D).
Then D = Z(C) by 5.1Gi) so C is a direct sum of exactly k simple
components C = Cy,...,C,. By reordering the C;’s we can assume that
D, = Z(C) for i = 1,..., k. Let e; denote the identity of D, (and C,). By
the above, C, contains A4,. If [ = k + 1 then C, contains 4, + A, ,,. Set
Co,=D;®--oD,_, ®C,.Then A C Cy, and C, is not commutative as
Z(C)=D #A.Forx, € C, let x =¢, + ¢, + - +e,_, + x;. Then x, is
invertible if and only if x is. Observe that C, = M(m, D,) for some
1 <m <n by Theorem 5.1. Let o denote the projection C, — C,, so
o(x) =x,.

Set My=MnC,, M,=0(M,). Observe first that M, = M, as
Ker(oc) =D, & --®D,_, and DN M c Z. Observe next that M, +#
o(Cp). Indeed, if M, = o(C,) = C, then M, = C, = M(m, D,); hence
M, = C, (as the projections of M, to C; should be zeros). Then M
contains D,. This is a contradiction as D N M C Z.

Thus M, # o(C,). As m < n, the theorem is true for o(C,) so either
there exists x, € C, = SL(m, D) such that x; 'o(A)x, "M, C o(D,) =
D, or m =2 =|D,| and 0(A) = F,. In the former case set x = e, + ¢,
+ - 4e,_, +x,. Then x '"Ax "M C M N D C Z, as desired. Let m = 2
=|D,|. Then F=F, and M, = 0(A) =F,, | =k, so D contains no
subfield L such that Id € L = F,. As M, = M_, we have M, = F,. Let o;
with i < k be the natural homomorphism of C, onto D;, i < k. Then
g(M,) # {0} as M, contains Id. Clearly, ker(o;) N M, = {0} as M, is a
field. Hence 0,(M,) = F,. Therefore, D, contains a subfield isomorphic to
F, for every i < k. It follows that A contains a subfield isomorphic to E,.
This contradicts the assumption about D above. |

LEMMA 5.7. Let p = char(F) and let A € G be a finite abelian group.
Let X be a subring of R such that Z C X. Suppose that the Sylow p-subgroup
A, of A is cyclic. Then there is g € G' such that g A4gnXxczZz
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Proof. Let A=A, XA, Set K= (A,). Then K is a semisimple ring
by Maschke’s theorem. It suffices to prove the lemma when A4, = K* as
this group contains no p-element. Thus assume that 4, = K*. If 4, =1
the result follows from Theorem 1.3. Let A4, # 1 and let A4, denote the

subgroup of A, of order p. Set C = Cx(K). Write C =C; & - & C,

where each C,; for i = 1,...,m is a simple ring. Let g;: C — C; be the
natural projection. By reordering the C;’s we can assume that o,(A4,) # 1
fori=1,...,/and ¢,(A4,) = 1 for i > [. Obviously, C; is not commutative
fori </

By Theorem 1.3 we can assume that (*) KN X =2Z.Set X,=XnNC
and X2 = N.cocXoc” . If AN X2 CZ then we are one. Suppose that
ANX2¢ Z,andlet a € AN XY and a & Z. By () a is not semisimple
so some power of a is a non-trivial element of A,. Hence A, c X2. We
show that this is impossible.

Let e; € C; be the central idempotent of C;. As C; € C, the element
c=e + - +e,_,+c;,+e,, + - +e, € C for each ¢; € C} and o,(c)
=c; For x € X0 let x =x, + - +x,, with x, € C,. Then cxc™' — Id =
c;x;c; —e ' so c;x;c; —e; € C; N X.. Observe that C; N X! is not in
Z(C;) for i <. Indeed, let 1 #a € A,. Then for x = a the element
o(x) =x; is of order p so c;x;c; —e; & Z(C,;) for some ¢, € C.. So
C; N X2 is non-central Cl-invariant subring of C,. By Lemma 5.4 C; N X
= C,, except, possibly, in the case C; = M(2,F,) when C; N X is isomor-
phic to F,. In both the cases Z(C;) € X2 C X which contradicts (*), unless
m =1, Z(C) = Z. Then C = R, X, = X, and X is a G'-invariant sub-
ring of R. By Lemma 5.4 either X2 = R or R = M(2,F,). The first case is
impossible as X2 = X # R. The second case R = M(2,F,) is straight-
foward. |

6. SUBRING NORMALIZERS

Notation. In this section F = F,. We first prove the following theorem.

THEOREM 6.1. Let |F| = q. Let A be a commutative semisimple subring
of R = M(n, F) and let M be a proper subring of R, both containing Z. Set
N = Ni«(M*). Then there exists an element x € G' with xAx ' "N C Z =
Z(R) unless n = 2 = |F|.

We set F, = F,.. For [|n there is an embedding of F, into M(/, F) via
the regular representation of F, over F (i.e., we consider F, as a vector
space over F of dimension / and the action of F;, on F, by left multiplica-
tion defines the regular representation of p,: F, = M(l, F)). Furthermore,
for I/|n we define a subalgebra R, of R obtained from M(n /I, F,) by
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means of replacing the matrix entries ¢, of t € M(n /I, F,) by the elements
pit;;)-

Thus if /|n then R, is a simple F-subalgebra of R containing the
identity of R. Hence R, contains Z. Let Z;, be the center of R;, so
Z,=F,,and Z;: Z = . Observe that Z, is a subfield of R containing Z.
By Theorem 5.1(2) we have R, = Cr(Z)). We set G, = Rf so that G, is
isomorphic to GL(n /I, F,) and G = R* = GL(n, F). Clearly, G, = C4(Z)).
If (n, q) # (2,2) then G; = SL(n/1, F)).

