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If G is a group, H a subgroup of G, and V a transitive G-set we ask under what
Ž < <.conditions one can guarantee that H has a regular orbit s of size H on V.

Ž . Ž .Here we prove that if PSL n, q : G : PGL n, q and H is cyclic then H has a
Ž .regular orbit in every non-trivial G-set with few exceptions . This result is

obtained via a mixture of group theoretical and ring theoretical methods: Let R be
the ring of all n = n matrices over the finite field F and let Z be the subring of
scalar matrices. We show that if A and M are proper subrings of R containing Z,

Ž .and if A is commutative and semisimple, then there exists an element x g SL n, F
y1 < <such that xAx l M s Z or n s 2 s F . Q 2000 Academic Press

1. INTRODUCTION

Let G be a group, H a subgroup of G, and V a transitive G-set. Under
Žwhat conditions can one guarantee that H has a regular orbit s of size

< <. Ž . Ž .H on V? In this paper we prove that if PSL n, q : G : PGL n, q and
ŽH is cyclic then H has a regular orbit in every non-trivial G-set with few

.exceptions . To avoid trivialities we say that a permutation presentation of
Ž .the group G = PSL n, q is trivial, and that the corresponding G-set is

Ž .trivial, if its kernel contains PSL n, q .

Ž . Ž .THEOREM 1.1. Let PSL n, q : G : PGL n, q and let H be a cyclic
subgroup of G. Then H has a regular orbit in e¨ery non-trï ial G-set V unless
one of the following holds:

Ž . Ž . �Ž . Ž .4a n, q g 2, 2 , 2, 3 , or
Ž . Ž . Ž . < < < <b n, q s 4, 2 , H s 15, and V s 8.
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The result is no longer valid for arbitrary abelian group H. Let p be a
w x w xprime such that p divides q. Lemma 3.9 in 15 and Proposition 1.6 of 14

Ž .say that if P is the stabilizer of a subspace of dimension i in G s PSL n, qi
Ž .and H s O P then H is abelian and H has no regular orbit on thei p i i i

Žcosets of P in G unless i q j s n. For j s 1, n ) 3 this is obvious asj
< < 2Ž ny1. n < < .H G q ) q y 1 G G : P .i 1

There is a related module theoretic problem: If K is a field, under what
conditions does the permutation KG-module KV restricted to H contain
a regular KH-submodule? For cyclic groups H these problems are equiva-
lent to each other for arbitrary G and K. If H is not cyclic, the second

Ž .problem is easier at least via our approach . We treat the second problem
under a more general setting assuming that H is abelian with cyclic Sylow
p-subgroup.

Ž . Ž . mTHEOREM 1.2. Let SL n, q : G : GL n, q where q s p for some m.
Let H be an abelian subgroup of G with cyclic Sylow p-subgroup. Let K be a

< <field of characteristic 0 or coprime to G and let M be a non-trï ial
� < 4permutation KG-module. Set H s HrH where H s h g H : h M s Id .0 0

Then M, ¨iewed as an H-module, contains a regular KH-submodule unless
one of the following holds:

Ž . Ž . �Ž . Ž .4a n, q g 2, 2 , 2, 3 or
Ž . Ž . Ž . < <b n, q s 4, 2 , H s 15 and dim M s 8.

We heavily use the machinery of ring theory. Formally, we could avoid
this by dealing with the group of units of a ring instead of the ring itself.
However, we see no reason to strive for group theoretical purity. We do
hope that some of the ring theoretical results obtained here might be
useful in other circumstances. The most essential result of ring theoretical
nature is the following:

Ž .THEOREM 1.3. Let R s M n, F and let Z be the subring of scalar
matrices. Let A, M be proper subrings of R containing Z with A being

Ž .commutatï e and semisimple. Then there exists an element x g SL n, F such
y1 Ž . < <that xAx l M s Z R unless n s 2 s F .

Ž . Ž .Let V be the standard vector space for GL n, q and PSL n, q : G :
Ž .PGL n, q . Let LL be the set of one-dimensional subspaces in V and let

K LL denote the respective permutation module. Our method is based on a
theorem saying that if H ; G is not transitive on LL then the permutation
module associated with the action of G on the cosets of H contains a
submodule isomorphic to K LL . This reduces the problem to analyzing the

Žcase where H is transitive on LL . Such subgroups H are known Huppert,
.Hering : with few exceptions H normalizes either the projective symplectic

Ž .group or the image in G of the group of units of a subring of M n, q
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Ž k . <isomorphic to M nrk, q with k n. We use ring theoretic machinery to
deal with this second case.

This shows that in order to extend Theorem 1.2 by replacing the abelian
group H by a more complicated group B one would first have to
guarantee the existence of the regular KB-submodule in K LL and then to
deal with two other cases. As much as we are aware, very little is known

Ž .about the action of subgroups of PGL n, q on the cosets of X ;
Ž . Ž k .PGL n, q when X is a quotient of SL nrk, q with k ) 1. The problem

Ž .of characterizing the groups H ; GL n, q which have a regular orbit on
LL is known to be very difficult. Some progress has been made when
Ž < < . w x w xH , q s 1 and q is large enough; see Liebeck 13 and Goodwill 4 . Our
notation necessarily varies a little as we progress but it is explained at the
beginnings of Sections 2, 3, 5, and 7 for each of those parts of the paper.

2. SOME GENERAL OBSERVATIONS ON
PERMUTATION MODULES

Here we collect the general facts about permutation actions and mod-
ules we shall use in this paper. First recall the usual notation. Let G be
some group and V a G-set. The image of v g V under g g G is denoted
by gv and if H : G then Hv is the orbit of v under H. The stabilizer of

� 4v in G is G and if G : V then gG [ gg : g g G . We assume through-v

out that all G-sets are finite. The number of G-orbits on V of given size k
Ž . Ž .is denoted by n G, k or just n G, k . If K is a field then KG is theV

group ring over K and KV denotes the natural KG-module with V as a
basis. We use KG also to indicate the regular module of G over K. If a
normal subgroup GU : G acts trivially on a submodule M then we often

Ž U .regard M as a K GrG -module.

2.1. Embedding Permutation Modules

Let D and V be two G sets. We are interested in conditions which
guarantee the existence of a KG-embedding KV ¨ KD. In general this is
not an easy task. However, when G is doubly transitive on V then this
problem presents itself as a simple alternative:

THEOREM 2.1. Suppose that G acts doubly transitï ely on V and also
< < Ž .transitï ely on D, where V G 2. Neither action needs to be faithful. Let K

be a field whose characteristic does not dï ide the order of G. Then one and
only one of the following occurs:

Ž .i There exists an injectï e KG-homomorphism w : KV ª KD.
Ž .ii For any v g V and d g D we ha¨e G s G ? G .v d
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Ž . Ž .We refer to i as the embedding case and to ii as the factorization case.
The condition G s G ? G means that G is transitive on V or, equiva-v d d

w xlently, that G is transitive on D. This theorem is from 3 and as its proofv

is very short we will repeat it here.

Ž .Proof. If ii holds then G has two orbits on V but only one orbit onv

D. However, an injective G-homomorphism w : KV ª KD would imply
that the multiplicity of the trivial KG -module in KV is no larger that thev

multiplicity of the trivial KG -module in KD. These multiplicities are thev

numbers of G -orbits on V and D, respectively, and so there can be nov

such embedding.
Fix some v g V and suppose that G has an orbit F / D on D. Definev

Ž .a KG-homomorphism w : KV ª KD by extending w v [ Ý d lin-d g F

early to all of KV. It remains to show that w is injective. As G is doubly
transitive KV s A [ B decomposes into the one-dimensional module

² : ² U U :A s Ý v and the irreducible module B s v y v : v, v g V .v g V

So there are only few possibilities for the kernel C of w : as w / 0 it
Ž .remains to show that C / A and C / B. Clearly, w Ý v is of thev g V

form x ? Ý d and a simple counting argument shows that x sd g D

< < < < < <y1 < <V F D . So x is a divisor of G and / 0 in F. This rules out C = A.
Ž . ² : Ž . Ž .As F / D we have w v f Ý d : w FV so that w KV is notd g D

1-dimensional. This rules out C = B and so w is injective.

2.2. Regular Decompositions

Here we analyze permutation modules in terms of regular modules. Let
G be a group, V a G-set, and K some field. We arrange the normal
subgroups of G as G \ G , G , . . . , G [ 1 in such a fashion that s ) tr ry1 1

< < < <implies G G G . Then let n be the multiplicity of the regulars r 1
Ž .K GrG -module in KV and let n KG \ R be the corresponding sub-1 1 1

Ž .module of KV. Next let n be the multiplicity of the regular K GrG2 2
module in KVrR and let R = R be the KG-submodule of KV for1 2 1

Ž .which R rR s n K GrG , etc. In this fashion we obtain the regular2 1 2 1
sequence R = R = ??? = R of KG-submodules corresponding tor ry1 1
G , . . . , G and we shall say that KV has a regular decomposition if there isr 1
an arrangement of the G for which the corresponding regular sequencei
ends in KV.

LEMMA 2.2. Let K be a field, G a group, and V a G-set. Suppose that GU

is normal in G with GrGU cyclic of order n and that KV contains the regular
Ž U . UK GrG module. Then G has an orbit V : V which is the union of n

orbits of GU , all of the same size.
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Proof. Let g g G be a generator of GrGU and suppose that w :
Ž U . UK GrG ¨ KV is a KG-embedding of the regular GrG module. Then
Ž U .w G can be written as

w GU s l A q l gA q ??? ql g ry1AŽ . 0 1 ry1

q m B q m gB q ??? qm Bg sy1
0 1 sy1

q ???

q n C q n gC q ??? qn g ty1C ,0 1 ty1

� U GU4where A [ Ý a g a , B, . . . , C denote sums of the points in suitable
GU-orbits, where further all g iA, g jB, . . . , g kC are pairwise distinct with all
coefficients l, m, . . . , n g K non-zero. Clearly s, t, . . . , u are divisors of n.