Let N, denote the normalizer of G, in G. Observe that N, ={g €
G:gxg' €R, for all x € R} as {(G,) = R,. Obviously, gZ,g~' = Z, for
g € N,. It follows that N,/G, is isomorphic to the Galois group of Z,/Z.
In particular, |N,/G, is cyclic of order /.

LEMMA 6.2. Let | be a prime divisor of n and let x € N\ R,. Let
y =XlZiNx" where A\, € R,. Ify € R, theny € Z,.

Proof.  Set J(y) ={i €{0,...,1 — 1}: A, # 0}. Suppose the contrary and
choose y with minimal |J(y)l. If J(y) = {0} we are done. Suppose that
J(y) # {0).1f £ € Z, then yl —x*{xFy = &) 4 c jooM(xTx™" = x¥gxF)x!
€ R,. By minimality of J(y) we have x¢x~' = x’¢x~* for i € J(y), i # k.
This is equivalent to ¢ = x'~*x*~! for all { € Z,. This is impossible as x
realizes a Galois automorphism of Z,/Z. |

LEMMA 6.3. Let I, v be prime divisors of n and let K, L be subfields of R
containing Z such that K : Z = v and L: Z = 1. Let N = N;(L) = Ng;(M)
where M = C;(L). Then gKg™' N N = Z for some g € G'.

Proof. Observe that N: M* =] by a Galois argument. By Corollary
5.5 there is g € G’ such that gKg™' "M C Z. Set L =gZ,g"". Suppose
that L "N # Z. Then N N L contains an element x & M such that
x' € M. Then (x) =L as L:Z is prime. Obviously there exists & € G’
such that Aixh ™' & N.Set K, = (hxh~'). Then K, isafieldand K, : Z = L.
It follows that K, N M < Z (otherwise, K, €M and x € M c N). We
show that K; NN C Z. Otherwise, let y € K, "M and y & Z. Then
yeK NMCcZ. As K, is finite, the group K{/Z* is cyclic and hence
contains a unique subgroup of order . Therefore y = (hxh~ ')’z where
ze€Z, ieN, and (i,p)=1. As y €N, we have x € N which is a
contradiction. |

LEMMA 6.4. Let F C P be finite fields, S = M(k, P) with k > 1 and
D = Z(S). Let T be a proper F-subalgebra of S such that {T,Z(S)) = S. Let
N be the normalizer of T in G.

(1) Forx € Psetd, = diag(l,...,1, x). There exists a subfield Q of P
and elements a € S and x € P such that aTa™" = d _M(k,Q)d;".
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(i) N =T*Z(S)*.
(iii) Let e €S be an idempotent such that 0 #e # 1, and K =
(Z(S), e). Then there exists g € S’ such that gKg~' N N c Z(S).

(iv) Let L be a subfield of S containing D. Then L N T C Z implies
that LN C Z.

Proof. (i) Obviously, T should be simple, so by Wedderburn’s theorem
T = M(l,Q) where Q/F is a field extension. Then S = (T, Z(S)) =
M(,Q) ® P=M(l,Q ® P). This implies k =1 and Q c P. Obviously,
there exists ¢ € GL(k, P) such that ¢Tc™' = M(k, Q). Let x = det(c™").
Then a = d,c € §' and we are done.

(ii) follows from 5.1(i) and (i) above. Indeed, it suffices to prove (ii)
for T = M(k,Q). Let x € N. Then the automorphism ¢ — xtx~' (t € T)
of T is inner (5.1) and so x = yc where y € T and ¢ € C,;(T). However,
Co(T) = Z(S) so ¢ € Z(S), as desired.

(i) Set M*(k,Q) = d M(k,Q)d;". By (i) we can assume that T =
M*(k, Q) for some x € P. Then the entires of matrices of T are in Q,
except in positions (i, j) with i =n, j # n and i # n, j = n where the
entries belong to the set xQ and x 'Q, respectively. Let k = rank(e).
Then there exist 4 € S such that heh ™' = ¢, = diag(1,...,1,0,...,0). Let
u =det(h™'). Then g =d,h € S'. As k < n, we have geg~' = ¢,. Hence
we can assume that e =e,. Pick y € P, y € xQ and set a = Id + ye,,
(here e, denotes the matrix with 1 positioned at (1, k) and zeros else-
where). Then det(a) = 1s0 a € §'. Set e, = aea™' = ¢, + ye,,. Hence we
can assume that e =e¢, + ye;,. Next let b€ KN N, b & Z(S). Then
b =p, + p,e for some p,, p, € P, (p, # 0 # p,) so that b = diag(p, +
DasevosPL + Das Pisevvs P1) + Ypr€q. As bT*b™1 = T*, we have bTh™ ! =
T. Then b induces an automorphism b, of T trivial on Z(T) as Z(T)
consists of scalar matrices. Therefore, b, is inner; i.e., bth™ ' = ctc™! for
some ¢ € T*. Then ¢~ 'bt =1c™'b for all t € T, s0 ¢~ 'b € Cpp s p(T).
The right hand side group consists of scalar matrices over P by Schur’s
lemma. Hence b € N implies the existence of r € P such that mp, € Q,
r(p, + p,) € O, np, € xQ. This implies 7p, € O, and then y € xQ. This
is impossible unless p, = 0. However, p, = 0 means that b € Z(T), which
is a contradiction.