Ž sy1. Ž ry1 . ŽNote that 1 q g q ??? g ? l A q l gA q ??? ql g A s l0 1 ry1 0
G.ql q ??? ql ? A, where A is the sum of all points in a , and so this1 sy1

Ž sy1.Žexpression is G-invariant. Similarly 1 q g q ??? qg 1 q g q ??? q
ty1. Ž uy1. Ž U . Ž sy1.Žg ??? 1 q g q ??? qg ? w G and hence 1 q g q ??? qg 1 q g

ty1. Ž uy1. Ž U .q ??? qg ??? 1 q g q ??? qg ? G are G-invariant. However, up
Ž ny1. Uto a scalar multiple 1 q g q ??? qg ? G is the only such element in

Ž U . Ž sy1.Ž ty1. ŽK GrG . Therefore 1 q g q ??? qg 1 q g q ??? qg ??? 1 q g q
uy1. Ž U . Ž ny1. U??? qg ? G s l 1 q g q ??? qg ? G for some l g K. From this

n Ž s .Ž t . Ž uwe conclude that the polynomial x y 1 divides x y 1 x y 1 ??? x y
.1 and so a primitive nth root of unity in a suitable extension field is

� 4among the roots of order s, t, . . . , u. Thus n g s, t, . . . , u which completes
the proof.

THEOREM 2.3. Let K be a field, G a cyclic group, and V a G-set. Then
KV has a regular decomposition. In particular, if KV s R = R = ??? =r ry1
R is any regular decomposition, with multiplicities n , . . . , n , then n s1 1 r i

Ž . < <n G, k is the number of orbits of length k [ G : G and R sV i i i iq1
Ž . Ž .n G, k ? K GrG q R for 1 F i F r y 1.V iq1 i i

Proof. Let G \ G , G , . . . , G [ 1 be arranged in such a way thatr ry1 1
< < < < Ž .s ) t implies G G G . If G has just one orbit on V then KV s K GrGs t 1

and the result holds. So suppose that there are several orbits and let
< <V , V , . . . , V be all the orbits of maximal size m - V . Let s be the1 2 n

< <least index for which G : G s m. We claim that R s R s ??? s Rs 1 2 sy1
Ž .s 0. For if K GrG with 1 F j - s was involved in KV then by Lemmaj

< <2.2 G would have to have an orbit whose size is a multiple of G : G , aj
contradiction.

Among the groups G , . . . , G of index m we find the stabilizer G ofs t a

a g V j V j ??? j V . As GrG ( GrG for any s F u F t we see1 2 n a u
Ž .that R s n K GrG where n G n, accounting for the n orbits of lengths s s s

m. Put VU s V_D V so that KV s KV q ??? qKV q KVU. Usingi i 1 n
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Ž .Lemma 2.2 again we see that the regular K GrG -module is not involveds
in KVU and this implies that n F n. Clearly, also n s ??? s n s 0s sq1 t
and the result now follows by induction.

We note two immediate corollaries. The second one is the version of
this theorem which is most relevant for this paper.

Ž w x.COROLLARY 2.4 Brauer’s permutation lemma 2 . Two permutations
ha¨e isomorphic permutation modules if and only if they ha¨e the same cycle
type.

COROLLARY 2.5. If G is cyclic and acts faithfully on V then the multiplic-
ity of the regular KG-module in KV is equal to the number of regular orbits of
G on V.

Combining the results on regular modules with the theorem on embed-
dings in the preceding sections yields the following:

THEOREM 2.6. Suppose that G acts doubly transitï ely on V. Let B , . . . ,1
B : G be representatï es of all those conjugacy classes of subgroups whichm
act transitï ely on V. For i s 1, . . . , m denote the cosets of B in G by D andi i
let H be a subgroup of G.

Ž .i Suppose that H is cyclic. If H has at least k regular orbits on each
D with i s 1, . . . , m and on V then H has at least k regular orbits on anyi
G-set.

Ž .ii Let K be a field whose characteristic does not dï ide the order of G.
< <Suppose that KD , for each i s 1, . . . , m, and KV ha¨e a submoduleH Hi

isomorphic to a direct sum of m copies of the regular KH-submodule. Then for
<any G-set L the restriction KL contains a submodule isomorphic to a directH

sum of m copies of the regular KH-submodule.

Ž . < <Proof. For i select any field whose characteristic is co-prime to G .
Ž .Then apply Theorem 2.1 and Corollary 2.5. Similarly, part ii follows from

Theorems 2.1 and 2.3.

Ž .3. THE NATURAL ACTION OF PGL n, q

In order to apply the ideas arrived at in the last section we need some
preliminary information about the natural action of the projective general
linear groups. So let V be the n-dimensional vector space underlying

Ž .GL n, q and let LL denote the set of all one-dimensional subspaces of V.
Ž . Ž .The center of GL n, q is denoted by Z and the group PGL n, q s
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Ž .GL n, q rZ acts on LL . This action is doubly transitive on LL and LL is
Ž . Ž .called the natural PGL n, q -set. Observe that also the action of PSL n, q

on LL is doubly transitive.

3.1. Regular Orbits of Abelian Subgroups in the Natural Action

a Ž .PROPOSITION 3.1. Let q s p . Let H be an abelian subgroup of PGL n, q
with cyclic Sylow p-subgroup. Then H has a regular orbit on LL .

Proof. Let H s B = U where U is the Sylow p-subgroup of H. Ob-
serve first that the claim is true if H is irreducible. Indeed, in this case

U ² :H s B is contained in K where K s H is a field by Schur’s lemma;
< < < < U Uclearly, K¨ s K for each 0 / ¨ g V so K rZ has a regular orbit on

the one-dimensional subspaces of V. Next suppose that H is indecompos-
² :able. Put K s B . Then K is a field for otherwise K has a non-trivial

Ž .idempotent e so H preserves both eV and e y Id V. View V as a vector
Ž .space V over K. Then U is contained in GL V as U and K elementwiseK K

commute. As U is cyclic, it has a regular orbit on the one-dimensional
subspaces of V , equivalently, on irreducible K-submodules in V. LetK

� 4W / 0 be an irreducible K-submodule such that the orbit uW is ofugU
< < < <length U . Let 0 / w g W. Then Bw contains B elements and all of

them are in W. As for u, uX g U the spaces uW and uXW have no nonzero
element in common; the orbit UBw is regular. Moreover, if B s B l ZZ

< <then the number of one-dimensional subspaces in Bw is BrB . There-Z
Ž .fore Hr H l Z has a regular orbit on the one-dimensional subspaces of

V. Finally, assume that V s V [ V where V , V are H-modules. Set1 2 1 2
H s H ¬ V for i s 1, 2. By induction, there are vectors ¨ g V such thati i i i
< < < < ² : < Ž . <H ¨ s H and the orbit H ¨ is of size H r Z l H where Z is thei i i i i i i i i

Ž .set of scalar matrices in End V . Then the H-orbit of ¨ s ¨ q ¨ has sizei 1 2
< < < Ž . <H . In order to show that the H-orbit of the line Z¨ is of size Hr H l Z
just observe that a¨ g Z¨ if and only if a g Z. Indeed, if a¨ s z¨ for
z g Z then a¨ s z¨ for i s 1, 2. By the above, a ¬ V is scalar, say, z .i i i i
Then a¨ s z ¨ s z¨ ; hence z s z.i i i i i

Ž .3.2. Embedding the Natural PGL n, q Permutation Module

Ž .Now suppose that PGL n, q acts on some set D and that K is a field
< Ž . <whose characteristic does not divide PGL n, q . We are interested in

embeddings w : K LL ª KD and so we investigate the factorizations of the
w xprojective linear group. These have been determined by Hering 5 ; see

w xalso 12 .

Ž . Ž .THEOREM 3.2. Let SL n, q : G : GL n, q be a subgroup and let B be
� 4a maximal subgroup of G which is transitï e on V _ 0 and does not contain
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Ž .SL n, q . Then B is conjugate to one of the following groups:

Ž . Ž U . < <i N L where L is a subfield of R containing Z with L : Z s n,G

Ž . Ž Ž l..ii N SL nrl, q where l is a prime dï iding n,G

Ž . Ž Ž .. Ž .iii N Sp n, q s HSp n, q for n ) 2 e¨en,G

Ž . Ž .iv N Q for n s 2 and q s 5, 7, 23,G 8

Ž . Ž Ž ..v N SL 2, 5 for n s 2 and q s 9, 11, 19, 29, 59, andG

Ž . Ž . Ž .vi A for n, q s 4, 2 .7

Ž . Ž .Remark. The transitive group N D (Q for G s SL 4, 3 given inG 8 8
w x Ž . Ž . Ž l.12 is contained in HSp 4, 3 . In ii SL nrl, q is understood to be the

Ž .limage of the embedding induced by an embedding of F into M l, q .q

The following is therefore immediate from Theorem 2.1:

Ž .THEOREM 3.3. Let G s PSL n, q act naturally on the points LL of
projectï e space and let D be some transitï e primitï e G-set. Suppose that K is

< <a field whose characteristic does not dï ide G . Then exactly one of the
following holds:

Ž .i there exists an injectï e G-homomorphism KV ª KD, or
Ž . Ž .ii there is some d g D such that the pre-image of G in SL n, q isd

Žconjugate to one of the subgroups listed in Theorem 3.2. G stands for thed

.stabilizer of d g D in G.

Together with Corollary 2.5 and Proposition 3.1 this yields the main
result in the embedding case:

Ž .THEOREM 3.4. Let g g G s PGL n, q and let K LL s R = R = ???r ry1
² := R be a regular decomposition for g when K is a field whose characteris-1

< Ž . <tic does not dï ide PGL n, q . Suppose that D is some G-set and that G ,d

for some d g D, is not conjugate to any of the groups H in Theorem 3.2. Then
< ² :KD has K g -submodules isomorphic to R for i s 1, . . . , r. In particu-² g: i

Ž < <.lar, g has at least n g, g G 1 regular orbits on D.LL

4. COUNTING REGULAR ORBITS AND THE BASE
OF INDUCTION

Let B, H ; G be finite groups. First we derive an upper bound for the
order of G in terms of B and H if H acts on the cosets of B without a
regular orbit. This bound is very rough but sometimes useful.

Ž .Let T be a subgroup contained in H l B. Let r T , B denote the
Ž .number of G-conjugates of B that contain T , and let n T , B be the
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number of the subgroups in B that are G-conjugate to T. Consider the set

X s gTgy1 , hBhy1 : g , h g G and gTgy1 : hBhy1 .� 4Ž .
< Ž . <Then there are G : N T conjugates of T and each is contained inG

Ž . < < < Ž . < Ž .r T , B conjugates of B. Therefore X s G : N T ? r T , B . On theG
< Ž . < Ž .other hand, there are G : N B conjugates of B, each containing n T , BG

< < < Ž . < Ž .conjugates of T. So X s G : N B ? n T , B and henceG

N TŽ .G
r T , B s ? n T , B .Ž . Ž .

N BŽ .G

THEOREM 4.1. Suppose that G is a finite group with subgroups B and H
such that H has no regular orbit on the cosets of B in G. Let S , . . . , S be1 m
representatï es of all conjugacy classes of subgroups of prime order contained
in B l H. Then

m

< <G F N S ? n S , B ? n S , H .Ž . Ž . Ž .Ý G i i i
is1

Ž . y1Proof. By assumption we have: ) ;g g G the intersection H l gBg
is non-trivial. Let S , . . . , S be representatives of all conjugacy classes of1 m
subgroups of prime order contained in B l H. If H intersects a conjugate
of B then this intersection contains a conjugate T of some S and therei

Ž . Ž .will be r T , B s r S , B conjugates of B containing T. Therefore Hi
m Ž . Ž .intersects non-trivially at most Ý r S , B ? n S , H conjugates of B andis1 i i

m Ž . Ž . < Ž . < Ž .so Ý r S , B ? n S , H G G : N B if ) holds. From the expressionis1 i i G
Ž .for r S , B one obtains the required inequality.i

Ž . Ž . < <EXAMPLES. 1 If B is cyclic then n S , B s 1 so that G Fi
m Ž . Ž .Ý N S ? n S , H .is1 G i i

Ž .2 Suppose that any two conjugates T , T : H of S are conjugate1 2 i
Ž . < Ž . < < < m < Ž . Ž . <in H. Then n S , H s H : N S and so G : H F Ý N S rN S .i H i is1 G i H i

Ž . Ž .Now we turn to the proof of Theorem 1.1 when n, q s 2, q for
Ž . Ž .arbitrary q and n, q s 4, 2 . This will serve as a basis for induction

later on.

Ž . Ž .LEMMA 4.2. Let PSL 2, q : G : PGL 2, q with 3 - q and let B ; G
Ž .with B W PSL 2, q . If H is an abelian subgroup of G then there is some

g g G for which B l H g s 1.

Proof. Suppose that B intersects every conjugate of H non-trivially.
We may assume that H s S = S = ??? = S where the S are simple1 2 m i
cyclic. We may also assume that each S has a conjugate contained in Bi
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and that m G 2 for otherwise B is contained the normal subgroup gener-
ated by the conjugates of H. First assume that the intersections between B

Ž .and the conjugates of H are always contained in PSL 2, q so that we may
Ž . w xas well assume B, H : PSL 2, q . It follows from Theorem 8.27 in 6 that

Ž . Ž .H is one of the following: i C = C , ii cyclic of order dividing2 2
Ž . Ž . Ž . Žq " 1 rk where k s q y 1, 2 and N H is dihedral of order 2 q "G
. Ž .1 rk, or iii elementary abelian of order dividing q. Each of these cases

can be ruled out by elementary arguments and the use of Theorem 4.1. In
the remaining case assume that B meets some conjugate H g such that

g ² : g Ž .H l B [ h / 1 but H l B l PSL 2, q s 1. Then H is contained in
the centralizer of the involution h and this can be ruled out in the same
fashion.

Ž . Ž . < <LEMMA 4.3. Let G s Alt 8 ( SL 4, 2 and B ; G with 8 - G : B . If
H is an abelian subgroup of G then there is some g g G with B l H g s 1.

Proof. Suppose that B intersects every conjugate of H non-trivially.
< <Then H has at least two different prime divisors and clearly 7 cannot
< < < <divide H . If 5 divides H then H ( C = C as C is irreducible in3 5 5

Ž . gSL 4, 2 . Hence B l H is of order 3, 5 or 15. Then B contains elements
Ž .of order 3 and 5, and for every partition of type 5, 3 of the eight points

there would be a 3-cycle or a 5-cycle in B preserving the two sets of the
partition. It follows that B has an orbit of length 7 or 8 and from this that

Ž . Ž .B ( Alt 7 or B ( Alt 8 .

5. INTERSECTIONS OF SUBALGEBRAS

We now begin with the ring theoretical discussion. The notation is as
X Ž .follows. If B is a group then B is the derived subgroup of B and Z B is

the center of B. If X is a ring with identity then X U is the group of units
Ž . Ž .s invertible elements of X and Z X is the center of X. We often write

X UX Ž .X instead of X . The algebra of n = n -matrices over a field F is
Ž . Ž . Ž Ž ..denoted by M n, F . We set R s M n, F and Z s Z M n, F . Let

Žn. U Ž .V s F be the natural R-module. We set G s R s GL n, F . Observe
that X is an F-subalgebra of R containing the identity of R if and only if

² :X contains Z. If S is a subset of R then S denotes the least F-algebra
Ž . ² :s Z-algebra containing S. If S, T : R are subsets we write S, T

² :instead of S j T . The field of q elements is denoted by F . We writeq
Ž . Ž . Ž . Ž .M n, q and GL n, q instead of M n, F and GL n, F , respectively.q q
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Ž .THEOREM 5.1. 1 Let S be a simple subring of R containing Z. Then the
following hold:

Ž .i If a is an automorphism of S trï ial on Z then there exists g g G
Ž . y1 w xsuch that a s s gsg for all s g S 16, Sect. 12.6 .

Ž . Ž . Ž .ii Let C s C S . Then C is simple, S s C C , andR R
Ž .Ž . 2 w xS : Z C : Z s n 16, Sect. 12.7 .

Ž . Ž .iii If S is a field and k s S : Z then C ( M nrk, S . Furthermore,
C is irreducible and if S : Z is a prime then C is a maximal subring of R.

Ž .iv Isomorphic simple subrings of R containing Z are conjugate in R
w x16 .

Ž .2 Let T be a semisimple subring of R such that Z ; T , and L s
Ž . Ž . Ž . Ž .C T . Then L is semisimple, C L s T , Z T s Z L . Further, L isR R

simple if and only if T is simple.

Ž . Ž .3 If K is a maximal simple subring R such that Z : K then Z K : Z
is a prime.

Ž . Ž .Proof. 1 iii : Obviously V is a vector space over S of dimension nrk
Ž . Ž .and C is exactly Hom V, V ( M nrk, S . Each finitely generated mod-S

Ž .ule over M nrk, S is a direct sum of simple ones. If V is not irreducible
Ž .as an C-module then S s Hom V, V contains a non-trivial idempotentC

which is not the case.

Ž .2 Let T s S [ ??? [ S where S , . . . , S are simple. Let e g S1 k 1 k i i
be central idempotents of S . Let V s e V and n s dim V . Then thei i i i i

� 4 Ž . Ž .centralizer of the set e , . . . , e in R is M n , F [ ??? [ M n , F and1 k 1 k
Ž .S g M n , F is a simple subring. Therefore L s L [ ??? [ L where Li i 1 k i

Ž . Ž . Ž .is the centralizer of S in M n , F . So the result follows from 1 ii .i i

Ž . Ž .3 Clearly, K is irreducible so C s C K is a field. Hence C sR
Ž .Z K . If C : Z is not a prime then C contains a proper subfield C1

Ž . Ž . Ž .containing Z and C C / k by 1 ii .R 1

Ž . Ž .THEOREM 5.2 see 2a . Let H be a non-central subgroup of GL n, F
X Ž < <. Ž . Ž .in¨ariant under G . Suppose that n, F / 2, 2 , 2, 3 . Then H contains

Ž .SL n, F .

Ž .COROLLARY 5.3. Let T s [T where T ( M n , F and F are fields ofi i i i i
the same characteristic. Let f : T ª T be the natural projection. Let H be ai i
subgroup of TU in¨ariant under T X. Suppose that H contains an element h of

Ž . Ž .order p. Then H contains a subgroup H such that f X s SL n , F fori i i
Ž . Ž .those i for which h f ker f and f X s Id for all other i.i i
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w xThe following lemma is a very particular case of a result in 1 .