(iv) Suppose the contrary and let @ € L N N. By (ii) we can express
a=tdforsometeTandde D.Asd e L,wehavete LsoteLNT
eZ 1

Proof of Theorem 6.1. Consider a minimal counterexample; i.e., we
assume that the theorem holds for m < n. The cases n = land n = g = 2
are obvious. Thus we assume in what follows that » > 1 and ng > 4.
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Furthermore, (N) = R by Theorem 1.3 applied to { N ). This implies that
M is semisimple. Indeed, if U = Rad(M) # 0 then xUx™! = U for each
x € N. Therefore {Zu,x,} cv,x,cn forms a two sided ideal of R = (N),

which is a contradiction. (This is in fact the Clifford theorem.) We denote
by r the number of simple components of M and set s =n/r. Let
e;,...,e, be the minimal central idempotents of M. By the Clifford
theorem all they have the same rank s. As A is semisimple, we can also
assume that A is minimal in the sense that for any proper F-subalgebra B
of A there exists an element x € G’ such that xBx ' " N C Z.

Step 1. Here we prove the theorem for the case where A is a field. Let
D be a maximal subfield of 4 containing Z. Set A: D = v. Clearly, v is a
prime. By minimality of 4 we can assume that D " N C Z.

Consider first the case D = Z. Then A:Z = v is a prime.

Suppose first that r > 1. We can assume that 4 = diag(a,..., a), where
a runs over a subfield of M(v, F). Let us view R = M(n, F) as M(r, M(s,
F)); i.e., we view the matrices of M(n, F) as block matrices with entries in
M(s, F). Let Y, denote the m X m-matrix with 1 in position (1, m) and
zeros elsewhere. By conjugating N by a suitable element u € G’ we can
assume that

0 0 0 0 0
e,=10 E, 0 0 Y, fori<r,
0 0 0 0 0

where E is the identity matrix of size s and non-zero entries occur in the
ith row. The matrix u can be taken to have 1’s on the diagonal and in
positions (1, n), ((ks) + 1,n) with k =1,...,r — 1, and zeros elsewhere.
Hence for i = r we have

0 0 0 Y,
=10 o0 0 Y,
0 0 0 E

Suppose that ANNZ Z, and let X€ANN, X&Z Then X =
diag(x,...,x), where x € GL(v, F) is irreducible as v is prime. The
conjugacy action of X permutes e,’s. Observe that Xe, X ' # e, (other-
wise, xY,x ' =Y, or xY,=Y,x; as x is irreducible, and r > 1, this
contradicts the Schur lemma). Hence Xe, X! = e; where j > 1. Suppose
that v <s. Then, obviously, j =r and xY,x ' =Y,. This contradicts
Schur’s lemma.
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Suppose that v>s. As v> 1, r > 1, the top v rows of the matrix
Xe, X! have shape

(xE,x™" [0 [ - [0 ] xY,x7").

Let v,,...,0, be the standard basis in V, the natural module for M(n, F).
Set W= <{vy,...,0,). Then X|W =x so XW = W. Let ¢ be the maximal
natural number such that e,V C W. Set e, = e, + -*- +e,. Then e)VVC W
so Xe, X 'V c W. It follows that Xe,X ' = ¢, as X permutes e,’s and
(Zej)V = Ye;V with summation over any subset of {1,...,r}. Hence e,W
= W so v is a multiple of s, say, » = st. Suppose first that » < n. Then
xYx~! =Y, where

is a (v X v)-matrix with ¢ blocks Y, at the right hand side columns and 0’s
elsewhere. By Schur’s lemma Y is non-degenerate. This is a contradiction.
Suppose next that v = n. As v = n is prime, we have r = 1. Obviously, we
then have gd4g™' N M c Z for each g € G'. Choose g such that grg™! &
N. Show that A NN C Z. Indeed, if y €4 N N is not scalar then y
permutes e;’s s0 y” € Z. As A is cyclic, we have x = y/z for some integer
1 <j<vand z € Z. But then x € N which is a contradiction.

It follows that r = 1. This means that M is simple. Then L = Z(M) is a
field. Let / be some prime dividing L : Z, and let L, be a subfield of L
such that L,:Z =1[. As L, is unique, N normalizes L, so N € Ng(L,).
This means that it suffices to prove that g4g~' N N;(L,) C Z for some
g € G'. However, this follows from Lemma 6.3.

Next, suppose that D # Z. Set S = Cr(D). By the above D N N C Z.
Set M, =M N S. Clearly, M, # S (otherwise, D € S = M which is not
the case). Hence M, is a proper Z-subalgebra of S. Besides, A € S and
A+ Sas A+#D (see 5.112)). As S = M(k, D) for some k < n, we can use
the induction assumption if M, is a D-subalgebra of S. If {M,, D) # S,
we are done by induction as N, = N N S normalizes {M,, D). Suppose
that {M,, D) = S. By Lemma 6.4(iv) ANN cD.As D NN C Z, we are
done.