LEMMA 5.4. Let S be a proper subring of R. Suppose that gy1Sg s S for
X Ž < <. Ž .all g g G . Then either S ; Z, or n, F s 2, 2 and S is the field of four

elements.

Ž . Ž < <. �Ž . Ž .4Proof sketch . If n, F g 2, 2 , 2, 3 then the lemma can be veri-
Ž < <. Ž . Ž .fied directly. Suppose that n, F / 2, 2 , 2, 3 . Observe that S l G 

Ž . < <Z G unless F s 2 and S is a direct sum of the fields of two elements. In
the first case SU contains GX by Theorem 5.2. It is well known that for
Ž < <. Ž . X ² X:n, F / 2, 2 the group G is absolutely irreducible. Therefore G s
Ž . Ž .M n, F and so S s M n, F . This is a contradiction. Let S be a direct

sum of k copies of the field of two elements. Then n G k ) 1 and hence
GX permutes these k summands. It follows that GX has a normal subgroup
L such that GXrL is isomorphic to a subgroup of Sym , the symmetrick

Ž .group of degree k. It follows from Theorem 5.2 that L : Z G . This is
< Ž . <impossible as PSL n, F ) k! for n G k.

COROLLARY 5.5. Let L / Z be a minimal subring of R containing Z.
y1 X Ž < <. Ž .Then g Lg l M : Z for some g g G , unless n, F s 2, 2 and M s L

( F .4

Proof. Let g g GX. If gy1Lg l M o Z then gy1Lg : M by minimality
of L. If this is true for all g g GX then L ; Y s F X gMgy1 / Z. Byg g G

Ž < <. Ž . y1 XLemma 5.4 n, F s 2, 2 and L ( F as Y s gYg for all g g G . In4
the exceptional case the claim is obvious.

LEMMA 5.6. Let A ; R be a semisimple commutatï e F-algebra and let D
be any maximal proper F-subalgebra of A. If Z ( F and A contains a proper2
subfield L such that Z ; L ( F suppose additionally that D contains L. Let4
A s A [ ??? [ A and D s D [ ??? [ D , where A , . . . , A and D , . . . ,1 l 1 k 1 l 1
D are fields. Then k F l F k q 1 and the summands A , D can be reorderedk i j
such that D s A for i s 1, . . . , k y 1.i i

Proof. Obviously, k F l and after reordering the A ’s one can assumei
that D ; A [ ??? [ A , D ; A [ ??? [ A , . . . , D ; A [ ???1 1 i 2 i q1 i k i q11 1 2 ky1

[A . As D is maximal, after reordering the D ’s and A ’s we havei i ik

D s A , . . . , D s A , D ; A [ ??? [ A . Moreover, it follows from1 1 ky1 ky1 k k l
the maximality of D that the last sum should contain at most two
summands, i.e., k s l or l s k q 1. If k s l then D ; A is a fieldk k

Žextension. If l s k q 1 then A ( A ( D as Z ; D the identity ofk kq1 k
.A q A is contained in D .k kq1 k

Proof of Theorem 1.3. Suppose the contrary. Take for R a minimal
counterexample; i.e., we assume that the theorem holds for m - n. Fur-
ther, as every F-subalgebra of A is semisimple, we assume that A is a
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minimal counterexample, in the sense that for any proper F-subalgebra B
Ž .of A the theorem holds; i.e., there exists an element x g SL n, F such

that xBxy1 l M : Z.
< <The cases n s 1 and n s F s 2 are obvious. Thus we assume in what
< <follows that n ) 1, and that F ) 2 when n s 2.

Let A s A [ ??? [ A where A , . . . , A are fields. Let D be a maximal1 l 1 l
proper subring of A containing Z. If D s Z then the theorem follows
from Corollary 5.5. So we shall assume that D / Z. If Z ( F and A2
contains a proper subfield L with Z ; L ( F then by Corollary 5.54
A / L and we can assume that D is chosen to contain L. Let D s D1
[ ??? [ D where D , . . . , D are fields. By Lemma 5.6 k F l F k q 1 andk 1 k
we can assume that D s A , . . . , D s A , and D ; A [ ??? [ A .1 1 ky1 ky1 k k l
If k s l then D : A is a field extension. If l s k q 1 then A ( Ak k k kq1

Ž .( D . If A is minimal we can assume that D l M : Z. Let C s C D .k R
Ž . Ž .Then D s Z C by 5.1 ii so C is a direct sum of exactly k simple

components C s C , . . . , C . By reordering the C ’s we can assume that1 k i
Ž . Ž .D s Z C for i s 1, . . . , k. Let e denote the identity of D and C . Byi i i i i

the above, C contains A . If l s k q 1 then C contains A q A . Setk k k k kq1
C s D [ ??? [ D [ C . Then A ; C , and C is not commutative as0 1 ky1 k 0 0
Ž .Z C s D / A. For x g C let x s e q e q ??? qe q x . Then x isk k 1 2 ky1 k k

Ž .invertible if and only if x is. Observe that C ( M m, D for somek k
1 - m - n by Theorem 5.1. Let s denote the projection C ª C , so0 k
Ž .s x s x .k

Ž .Set M s M l C , M s s M . Observe first that M ( M as0 0 s 0 s 0
Ž .Ker s s D [ ??? [ D and D l M : Z. Observe next that M /1 ky1 s

Ž . Ž . Ž .s C . Indeed, if M s s C ( C then M ( C ( M m, D ; hencek s k k 0 k k
Ž .M s C as the projections of M to C should be zeros . Then M0 k 0 i

contains D . This is a contradiction as D l M : Z.k
Ž . Ž .Thus M / s C . As m - n, the theorem is true for s C so eithers k k

X Ž . y1 Ž . Ž .there exists x g C s SL m, D such that x s A x l M : s D sk k k k k s k
< < Ž .D or m s 2 s D and s A ( F . In the former case set x s e q ek k 4 1 2

q ??? qe q x . Then xy1Ax l M : M l D : Z, as desired. Let m s 2ky1 k
< < Ž .s D . Then F s F and M ( s A ( F , l s k, so D contains nok 2 s 4

subfield L such that Id g L ( F . As M ( M , we have M ( F . Let s4 0 s 0 4 i
with i - k be the natural homomorphism of C onto D , i - k. Then0 i
Ž . � 4 Ž . � 4s M / 0 as M contains Id. Clearly, ker s l M s 0 as M is ai 0 0 i 0 0

Ž .field. Hence s M ( F . Therefore, D contains a subfield isomorphic toi 0 4 i
F for every i - k. It follows that A contains a subfield isomorphic to F .4 4
This contradicts the assumption about D above.

Ž .LEMMA 5.7. Let p s char F and let A ; G be a finite abelian group.
Let X be a subring of R such that Z ; X. Suppose that the Sylow p-subgroup
A of A is cyclic. Then there is g g GX such that gy1Ag l X ; Z.p
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² :Proof. Let A s A = A . Set K s A . Then K is a semisimple ring1 p 1
by Maschke’s theorem. It suffices to prove the lemma when A s KU as1
this group contains no p-element. Thus assume that A s KU. If A s 11 p
the result follows from Theorem 1.3. Let A / 1 and let A denote thep 0

Ž .subgroup of A of order p. Set C s C K . Write C s C [ ??? [ Cp R 1 m
where each C for i s 1, . . . , m is a simple ring. Let s : C ª C be thei i i

Ž .natural projection. By reordering the C ’s we can assume that s A / 1i i p
Ž .for i s 1, . . . , l and s A s 1 for i ) l. Obviously, C is not commutativei p i

for i F l.
ŽU .By Theorem 1.3 we can assume that K l X s Z. Set X s X l C0

and X 0 s F X cX cy1. If A l X 0 : Z then we are one. Suppose thatC cg C 0 C
0 0 Ž .A l X  Z, and let a g A l X and a f Z. By ) a is not semisimpleC C

so some power of a is a non-trivial element of A . Hence A ; X 0. We0 0 C
show that this is impossible.

Let e g C be the central idempotent of C . As C g C, the elementi i i i
X X Ž .c s e q ??? qe q c q e q ??? qe g C for each c g C and s c1 iy1 i iq1 m i i i

s c . For x g X 0 let x s x q ??? qx with x g C . Then cxcy1 y Id si C 1 m i i

c x c y ey1 so c x c y e g C l X 0. Observe that C l X 0 is not ini i i i i i i i i C i C
Ž .Z C for i F l. Indeed, let 1 / a g A . Then for x s a the elementi 0
Ž . Ž . Xs x s x is of order p so c x c y e f Z C for some c g C . Soi i i i i i i i i

C l X 0 is non-central CX-invariant subring of C . By Lemma 5.4 C l X 0
i C i i i C

Ž . 0s C , except, possibly, in the case C s M 2, F when C l X is isomor-i i 2 i C
Ž . 0 ŽU .phic to F . In both the cases Z C : X : X which contradicts , unless2 i C

Ž . 0 Xm s 1, Z C s Z. Then C s R, X s X, and X is a G -invariant sub-i 0 C
0 Ž .ring of R. By Lemma 5.4 either X s R or R s M 2, F . The first case isC 2

0 Ž .impossible as X s X / R. The second case R s M 2, F is straight-C 2
foward.

6. SUBRING NORMALIZERS

Notation. In this section F s F . We first prove the following theorem.q

< <THEOREM 6.1. Let F s q. Let A be a commutatï e semisimple subring
Ž .of R s M n, F and let M be a proper subring of R, both containing Z. Set
Ž U . X y1

UN s N M . Then there exists an element x g G with xAx l N : Z sR
Ž . < <Z R unless n s 2 s F .

Ž .lWe set F [ F . For l ¬ n there is an embedding of F into M l, F vial q l
Žthe regular representation of F over F i.e., we consider F as a vectorl l

space over F of dimension l and the action of F on F by left multiplica-l l
Ž ..tion defines the regular representation of r : F ª M l, F . Furthermore,l l

Ž .for l ¬ n we define a subalgebra R of R obtained from M nrl, F byl l
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Ž .means of replacing the matrix entries t of t g M nrl, F by the elementsjk l
Ž .r t .l jk

Thus if l ¬ n then R is a simple F-subalgebra of R containing thel
identity of R. Hence R contains Z. Let Z be the center of R , sol l l
Z ( F , and Z : Z s l. Observe that Z is a subfield of R containing Z.l l l l

Ž . Ž . UBy Theorem 5.1 2 we have R s C Z . We set G s R so that G isl R l l l l
Ž . U Ž . Ž .isomorphic to GL nrl, F and G s R s GL n, F . Clearly, G s C Z .l l G l

Ž . Ž . X Ž .If n, q / 2, 2 then G ( SL nrl, F .l l
�Let N denote the normalizer of G in G. Observe that N s g gl l l

y1 4 ² : y1G : gxg g R for all x g R as G s R . Obviously, gZ g s Z forl l i i l l
g g N . It follows that N rG is isomorphic to the Galois group of Z rZ.l l l l

< <In particular, N rG is cyclic of order l.l l

LEMMA 6.2. Let l be a prime dï isor of n and let x g N _ R . Letl l
y s Ýly1 l x i where l g R . If y g R then y g Z .is0 i i l l l

Ž . � � 4 4Proof. Set J y s i g 0, . . . , l y 1 : l / 0 . Suppose the contrary andi
< Ž . < Ž . � 4choose y with minimal J y . If J y s 0 we are done. Suppose that

Ž . � 4 k yk Ž i yi k yk . iJ y / 0 . If z g Z then yz y x z x y s Ý l xz x y x z x xl k / ig JŽ y . i

Ž . i yi k yk Ž .g R . By minimality of J y we have xz x s x z x for i g J y , i / k.l
This is equivalent to z s x iykz x ky i for all z g Z . This is impossible as xl
realizes a Galois automorphism of Z rZ.l

LEMMA 6.3. Let l, n be prime dï isors of n and let K, L be subfields of R
Ž . Ž .containing Z such that K : Z s n and L : Z s l. Let N s N L s N MG G

Ž . y1 Xwhere M s C L . Then gKg l N s Z for some g g G .G

Proof. Observe that N : MU s l by a Galois argument. By Corollary
5.5 there is g g GX such that gKgy1 l M : Z. Set L s gZ gy1. Supposel
that L l N / Z. Then N l L contains an element x f M such that

l ² : Xx g M. Then x s L as L : Z is prime. Obviously there exists h g G
y1 ² y1:such that hxh f N. Set K s hxh . Then K is a field and K : Z s l.1 1 1

Ž .It follows that K l M : Z otherwise, K : M and x g M ; N . We1 1
show that K l N : Z. Otherwise, let y g K l M and y f Z. Then1 1
yX g K l M : Z. As K is finite, the group KUrZU is cyclic and hence1 1 1

Ž y1 . icontains a unique subgroup of order l. Therefore y s hxh z where
Ž .z g Z, i g N, and i, p s 1. As y g N, we have x g N which is a

contradiction.

Ž .LEMMA 6.4. Let F ; P be finite fields, S s M k, P with k ) 1 and
Ž . ² Ž .:D s Z S . Let T be a proper F-subalgebra of S such that T , Z S s S. Let

N be the normalizer of T in G.

Ž . Ž .i For x g P set d s diag 1, . . . , 1, x . There exists a subfield Q of Px
y1 Ž . y1and elements a g S and x g P such that aTa s d M k, Q d .x x
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Ž . U Ž .Uii N s T Z S .
Ž .iii Let e g S be an idempotent such that 0 / e / 1, and K s

² Ž . : X y1 Ž .Z S , e . Then there exists g g S such that gKg l N ; Z S .
Ž .iv Let L be a subfield of S containing D. Then L l T : Z implies

that L l N : Z.

Ž .Proof. i Obviously, T should be simple, so by Wedderburn’s theorem
Ž . ² Ž .:T ( M l, Q where QrF is a field extension. Then S s T , Z S (

Ž . Ž .M l, Q m P ( M l, Q m P . This implies k s l and Q ; P. Obviously,
Ž . y1 Ž . Ž y1 .there exists c g GL k, P such that cTc s M k, Q . Let x s det c .

Then a s d c g SX and we are done.x

Ž . Ž . Ž . Ž .ii follows from 5.1 i and i above. Indeed, it suffices to prove ii
Ž . y1 Ž .for T s M k, Q . Let x g N. Then the automorphism t ¬ xtx t g T

Ž . Ž .of T is inner 5.1 and so x s yc where y g T and c g C T . However,G
Ž . Ž . Ž .C T s Z S so c g Z S , as desired.G

Ž . xŽ . Ž . y1 Ž .iii Set M k, Q s d M k, Q d . By i we can assume that T sx x
xŽ .M k, Q for some x g P. Then the entires of matrices of T are in Q,

Ž .except in positions i, j with i s n, j / n and i / n, j s n where the
y1 Ž .entries belong to the set xQ and x Q, respectively. Let k s rank e .
y1 Ž .Then there exist h g S such that heh s e s diag 1, . . . , 1, 0, . . . , 0 . Let0

Ž y1 . X y1u s det h . Then g s d h g S . As k - n, we have geg s e . Henceu 0
we can assume that e s e . Pick y g P, y f xQ and set a s Id q ye0 1k
Ž Ž .here e denotes the matrix with 1 positioned at 1, k and zeros else-1k

. Ž . X y1where . Then det a s 1 so a g S . Set e s aea s e q ye . Hence we1 0 1k
Ž .can assume that e s e q ye . Next let b g K l N, b f Z S . Then0 1k

Ž . Žb s p q p e for some p , p g P, p / 0 / p so that b s diag p q1 2 1 2 1 2 1

. U y1 U y1p , . . . , p q p , p , . . . , p q yp e . As bT b s T , we have bTb s2 1 2 1 1 2 1k
Ž . Ž .T. Then b induces an automorphism b of T trivial on Z T as Z T1

consists of scalar matrices. Therefore, b is inner; i.e., btby1 s ctcy1 for1
U y1 y1 y1 Ž .some c g T . Then c bt s tc b for all t g T , so c b g C T .G LŽk , P .

The right hand side group consists of scalar matrices over P by Schur’s
lemma. Hence b g N implies the existence of r g P such that rp g Q,1
Ž .r p q p g Q, ryp g xQ. This implies rp g Q, and then y g xQ. This1 2 2 2

Ž .is impossible unless p s 0. However, p s 0 means that b g Z T , which2 2
is a contradiction.

Ž . Ž .iv Suppose the contrary and let a g L l N. By ii we can express
a s td for some t g T and d g D. As d g L, we have t g L so t g L l T
g Z.

Proof of Theorem 6.1. Consider a minimal counterexample; i.e., we
assume that the theorem holds for m - n. The cases n s 1 and n s q s 2
are obvious. Thus we assume in what follows that n ) 1 and nq ) 4.
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² : ² :Furthermore, N s R by Theorem 1.3 applied to N . This implies that
Ž . y1M is semisimple. Indeed, if U s Rad M / 0 then xUx s U for each

� 4 ² :x g N. Therefore Ýu x forms a two sided ideal of R s N ,i i u gU, x g Ni i

Ž .which is a contradiction. This is in fact the Clifford theorem. We denote
by r the number of simple components of M and set s s nrr. Let
e , . . . , e be the minimal central idempotents of M. By the Clifford1 r
theorem all they have the same rank s. As A is semisimple, we can also
assume that A is minimal in the sense that for any proper F-subalgebra B
of A there exists an element x g GX such that xBxy1 l N : Z.

Step 1. Here we prove the theorem for the case where A is a field. Let
D be a maximal subfield of A containing Z. Set A : D s n . Clearly, n is a
prime. By minimality of A we can assume that D l N : Z.