Step 2. Here we assume that A4 is not a field. Let A =4, & - & 4,
where A,,..., A, are fields. Let D be any maximal proper subring of A. If
|F| =2 and A contains a proper subfield L such that Id € L = F,, then
we can assume that D is chosen to contain L. (Indeed, in this case L* is
of order 3. Hence g~ 'Ng N L* # 1 implies that L* c g"'Ng forall g € G’
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so L* € Ngeqr g 'Ng. It follows that G’ has a non-central normal sub-
group which is impossible.) Let D = D, & - & D, where D,,..., D, are
fields. By Lemma 5.6 we have kK </ < k + 1 and after reordering the D,’s
and A;s we shall have D, =A4,,...,D,_,=A,_,D, CA, & - ® A, If
k =1 then D, C A, is a field extension, and if / = k + 1 then A, = A,
= D,. As A is minimal, we can assume that D NN C Z. Let C = Cx(D).
Observe that D = Z(C) by Theorem 5.1, so C is a direct sum of exactly k
simple components C,,...,C,. By reordering C,’s we can assume that
D, = Z(C) for i = 1,..., k. By the above A4, (resp., 4, + A, ) belongs
to C, if k=1 (resp.,, [=k+1). Set Cy=D, & - & D,_, ® C,. Then
A c Cy, and C, is not commutative as Z(C) =D # A. Let o: C;, = C;,
be the natural homomorphism; i.e., o is identical on C, and ker(o) = D,
® - & D,_,. It follows that o(Cy) = C,. Let 1 =f, + - +f, where
fieC;,fori=1,...,k. Then f, € Z(C,) = D, c D = Z(C), and f; is the
identity of C;. Clearly, o(c) = f,c for ¢ € C,. For x, € C; let x =f,
+ -+ +fi_1 t x. Then x, is invertible if and only if so is x. Observe that
C, = M(m, D,) for some m > 1.

Suppose first that D = Z. Then k =1 and [ = 2 (otherwise, A4 is a
field). Therefore, A = {D,e) for some idempotent ¢ € 4 € S where
S = Cr(D). By Lemma 6.4(iii) there exists g € S’ such that gdg™' N N C
D.As D NN C Z, we are done.

Let now D # Z. Set My =M N Cy, M, = o(M,). Observe first that
M, =M, as Ker(¢c) =D, & ---® D,_, and D N M c Z. Observe next
that M, # o(C,). Indeed, if M, = o(C,) = C, then M, = C, = M(m,
D,); hence M, = C, by Wedderburn’s theorem. Then M contains D,.
This is a contradiction.

Thus M, # o(C,). Set Ny =N N C,. Then N, normalizes M, and
o (N,) normalizes M,. As M(n,q) is a minimal counterexample to the
theorem, either (a) m = 2 = |D,| or (b) there exists x, € C;, = GL(m, D,)
such that x;'o(A)x, N o(N)Co(D,)=D,. Let x =€, +e, + - +
€,_ + x;. Then in case (b) x 'Ax " N C N N D C Z, as desired. Let (a)
hold. It follows that M, = o(A) = F,, | = k, and D contains no subfield
Lsuchthatld e L = F,. As M, = M_,we have M, = F,. Let 0;,i < k, be
the natural homomorphism of C, onto D,, i < k. Then o,(M,) # {0} as
M, contains Id. As above, ker(o;) = {0} as M; N D C Z. Hence 0,(M,) =
F,. Therefore, D, contains a subfield isomorphic to E, for every i < k. It
follows that A4 contains a subfield isomorphic to F,. This contradicts the
assumption about D above. This completes the proof.

LEMMA 6.5. Let F be a field of order 2*™ with m > 1. Then F* contains
an element of prime order [ with | > 2m.
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Proof. If m =3 then [ = 7. Suppose that m # 3. By Zsigmondy’s
theorem (see [10, 5.2.14]) there is a prime [ such that / divides 2> — 1 and
does not divide 2 — 1 for i < 2m. Let h be an element of order / in F*.
It follows that /4 does not belong to a proper subfield of F. Therefore, the
set {n’};_, _, contains a basis of F/F, so [ > 2m. In fact, [ # 2m as
A+mA+h+--1I""Y=0; hence 1 + h + +-- +h'~1 = 0. Therefore I
>2m+1. 1

THEOREM 6.6. Let G, M, N be as in Theorem 6.1 and let ¢ = r® where r
is a prime. Let A C G be an abelian subgroup with cyclic Sylow r-subgroup
A,. Then g~'Ag NN C Z for some g € G'.

Proof. As in the proof of Theorem 6.1 we can assume that (N, Z) = R
so M is semisimple. Besides, if M is not simple, it suffices to prove the
result for the case where M = diag(M(n /s, F),..., M(n /s, F)) where s is
the number of simple components of M. Then Cr(M) = Z(M). Let
e, ..., e, be minimal central idempotents of M, so N permutes e,,...,e
and e/V,..., eV transitively.

Let A, denote the subgroup of A4, of order r. Let 4 = A4, X A, so A4,
is an r'-group. Set K = {(A4,). By Maschke’s theorem K is a semisimple
ring. By Theorem 6.1 there is g € G' such that gKg~' N N C Z. By
replacing K by gKg~! we can assume that K NN C Z. Set C = CR(K).
Clearly, C = Cr(A,). Write C =C, ® -+ & C,,, where C; for each i =
1,...,m is a simple ring. Let o;: C — C; be the natural projection. By
reordering the C;s we can assume that o.(A,) # 1 for i = 1,...,/, and
0,(A4,) = 1for i > . Observe that C; is not commutative for i < I. Clearly
I > 1. Let C, = SL(n;, q,).

If c_'ch N N c Z for some ¢ € C’ then we are done (as 4, N Z = 1).
Suppose that c_lch NN ¢ Z for all c € C'. Then A, C cNc™! for all
¢ € C'. Therefore, A, CNo = N.cccNc™' so N. N C is a C'-invariant
subgroup of C*. Set X = N, N C. By Corollary 5.3 X contains subgroups
X, = SL(n,, q;) such that o,(X,) = SL(n;,q,) fori =1,...,] and X = X,
- X,. As X C N, we have a homomorphism n: X - N/M*. Let H =
ker n. We show that H c Z. Observe first that H ¢ M. (Indeed, if M is
simple then H centralizes Z(M); as M = Cr(Z(M)) then H c M. If M is
not simple then H centralizes all e,,...,e, so again H Cc M.) As H is
normal in X, we have either H ¢ Z(X) Cc K, or X; € H for some i, or
X, = SL(2,2) or SL(2,3) for some i and H N X, is a normal non-central
subgroup of X;. As K N M C Z, the first possibility does not hold. In the
remaining cases {H, Z) contains Z(C,); hence Z(C,) € M. This contra-
dicts the fact that K " M c Z as Z(C;) c K and Z(C,) & Z. Thus H C Z.

If M is simple then N/M* = Gal(Z(M)/Z) is cyclic whereas n(X) is
not cyclic. This is a contradiction. Suppose that M is not simple. By the

N
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previous paragraph, if x € X and x &€ Z then x acts non-trivially on
{e),..., e} Let I(x) be the order of x modulo Z*. By a lemma of Higman
(see [7, Theorem 1.10, p. 411]) the degree d of the minimal polynomial of
x is not less than the maximal length v of an orbit of x on e;’s (or V;-s). If
[(x) is a prime power then I(x) = v.If r > 2 or r = 2 and C, # M(2,2) for
some i € {1,...,1}, we shall deduce a contradiction by showing that this is
impossible for some x € X. In the exceptional case we show that N has to
be the group of all monomial matrices over F,. We shall handle this case
by an alternative argument.

Each SL(n;,q;) contains a subgroup diag(SL(2,¢,),1d, _,). Let y =
diag(h,1d, _,) € SL(n;, q;) where h is chosen to be of order k = r if r is
odd and of order k£ > 3 in Lemma 6.5 if g, > 2 is even. Let x € X, be the
pre-image of y so I(x) = k. Clearly, the minimum polynomial of x is of
degree d = 2 if r is odd which contradicts the above inequality r = /(x)
<d.

Suppose that r =2, g; > 2. Choose h as in Lemma 6.5. Then the
minimum polynomial of x is of degree d < 2q; whereas |x| > 2¢,. This
contradicts the Higman lemma. Thus, we are left with the case where
r=2and q; =2for i =1,...,1. Then |F| = 2. We show that each n, = 2
for i =1,...,1 Indeed, if some n; > 2 then C} contains the matrix
y= dlag(h Idn _3) where i/ =1 and h € SL(3,2). Let x be a pre-image
of y in X,. As above, the degree of the minimum polynomial of x is equal
to 4 Wthh contradicts Higman’s lemma. Thus n; = 2.

Set C,=C, ®--&C, and e, =e, + - +e¢; and let n, = rank(e,).
Then Z(C,) = F, & --- & F, (I summands). Therefore, Z(C,)* = 1. Then,
under a basis B compatible with the decomposition V=V, & --- & V|
each element of A, is of shape diag(e,, t) for some t € GL(n — n,, F). As
C = Cir(A,), it follows that /[ =1s0o X =X,. Let 1 #a€A,. Asl=1
and ¢, = 2, we have dim(Id — @)V = 1. As a permutes V;, it follows that
dimV; = 1forj =1,...,s. Then N is conjugate to the group of monomial
matrices over F,, which coincides with the group of permutational matrices
for F = F,. Hence V", the subspace of the vectors fixed by N, is one-di-
mensional.

For this case we show that there is g € G’ such that gdg™' " N C Z.
Let 0 # v € V. It suffices to show that C,(gv) = 1 for some g € G'. If
n =2 or 3 then 4 =A, and the claim is trivial. Suppose that n > 2.
Clearly, there is g € G’ such that ¢, gv # 0 and (Id — ¢;)gv # 0. We can
assume that this holds for v itself. Next, we shall look for g such that
ge, = e,g. Under an appropriate basis we can assume that g = diag(g,, g,)
where g, € SL(2,2) and g, € SL(n — 2,2). Obviously, there is g, such
that A, does not preserve the line g,e,{v). Observe that A, acts trivially
in e,V. As the stabilizer of (Id — e¢;){v) in M(n — 2,2) is an F,-subalge-
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bra, we can use Theorem 1.3 to conclude that there is g, such that A,
does not preserve the line g,(Id — e,){v). It follows that A does not
preserve the line g{v). This implies the lemma. [

PROPOSITION 6.7. (1) Let A € G be a cyclic group and p a prime dividing
n. Then there exists an element g € G' such that gAg™" N N, cZ

(2) Let (n,q) # (2,2). Let B< H = PSL(n, q) be a cyclic subgroup,
and Y = (N, N G')/Z(G"). Then there exists an element h € H such that
hAh~'NnY = 1.