Consider first the case D s Z. Then A : Z s n is a prime.
Ž .Suppose first that r ) 1. We can assume that A s diag a, . . . , a , where

Ž . Ž . Ž Ža runs over a subfield of M n , F . Let us view R s M n, F as M r, M s,
.. Ž .F ; i.e., we view the matrices of M n, F as block matrices with entries in
Ž . Ž .M s, F . Let Y denote the m = m-matrix with 1 in position 1, m andm

zeros elsewhere. By conjugating N by a suitable element u g GX we can
assume that

0 0 0 ??? 0 0
??? ??? ??? ??? ??? ???
0 E 0 ??? 0 Ye s for i - r ,s si

??? ??? ??? ??? ??? ???� 0
0 0 0 ??? 0 0

where E is the identity matrix of size s and non-zero entries occur in thes
ith row. The matrix u can be taken to have 1’s on the diagonal and in

Ž . ŽŽ . .positions 1, n , ks q 1, n with k s 1, . . . , r y 1, and zeros elsewhere.
Hence for i s r we have

0 0 ??? 0 Ys

??? ??? ??? ??? ???
e s .r 0 0 ??? 0 Ys� 00 0 ??? 0 Es

Suppose that A l N o Z, and let X g A l N, X f Z. Then X s
Ž . Ž .diag x, . . . , x , where x g GL n , F is irreducible as n is prime. The

y1 Žconjugacy action of X permutes e ’s. Observe that Xe X / e other-i 1 1
wise, xY xy1 s Y or xY s Y x; as x is irreducible, and r ) 1, thisn n n n

. y1contradicts the Schur lemma . Hence Xe X s e where j ) 1. Suppose1 j
that n F s. Then, obviously, j s r and xY xy1 s Y . This contradictsn n

Schur’s lemma.
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Suppose that n ) s. As n ) 1, r ) 1, the top n rows of the matrix
Xe Xy1 have shape1

y1 < < < < y1xE x 0 ??? 0 xY x .Ž .n n

Ž .Let ¨ , . . . , ¨ be the standard basis in V, the natural module for M n, F .1 n
² :Set W s ¨ , . . . , ¨ . Then X ¬ W s x so XW s W. Let t be the maximal1 n

natural number such that e V : W. Set e s e q ??? qe . Then e V : Wt 0 1 t 0
so Xe Xy1V : W. It follows that Xe Xy1 s e as X permutes e ’s and0 0 0 i
Ž . � 4Ýe V s Ýe V with summation over any subset of 1, . . . , r . Hence e Wj j 0

s W so n is a multiple of s, say, n s st. Suppose first that n - n. Then
xYxy1 s Y, where

0 ??? Ys

Y s ??? ??? ???� 00 ??? Ys

Ž .is a n = n -matrix with t blocks Y at the right hand side columns and 0’ss
elsewhere. By Schur’s lemma Y is non-degenerate. This is a contradiction.
Suppose next that n s n. As n s n is prime, we have r s 1. Obviously, we
then have gAgy1 l M ; Z for each g g GX. Choose g such that gxgy1 f
N. Show that A l N ; Z. Indeed, if y g A l N is not scalar then y
permutes e ’s so yn g Z. As A is cyclic, we have x s y jz for some integeri
1 F j - n and z g Z. But then x g N which is a contradiction.

Ž .It follows that r s 1. This means that M is simple. Then L s Z M is a
field. Let l be some prime dividing L : Z, and let L be a subfield of L1

Ž .such that L : Z s l. As L is unique, N normalizes L so N : N L .1 1 1 G 1
y1 Ž .This means that it suffices to prove that gAg l N L : Z for someG 1

g g GX. However, this follows from Lemma 6.3.
Ž .Next, suppose that D / Z. Set S s C D . By the above D l N : Z.R

ŽSet M s M l S. Clearly, M / S otherwise, D : S s M which is not0 0
.the case . Hence M is a proper Z-subalgebra of S. Besides, A : S and0

Ž Ž .. Ž .A / S as A / D see 5.1 2 . As S s M k, D for some k - n, we can use
² :the induction assumption if M is a D-subalgebra of S. If M , D / S,0 0

² :we are done by induction as N s N l S normalizes M , D . Suppose0 0
² : Ž .that M , D s S. By Lemma 6.4 iv A l N : D. As D l N : Z, we are0

done.

Step 2. Here we assume that A is not a field. Let A s A [ ??? [ A1 l
where A , . . . , A are fields. Let D be any maximal proper subring of A. If1 l
< <F s 2 and A contains a proper subfield L such that Id g L ( F , then4

Ž Uwe can assume that D is chosen to contain L. Indeed, in this case L is
of order 3. Hence gy1Ng l LU / 1 implies that LU ; gy1Ng for all g g GX
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so LU ; F X gy1Ng. It follows that GX has a non-central normal sub-g g G

.group which is impossible. Let D s D [ ??? [ D where D , . . . , D are1 k 1 k

fields. By Lemma 5.6 we have k F l F k q 1 and after reordering the D ’si

and A ’s we shall have D s A , . . . , D s A , D ; A [ ??? [ A . Ifi 1 1 ky1 ky1 k k l

k s l then D ; A is a field extension, and if l s k q 1 then A ( Ak k k kq1
Ž .( D . As A is minimal, we can assume that D l N : Z. Let C s C D .k R

Ž .Observe that D s Z C by Theorem 5.1, so C is a direct sum of exactly k
simple components C , . . . , C . By reordering C ’s we can assume that1 k i

Ž . Ž .D s Z C for i s 1, . . . , k. By the above A resp., A q A belongsi i k k kq1
Ž .to C if k s l resp., l s k q 1 . Set C s D [ ??? [ D [ C . Thenk 0 1 ky1 k

Ž .A ; C , and C is not commutative as Z C s D / A. Let s : C ª C0 0 0 k
Ž .be the natural homomorphism; i.e., s is identical on C and ker s s Dk 1

Ž X . X[ ??? [ D . It follows that s C s C . Let 1 s f q ??? qf whereky1 0 k 1 k
Ž . Ž .f g C for i s 1, . . . , k. Then f g Z C s D ; D s Z C , and f is thei i i i i i

Ž .identity of C . Clearly, s c s f c for c g C . For x g C let x s fi k 0 k k 1

q ??? qf q x . Then x is invertible if and only if so is x. Observe thatky1 k k
Ž .C ( M m, D for some m ) 1.k k

ŽSuppose first that D s Z. Then k s 1 and l s 2 otherwise, A is a
. ² :field . Therefore, A s D, e for some idempotent e g A : S where

Ž . Ž . X y1S s C D . By Lemma 6.4 iii there exists g g S such that gAg l N :R

D. As D l N : Z, we are done.
Ž .Let now D / Z. Set M s M l C , M s s M . Observe first that0 0 s 0

Ž .M ( M as Ker s s D [ ??? [ D and D l M : Z. Observe nexts 0 1 ky1
Ž . Ž . Žthat M / s C . Indeed, if M s s C ( C then M ( C ( M m,s k s k k 0 k

.D ; hence M s C by Wedderburn’s theorem. Then M contains D .k 0 k k

This is a contradiction.
Ž .Thus M / s C . Set N s N l C . Then N normalizes M ands k 0 0 0 0

Ž . Ž .s N normalizes M . As M n, q is a minimal counterexample to the0 s

Ž . < < Ž . X Ž .theorem, either a m s 2 s D or b there exists x g C s GL m, Dk k k k
y1 Ž . Ž . Ž .such that x s A x l s N : s D ( D . Let x s e q e q ??? qk k k k 1 2

Ž . y1 Ž .e q x . Then in case b x Ax l N : N l D : Z, as desired. Let aky1 k
Ž .hold. It follows that M ( s A ( F , l s k, and D contains no subfields 4

L such that Id g L ( F . As M ( M , we have M ( F . Let s , i - k, be4 0 s 0 4 i
Ž . � 4the natural homomorphism of C onto D , i - k. Then s M / 0 as0 i i 0

Ž . � 4 Ž .M contains Id. As above, ker s s 0 as M l D : Z. Hence s M (0 i 0 i 0

F . Therefore, D contains a subfield isomorphic to F for every i - k. It4 i 4

follows that A contains a subfield isomorphic to F . This contradicts the4

assumption about D above. This completes the proof.

LEMMA 6.5. Let F be a field of order 22 m with m ) 1. Then FU contains
an element of prime order l with l ) 2m.
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Proof. If m s 3 then l s 7. Suppose that m / 3. By Zsigmondy’s
Ž w x. 2 mtheorem see 10, 5.2.14 there is a prime l such that l divides 2 y 1 and

does not divide 2 i y 1 for i - 2m. Let h be an element of order l in FU.
It follows that h does not belong to a proper subfield of F. Therefore, the

� j4set h contains a basis of FrF so l G 2m. In fact, l / 2m asjs1, . . . , l 2

Ž .Ž ly1. ly11 q h 1 q h q ??? l s 0; hence 1 q h q ??? qh s 0. Therefore l
G 2m q 1.

THEOREM 6.6. Let G, M, N be as in Theorem 6.1 and let q s r a where r
is a prime. Let A ; G be an abelian subgroup with cyclic Sylow r-subgroup
A . Then gy1Ag l N ; Z for some g g GX.q

² :Proof. As in the proof of Theorem 6.1 we can assume that N, Z s R
so M is semisimple. Besides, if M is not simple, it suffices to prove the

Ž Ž . Ž ..result for the case where M s diag M nrs, F , . . . , M nrs, F where s is
Ž . Ž .the number of simple components of M. Then C M s Z M . LetR

e , . . . , e be minimal central idempotents of M, so N permutes e , . . . , e1 s 1 s
and e V, . . . , e V transitively.1 s

Let A denote the subgroup of A of order r. Let A s A = A so Ar q 1 q 1
X ² :is an r -group. Set K s A . By Maschke’s theorem K is a semisimple1

ring. By Theorem 6.1 there is g g GX such that gKgy1 l N ; Z. By
y1 Ž .replacing K by gKg we can assume that K l N ; Z. Set C s C K .R

Ž .Clearly, C s C A . Write C s C [ ??? [ C , where C for each i sR 1 1 m i
1, . . . , m is a simple ring. Let s : C ª C be the natural projection. Byi i

Ž .reordering the C ’s we can assume that s A / 1 for i s 1, . . . , l, andi i r
Ž .s A s 1 for i ) l. Observe that C is not commutative for i F l. Clearlyi r i

Ž .l G 1. Let C s SL n , q .i i i
y1 X Ž .If c A c l N ; Z for some c g C then we are done as A l Z s 1 .q r

Suppose that cy1A c l N o Z for all c g CX. Then A ; cNcy1 for allq r
c g CX. Therefore, A ; N s F X cNcy1 so N l C is a CX-invariantr C cg C C
subgroup of CU. Set X s N l C. By Corollary 5.3 X contains subgroupsC

Ž . Ž . Ž .X ( SL n , q such that s X s SL n , q for i s 1, . . . , l and X s Xi i i i i i i 1
??? X . As X ; N, we have a homomorphism h: X ª NrMU. Let H sl

Žker h. We show that H ; Z. Observe first that H ; M. Indeed, if M is
Ž . Ž Ž ..simple then H centralizes Z M ; as M s C Z M then H ; M. If M isR

.not simple then H centralizes all e , . . . , e so again H ; M. As H is1 s
Ž .normal in X, we have either H ; Z X ; K, or X : H for some i, ori

Ž . Ž .X ( SL 2, 2 or SL 2, 3 for some i and H l X is a normal non-centrali i
subgroup of X . As K l M : Z, the first possibility does not hold. In thei

² : Ž . Ž .remaining cases H, Z contains Z C ; hence Z C : M. This contra-i i
Ž . Ž .dicts the fact that K l M : Z as Z C : K and Z C f Z. Thus H : Z.i i

U Ž Ž . . Ž .If M is simple then NrM ( Gal Z M rZ is cyclic whereas h X is
not cyclic. This is a contradiction. Suppose that M is not simple. By the
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previous paragraph, if x g X and x f Z then x acts non-trivially on
� 4 Ž . Ue , . . . , e . Let l x be the order of x modulo Z . By a lemma of Higman1 s
Ž w x.see 7, Theorem 1.10, p. 411 the degree d of the minimal polynomial of

Ž .x is not less than the maximal length n of an orbit of x on e ’s or V -s . Ifi i
Ž . Ž . Ž .l x is a prime power then l x s n . If r ) 2 or r s 2 and C / M 2, 2 fori

� 4some i g 1, . . . , l , we shall deduce a contradiction by showing that this is
impossible for some x g X. In the exceptional case we show that N has to
be the group of all monomial matrices over F . We shall handle this case2
by an alternative argument.

Ž . Ž Ž . .Each SL n , q contains a subgroup diag SL 2, q , Id . Let y si i i n y2i
Ž . Ž .diag h, Id g SL n , q where h is chosen to be of order k s r if r isn y2 i ii

odd and of order k ) 3 in Lemma 6.5 if q ) 2 is even. Let x g X be thei i
Ž .pre-image of y so l x s k. Clearly, the minimum polynomial of x is of

Ž .degree d s 2 if r is odd which contradicts the above inequality r s l x
F d.

Suppose that r s 2, q ) 2. Choose h as in Lemma 6.5. Then thei
< <minimum polynomial of x is of degree d F 2 q whereas x ) 2 q . Thisi i

contradicts the Higman lemma. Thus, we are left with the case where
< <r s 2 and q s 2 for i s 1, . . . , l. Then F s 2. We show that each n s 2i i

for i s 1, . . . , l. Indeed, if some n ) 2 then CU contains the matrixi i
Ž . 7 Ž .y s diag h, Id where h s 1 and h g SL 3, 2 . Let x be a pre-imagen y3i

of y in X . As above, the degree of the minimum polynomial of x is equali
to 4 which contradicts Higman’s lemma. Thus n s 2.i

Ž .Set C s C [ ??? [ C and e s e q ??? qe and let n s rank e .0 1 l 0 1 l 0 0
Ž . Ž . Ž .UThen Z C ( F [ ??? [ F l summands . Therefore, Z C s 1. Then,0 2 2 0

under a basis B compatible with the decomposition V s V [ ??? [ V1 s
Ž . Ž .each element of A is of shape diag e , t for some t g GL n y n , F . As1 0 0

Ž .C s C A , it follows that l s 1 so X s X . Let 1 / a g A . As l s 1R 1 1 r
Ž .and q s 2, we have dim Id y a V s 1. As a permutes V , it follows that1 i

dim V s 1 for j s 1, . . . , s. Then N is conjugate to the group of monomialj
matrices over F , which coincides with the group of permutational matrices2
for F s F . Hence V N, the subspace of the vectors fixed by N, is one-di-2
mensional.

For this case we show that there is g g GX such that gAgy1 l N ; Z.
N Ž . XLet 0 / ¨ g V . It suffices to show that C g¨ s 1 for some g g G . IfA

n s 2 or 3 then A s A and the claim is trivial. Suppose that n ) 2.r
X Ž .Clearly, there is g g G such that e g¨ / 0 and Id y e g¨ / 0. We can1 1

assume that this holds for ¨ itself. Next, we shall look for g such that
Ž .ge s e g. Under an appropriate basis we can assume that g s diag g , g1 1 1 2

Ž . Ž .where g g SL 2, 2 and g g SL n y 2, 2 . Obviously, there is g such1 2 1
² :that A does not preserve the line g e ¨ . Observe that A acts triviallyr 1 1 1

Ž .² : Ž .in e V. As the stabilizer of Id y e ¨ in M n y 2, 2 is an F -subalge-1 1 2
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bra, we can use Theorem 1.3 to conclude that there is g such that A2 1
Ž .² :does not preserve the line g Id y e ¨ . It follows that A does not2 1

² :preserve the line g ¨ . This implies the lemma.

Ž .PROPOSITION 6.7. 1 Let A ; G be a cyclic group and p a prime dï iding
n. Then there exists an element g g GX such that gAgy1 l N ; Z.p

Ž . Ž . Ž . Ž .2 Let n, q / 2, 2 . Let B ; H s PSL n, q be a cyclic subgroup,
Ž X. Ž X.and Y s N l G rZ G . Then there exists an element h g H such thatp

hAhy1 l Y s 1.

Ž . Ž .Proof. 1 is a particular case of Theorem 6.6. 2 Let A, Y be a
X Ž . Ž .pullback of B and Y in G s SL n, q . Then Ar A l Z is cyclic, and

X y1Ž .N ; N . By 1 there exists g g G such that gAg l N ; Z. Let H bep p
the projection of g in H. Then hAhy1 l Y s 1, as desired.

7. THE SYMPLECTIC GROUP CASE

Ž .Notation. We keep the notation G s GL n, q and Z for the group of
scalar matrices in G. In this section n ) 2 is even and E is the identityk

0 EŽ . Ž .k = k -matrix. If k s nr2 we omit the subscript. Set G s . If X isyE 0
t Ž .a matrix, X stands for transpose of X. We set H s Sp n, F , the group of

Ž . tall n = n -matrices X g R such that X GX s G. The mapping t : X ª
t y1 Ž .GX G is an involution an involuntary anti-automorphism of R and
� Ž . y14 Ž .H s X g R : t X s X . It is known that N H coincides with theG

˜ � Ž . 4general symplectic group H s X g G : t X X g Z . Let s : G ª G be a
Ž . Ž y1 .mapping defined by s X s t X for X g G. Then s is an involuntary

automorphism of G and H s Gs is the subgroup of elements fixed by s .
� 4Let S s G ? s be the semidirect product of G and the cyclic group of

˜Ž . � w x 4order 2 generated by s . Then H s C s and H s X g G : X, s g Z .G
t Ž . t y1For g g G set G s gGg , and define t and s by t X s G X G ,g g g g g g

Ž . Ž y1 . t y1s X s G X G .g g g
As before, V is the natural FG-module and f is an alternating bilinear

Ž .form defining H. Two vectors ¨ , w g V are called orthogonal if f ¨ , w s 0.
˜Clearly, if ¨ , w g V are orthogonal and h g H then h¨ , hw are orthogo-

H � Ž .nal. Let W be a subspace of V. We set W s ¨ g V : f w, ¨ s 0 for all
4 Hw g W . The space W is called non-degenerate if W l W s 0 and

degenerate otherwise. We say that W is isotropic of f ¬ W s 0. A basis of V
under which the matrix of f coincides with G is called a Witt basis of V. If
F is finite, choose 0 / g g F to be non-square. Fix a Witt basis and set
˜ ˜ ˜ ˜ UŽ . ² : ² :h s diag g ? Id , Id . Then h g H and H s Z H h . We set H s H h .k k 1
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LEMMA 7.1. Let dim V s 4 and let V s V [ V be a decomposition of1 2
Ž .V as a direct sum of two-dimensional subspaces. Let A ; GL 4, q be a

non-central abelian subgroup stabilizing both V , V . Then there exists g g1 2
y1 ˜Ž .SL 4, q such that g Ag l H : Z except, possibly, when q s 3 and A is an

elementary 2-group.