Proof. (1) is a particular case of Theorem 6.6. (2) Let 4, Y be a
pullback of B and Y in G’ = SL(n,q). Then A/(A N Z) is cyclic, and
N c N,. By (1) there exists g € G’ such that g4g™' NN, c Z. Let H be
the projection of g in H. Then h4h™' N'Y = 1, as desired.

7. THE SYMPLECTIC GROUP CASE

Notation. We keep the notation G = GL(n, ¢) and Z for the group of
scalar matrices in G. In this section n > 2 is even and E, is the identity
(k X k)-matrix. If kK = n/2 we omit the subscript. Set I' = ( . £). If X is
a matrix, X' stands for transpose of X. We set H = Sp(n, F), the group of
all (n X n)-matrices X € R such that XT'X' = I". The mapping 7: X —
I'X'T~' is an involution (an involuntary anti-automorphism) of R and
H={XeR:7(X)=X"'}. It is known that N;(H) coincides with the
general symplectic group H ={X € G:7(X)X € Z}. Let 0: G — G be a
mapping defined by 0 (X) = 7(X ') for X € G. Then o is an involuntary
automorphism of G and H = G is the subgroup of elements fixed by o.
Let § = G -{o} be the semidirect product of G and the cyclic group of
order 2 generated by 0. Then H = C;(o)and H = {X € G:[X, o] € Z}.
For g € G set I, =gl'g’, and define 7, and o, by 7,(X) = FgX’Fg_',
o, (X) = Fg(X*])’Fg*'.

As before, V' is the natural FG-module and f is an alternating bilinear
form defining H. Two vectors v,w € V are called orthogonal if f(v,w) = 0.
Clearly, if v,w € V are orthogonal and & € H then hv, hw are orthogo-
nal. Let W be a subspace of V. We set W+ ={v € V: f(w,v) = 0 for all
w € W}. The space W is called non-degenerate if W N W*=0 and
degenerate otherwise. We say that W is isotropic of f| W = 0. A basis of I/
under which the matrix of f coincides with I is called a Witt basis of V. If
F is finite, choose 0 # y € F to be non-square. Fix a Witt basis and set
h = diag(y-1d,,1d,). Then h € H and H = Z*H{h). We set H, = H{h).
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LEMMA 7.1. Let dimV = 4 and let V =V, ® V, be a decomposition of
V as a direct sum of two-dimensional subspaces. Let A € GL(4,q) be a
non-central abelian subgroup_stabilizing both V', V,. Then there exists § €
SL(4, q) such that g~'Ag N H C Z except, possibly, when q = 3 and A is an
elementary 2-group.

Proof. Suppose the contrary. By replacing A4 by gdg™' with g€
SL(4, F) one can assume that both 1/, V, are non-degenerate and orthogo-
nal to each other. Assume that this is the case. Let B,, B, be bases in
V,,V,, respectively, and B = B, U B,. Under the basis B of V' let a =
diag(a, B) € A be a non-scalar matrix. Let

Id
S=( 2 1%

0 1d, e SL(4,F),

where w € M(2,q). Then a; = SaS™"' = (§ ;). If a, € H then a,V,
=V, as a;V; = V; and V,, V, are orthogonal. This only holds if u8 = apu.
Set A, =A|V, fori=121f A=Z-diag(£1d, + Id) then 4/(A N Z)
is of order 2 so the claim is trivial. Otherwise, by replacing V; and V, we
can assume that A4, is not scalar.

Choose u to be a nilpotent matrix such that ul; is not A,-invariant. If
A, is not scalar, choose p with the additional requirement that u'V, is not
A’-invariant (here ¢ stands for the transpose). This is always possible
unless ¢ =3 and A4 is an elementary 2-group. Indeed, the number of
one-dimensional subspaces in V; is g + 1 so there are at least ¢ — 1
subspaces in V| that are not A;-invariant. If W is one of them then
wVy =W and uV, =W for € M(2, F) if and only if u and ' are
proportional. Therefore, if w and w are not proportional then W = ul;
# W' = W' V,. Then also u' and w' are not proportional. Therefore, there
are at least g — 3 choices for u such that u®=0 and wl, is not
A,-invariant and 'V, is not A%-invariant. Hence the choice of u is always
possible if g > 3. If g = 3, the choice is possible if A, or 4, is not
diagonalizable. (Otherwise, A is an elementary 2-group.) If g = 2 then A4
is either a cyclic 2-group, or either A; or A, (or both) are irreducible.
Then the number of A,-invariant one-dimensional subspaces is at most 1,
and the same for A% provided A, is not trivial. As ¢ + 1 = 3 in this case,
we can still satisfy the requirement above.

Next, aulV, = uBV, C uV; = W; ie., W is invariant under «. As
dim V; = 2, there are at most two proper non-zero A4,-submodules in V. If
«a is not scalar, 4,W = W which contradicts the choice of u. Therefore, «
is scalar. Then @ is not scalar, as apw = ufB and a, is not scalar. So S,
hence A,t is not scalar. Now, as ufB = au and « is scalar, we have
BV, = au'V, = u'V,; ie., W'V, is B'invariant; then it is A,-invariant.
This contradicts the choice of w above. |
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LEMMA 7.2. Leth € H be a semisimple element with exactly two distinct
eigenvalues a, B. Let V,,V, denote the eigenspaces of a, B, respectively.
Then either V,,V, are isotropic and of equal dimensions, or V,,V, are
non-degenerate and a = — .

Proof. (a) Suppose that V,,V} are isotropic. As V, + V; =V, their
dimensions are dim V' /2.

(b) Suppose that (a) does not hold. Then we can assume that V, is
not isotropic. There exists A € F such that f(hu, hv) = Af(u, v) for some
A€ F and all u,v € V. There are u,v € V such that f(u,v) # 0. Then
fChu, hv) = )\f(u v) = a*f(u,v) whence a® = . If V, is not isotropic, we
similarly have B2 = A whence a = + 3, as desired. If V7 is isotropic, let
0+#u €V, ThenV, ¢ u* so there is v € V, such that f(u v) # 0. Then
fChu, o) = Af(u, U) = aBf(u,v) whence af = . As a®>= A, we have
a = B which is not the case. |

LeEmMA 7.3.  Let W C V be a subspace of dimension d > 2 and let U be a
complement of Win V.

(1) There exists x € SL(V') such that xW is degenerate and is not
isotropic.

(i) Suppose that d < dimV — 2. Then there exists x € SL(V') such
that x | W = 1d and xU is degenerate and is not isotropic.

Proof. (i) is obvious. To prove (ii) we can assume that W is degenerate
and is not isotropic. As W is degenerate, there are vectors w € W, u € U
with f(w,u) = 1.

Let w, = w,...,w, € W be a basis in W. To prove (2), suppose that U
is either non-degenerate or isotropic. First let U be non-degenerate so
dim U > 4. Complete u = u; to a hyperbolic basis of U, say, u,,...,u,
(where k = dimV —d) so f(u,,u,) = fluy, uy) -+ = flu,_,,u,) =1 and

the other inner products f(u,, u;) are zeros. Set U, = (uy, uy — w, us, ...,

u,y. Let x transform the basis wy,..., Wy, Uy, ..., U, tO Wy, ..., Wy, Uy, U,
— W, Us,...,u,. Clearly, x € SL(V) is as desired. Now suppose that U is
isotropic. As above, set U, = {u;,u, — w,u5,...,u, ) and pick x as above.

Then x is as desired. This implies (ii).

PROPOSITION 7.4. Let n > 4. Suppose that there exists an idempotent 0,
Id # e € R such that ae = ea for all a € A. Then there exists g € G' such
that g 'Ag N H C Z.

Proof. Set C = Cg(e), V;, =(Id — e)V and V, = eV. Let | = rank(e)
and k =n — . Then C = C, & C, where C;, = M(k, F) and C, = M(l, F).
Clearly, A C C. By replacing e by Id — e we can assume k <. As n > 4
we have [ > 2. By Lemma 7.3 there exists x € G’ such that xV, = xex™ 'V
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is neither non-degenerate nor isotropic. Besides, if k > 2, by Lemma 7.3
we can assume that xJ/; is non-degenerate and is not isotropic. By
replacing e by xex™' and A by xAx~' we can assume that V/,V, them-
selves have the above property. Set T = C N H, and let A;, T, denote the
projections of A, T, respectively, into C; for i = 1,2. Then T, preserves
the radical of V}, so 7; is reducible, and hence does not contain SL(V),
except for the case k < 2. Besides, if (/,q) = (4,2) then T, does not
contain a group isomorphic to A, (as it is irreducible in SL(4,2)). We are
in a position to use an induction assumption (namely, that Theorem 1.2 is

true for / < n), in order to conclude that
() there exists x € SL(/, F) such that x'4,x N T, € Z(GL(l, F))
and

if k& > 2 then there exists x; € SL(k, F)

(=) such that x;'4,x, N T, € Z(GL(k, F)).
Suppose that k > 2. By replacing A4 by g 'Ag with g = diag(x,, x) we can
assume that A4 N H C diag(Z(M(k, F)), Z(M(I, F))). This automatically
holds for k = 1. Then each &4 € A N H is semisimple and has at most two
distinct eigenvalues. By Lemma 7.2, this implies that # is scalar, as desired.
Suppose that k = 2. Then replacing 4 by g 'Ag with g = diag(Id, x)
we can assume that A N H C diag(M(2, F), Z(M(I, F))). Let W denote
the radical of V,. Then W # 0. Besides, V,/W is non-degenerate so
dim V, /W is even. As dim V/, = n — 2 is even, we conclude that dim W is
even; hence dimW > 2. As V, c W+ and dimW + dim W * = dim V, we
conclude that V, = W* and dimW = 2. As h|W is scalar, h|V/W *+=
h|V/V, is scalar. But V/V, and V, are isomorphic h-modules. Hence
A, € Z(M(2, F)). So Lemma 7.2 again gives a contradiction, unless # is
scalar. |

LEMMA 7.5. Let Y be a G'-invariant subgroup of H - {c}. Then Y C Z or
Y contains G'.

Proof.  Clearly, Y N H is G-invariant. As n > 2, the lemma follows
from 5.2 unless Y N H € Z. Observe that Y:(Y N H) < 2. Hence Y N H
c Z implies Y:(YNZ) <2. Then [G',Y], the group generated by
gg 'y ! with g € G', y € Y, belongs to Z. Then g — gyg 'y~ ! defines a
homomorphism G’ — Z which has to be trivial. Hence Y centralizes G'.
As C;(G') = Z, we are done. |

LEMMA 7.6. Let L be a cyclic Galois extension of Z such that L:Z is
even. Let L, C L be the unique subfield such that L,: Z = 2. Let K C L be a
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subfield of L such that K : Z is even. Then L, C K and if « is an automor-
phism of K trivial on Z then a(L,) = L.

Proof. Let I' = Gal(L/Z) and T', = C(K). Then T': T, is even. As T
is cyclic there is a unique subgroup I, of I' of index 2 so I’y c I},.
According to Galois theory, L, = C,(I',) € C,(I'})) = K. As « is trivial on
Z, it can be realized as an element of I'. Obviously, L, is invariant under
I'so a(Ly) =L, 1

LEMMA 7.7. Let L € R = M(n, F) be a subfield containing Z. If L N H
& Z then L:Z is even and L contains a unique subfield D such that
D:Z =2

Proof. Let x € L N H and x & Z. Then we have 7(x) = x~'A for some
A € F. It follows that 7 preserves the field X = (x). If 7| X = Id then
x?=Aso X:F =21f 7| X # Id then 7 is an involutory automorphism of
X. By Galois theory X : Z is even so L: Z is even. If A = Gal(L /Z) and
A, is the unique subgroup of A of index 2 then C;(A,) is the unique
quadratic extension of Z in L. |

LEMMA 7.8. Let R = M(n, F) with n even and let L C R be a subfield
that is a cyclic Galois extension of Z. Suppose that (n, q) # (2,2),(2,3). Then
there exists g € G' such that L N gHg™' C Z.

Proof.  Suppose the contrary. Then L N gHg ' ¢ Z for each g€ G'.
By Lemma 7.7 L : Z is even and contains a unique subfield D such that
D:7Z =2

Step 1. Suppose first that D=L so L:Z=2. As n> 2, L is re-
ducible (and completely reducible) in M(n, F); hence there is a non-trivial
idempotent e € M(n, F) that centralizes L. If n > 4, we are done by
Lemma 7.4. The case n = 4 follows from Lemma 7.1 if ¢ # 3. If ¢ =3
then the group L* is not an elementary abelian 2-group. Hence we are
again done by Lemma 7.1.

Step 2. Suppose that D # L. By minimality of L we have D N gHg ™!
c Z for some g€ G'. If x € L NgHg ' and x ¢ Z then by Lemma 7.7
X:Z is even where X = (x). By Lemma 7.6 D C X. As Tg(x) =x"A for
some A € F, we have 7,(X) = X so 7| X is an automorphism of X. Hence
7(D) =D and ¢,D*) = L*. Set N = Ng(D*). Then o, € N for any
g € G'. Let Y be the subgroup of N generated by o, for g € G'. Clearly,
Y does not contain G'. As g, = gog ! in S, the group Y is G'-invariant.
Then Y contains G'. This is a contradiction.

THEOREM 7.9. Let A C G be an abelian group with a cyclic unipotent
subgroup U(A). Then there exists g € G’ such that g~ 'Ag N H C Z.
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Proof. Let A =B X U(A) and set L = {(B). Then L is a semisimple
algebra. If L is not simple then L contains an idempotent satisfying the
requirement of 7.4 so the result follows by 7.8. Thus, we can assume that
U(A) # 1. Let u € U(A) be an element of order p. Set V, =V and
V=@ —1IdV,_, fori > 0.LetV, # 0,V,,, = 0. ThendimV — k # 1 as
LV, =V, and dim V, is a multiple of L : Z. By replacing A4 by a conjugate
we can assume that 1/, has a non-degenerate subspace of co-dimension
< 1. Then A N H CB. Indeed, if not then u € A N H. Let W be the
radical of V. Then W # 0,asif W= 0;thenV =V, @ V,* . Asu |V, = 1d,
we have V; c V,* forall i. But V, € V,*.

Therefore dimW = 1. Let b € B N H. Then bW = W as AV, =V, and
beANH. Butif b& Z then K = (b) is a subfield of dimension > 1
over Z and KW = W, which is impossible. It follows that BN H C Z. As
AN H cC B, we are done. |

Proof of Theorem 1.2. The theorem follows from the discussion above.
Indeed, by Proposition 3.1 and Theorem 3.4 it suffices to prove it for the
cases where M = K(G/B) and B is either a line stabilizer of the natural
module for GL(n, q) or one of the groups listed in Theorem 3.2. The case
where B is a line stabilizer is examined in Proposition 3.1. The case 3.2(vi)
is considered by Lemma 4.3, while the cases 3.2(iv) and 3.2(v) are treated
in Lemma 4.2. The case 3.2(iii) is exposed in Theorem 7.9. The cases 3.2()
and 3.2(ii) are done by Theorem 6.6.

Proof of Theorem 1.1. The theorem follows from Theorem 1.2.
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