Proof. Suppose the contrary. By replacing A by gAgy1 with g g
Ž .SL 4, F one can assume that both V , V are non-degenerate and orthogo-1 2

nal to each other. Assume that this is the case. Let B , B be bases in1 2
V , V , respectively, and B s B j B . Under the basis B of V let a s1 2 1 2

Ž .diag a , b g A be a non-scalar matrix. Let

Id m2S s g SL 4, F ,Ž .ž /0 Id2

y1 a mb y am ˜Ž . Ž .where m g M 2, q . Then a s SaS s . If a g H then a V0 b1 1 1 2

s V as a V s V and V , V are orthogonal. This only holds if mb s am.2 1 1 1 1 2
Ž . Ž .Set A s A ¬ V for i s 1, 2. If A s Z ? diag "Id, " Id then Ar A l Z1 i

is of order 2 so the claim is trivial. Otherwise, by replacing V and V we1 2
can assume that A is not scalar.1

Choose m to be a nilpotent matrix such that mV is not A -invariant. If1 1
A is not scalar, choose m with the additional requirement that mtV is not2 2

t Ž .A -invariant here t stands for the transpose . This is always possible2
unless q s 3 and A is an elementary 2-group. Indeed, the number of
one-dimensional subspaces in V is q q 1 so there are at least q y 11
subspaces in V that are not A -invariant. If W is one of them then1 1

X X Ž . XmV s W and m V s W for m g M 2, F if and only if m and m are1 1
proportional. Therefore, if m and mX are not proportional then W s mV1
/ W X s mXV . Then also mt and mX t are not proportional. Therefore, there1
are at least q y 3 choices for m such that m2 s 0 and mV is not1
A -invariant and mtV is not At -invariant. Hence the choice of m is always1 2 2
possible if q ) 3. If q s 3, the choice is possible if A or A is not1 2

Ž .diagonalizable. Otherwise, A is an elementary 2-group. If q s 2 then A
Ž .is either a cyclic 2-group, or either A or A or both are irreducible.1 2

Then the number of A -invariant one-dimensional subspaces is at most 1,1
and the same for At provided A is not trivial. As q q 1 s 3 in this case,2 2
we can still satisfy the requirement above.

Next, amV s mb V : mV s W; i.e., W is invariant under a . As1 1 1
dim V s 2, there are at most two proper non-zero A -submodules in V . If1 1 1
a is not scalar, A W s W which contradicts the choice of m. Therefore, a1
is scalar. Then b is not scalar, as am s mb and a is not scalar. So b ,1
hence A t is not scalar. Now, as mb s am and a is scalar, we have2
b tmtV s a tmtV s mtV ; i.e., mtV is b t-invariant; then it is A -invariant.2 2 2 2 2
This contradicts the choice of m above.



SIEMONS AND ZALESSKII474

˜LEMMA 7.2. Let h g H be a semisimple element with exactly two distinct
eigen¨alues a , b. Let V , V denote the eigenspaces of a , b , respectï ely.a b

Then either V , V are isotropic and of equal dimensions, or V , V area b a b

non-degenerate and a s yb.

Ž .Proof. a Suppose that V , V are isotropic. As V q V s V, theira b a b

dimensions are dim Vr2.

Ž . Ž .b Suppose that a does not hold. Then we can assume that V isa

Ž . Ž .not isotropic. There exists l g F such that f hu, h¨ s l f u, ¨ for some
Ž .l g F and all u, ¨ g V. There are u, ¨ g V such that f u, ¨ / 0. Thena

Ž . Ž . 2 Ž . 2f hu, h¨ s l f u, ¨ s a f u, ¨ whence a s l. If V is not isotropic, web

similarly have b 2 s l whence a s "b , as desired. If V is isotropic, letb
H Ž .0 / u g V . Then V o u so there is ¨ g V such that f u, ¨ / 0. Thenb a a

Ž . Ž . Ž . 2f hu, h¨ s l f u, ¨ s ab f u, ¨ whence ab s l. As a s l, we have
a s b which is not the case.

LEMMA 7.3. Let W ; V be a subspace of dimension d ) 2 and let U be a
complement of W in V.

Ž . Ž .i There exists x g SL V such that xW is degenerate and is not
isotropic.

Ž . Ž .ii Suppose that d - dim V y 2. Then there exists x g SL V such
that x ¬ W s Id and xU is degenerate and is not isotropic.

Ž . Ž .Proof. i is obvious. To prove ii we can assume that W is degenerate
and is not isotropic. As W is degenerate, there are vectors w g W, u g U

Ž .with f w, u s 1.
Ž .Let w s w, . . . , w g W be a basis in W. To prove 2 , suppose that U1 k

is either non-degenerate or isotropic. First let U be non-degenerate so
dim U G 4. Complete u s u to a hyperbolic basis of U, say, u , . . . , u1 2 k
Ž . Ž . Ž . Ž .where k s dim V y d so f u , u s f u , u ??? s f u , u s 1 and1 2 3 4 ky1 k

Ž . ²the other inner products f u , u are zeros. Set U s u , u y w, u , . . . ,i j 1 1 2 3
:u . Let x transform the basis w , . . . , w , u , . . . , u to w , . . . , w , u , uk 1 d 1 k 1 d 1 2

Ž .y w, u , . . . , u . Clearly, x g SL V is as desired. Now suppose that U is3 k
² :isotropic. As above, set U s u , u y w, u , . . . , u and pick x as above.1 1 2 3 k

Ž .Then x is as desired. This implies ii .

PROPOSITION 7.4. Let n ) 4. Suppose that there exists an idempotent 0,
Id / e g R such that ae s ea for all a g A. Then there exists g g GX such

y1 ˜that g Ag l H ; Z.

Ž . Ž . Ž .Proof. Set C s C e , V s Id y e V and V s eV. Let l s rank eR 1 2
Ž . Ž .and k s n y l. Then C s C [ C where C ( M k, F and C ( M l, F .1 2 1 2

Clearly, A ; C. By replacing e by Id y e we can assume k F l. As n ) 4
we have l ) 2. By Lemma 7.3 there exists x g GX such that xV s xexy1V2
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is neither non-degenerate nor isotropic. Besides, if k ) 2, by Lemma 7.3
we can assume that xV is non-degenerate and is not isotropic. By1
replacing e by xexy1 and A by xAxy1 we can assume that V , V them-1 2

˜selves have the above property. Set T s C l H, and let A , T denote thei i
projections of A, T , respectively, into C for i s 1, 2. Then T preservesi i

Ž .the radical of V , so T is reducible, and hence does not contain SL V ,i i i
Ž . Ž .except for the case k F 2. Besides, if l, q s 4, 2 then T does not2

Ž Ž ..contain a group isomorphic to A as it is irreducible in SL 4, 2 . We are7
Žin a position to use an induction assumption namely, that Theorem 1.2 is

.true for l - n , in order to conclude that

) there exists x g SL l , F such that xy1A x l T : Z GL l , FŽ . Ž . Ž .Ž .2 2

and

if k ) 2 then there exists x g SL k , FŽ .1))Ž . y1such that x A x l T : Z GL k , F .Ž .Ž .1 1 1 1

y1 Ž .Suppose that k ) 2. By replacing A by g Ag with g s diag x , x we can1
˜ Ž Ž Ž .. Ž Ž ...assume that A l H : diag Z M k, F , Z M l, F . This automatically

˜holds for k s 1. Then each h g A l H is semisimple and has at most two
distinct eigenvalues. By Lemma 7.2, this implies that h is scalar, as desired.

y1 Ž .Suppose that k s 2. Then replacing A by g Ag with g s diag Id, x
˜ Ž Ž . Ž Ž ...we can assume that A l H : diag M 2, F , Z M l, F . Let W denote

the radical of V . Then W / 0. Besides, V rW is non-degenerate so2 2
dim V rW is even. As dim V s n y 2 is even, we conclude that dim W is2 2
even; hence dim W G 2. As V : W H and dim W q dim W Hs dim V, we2
conclude that V s W H and dim W s 2. As h ¬ W is scalar, h ¬ VrW Hs2
h ¬ VrV is scalar. But VrV and V are isomorphic h-modules. Hence2 2 1

Ž Ž ..A : Z M 2, F . So Lemma 7.2 again gives a contradiction, unless h is1
scalar.

X ˜ � 4LEMMA 7.5. Let Y be a G -in¨ariant subgroup of H ? s . Then Y : Z or
Y contains GX.

˜ XProof. Clearly, Y l H is G -invariant. As n G 2, the lemma follows
˜ ˜ ˜Ž .from 5.2 unless Y l H : Z. Observe that Y : Y l H F 2. Hence Y l H

Ž . w X x: Z implies Y : Y l Z F 2. Then G , Y , the group generated by
gygy1 yy1 with g g GX, y g Y, belongs to Z. Then g ª gygy1 yy1 defines a
homomorphism GX ª Z which has to be trivial. Hence Y centralizes GX.

XŽ .As C G s Z, we are done.G

LEMMA 7.6. Let L be a cyclic Galois extension of Z such that L : Z is
e¨en. Let L : L be the unique subfield such that L : Z s 2. Let K ; L be a0 0
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subfield of L such that K : Z is e¨en. Then L : K and if a is an automor-0
Ž .phism of K trï ial on Z then a L s L .0 0

Ž . Ž .Proof. Let G s Gal LrZ and G s C K . Then G : G is even. As G1 G 1
is cyclic there is a unique subgroup G of G of index 2 so G : G .2 1 2

Ž . Ž .According to Galois theory, L s C G : C G s K. As a is trivial on0 L 2 L 1
Z, it can be realized as an element of G. Obviously, L is invariant under0

Ž .G so a L s L .0 0

˜Ž .LEMMA 7.7. Let L ; R s M n, F be a subfield containing Z. If L l H
 Z then L : Z is e¨en and L contains a unique subfield D such that
D : Z s 2.

˜ y1Ž .Proof. Let x g L l H and x f Z. Then we have t x s x l for some
² :l g F. It follows that t preserves the field X s x . If t ¬ X s Id then

x 2 s l so X : F s 2. If t ¬ X / Id then t is an involutory automorphism of
Ž .X. By Galois theory X : Z is even so L : Z is even. If D s Gal LrZ and

Ž .D is the unique subgroup of D of index 2 then C D is the unique1 L 1
quadratic extension of Z in L.

Ž .LEMMA 7.8. Let R s M n, F with n e¨en and let L ; R be a subfield
Ž . Ž . Ž .that is a cyclic Galois extension of Z. Suppose that n, q / 2, 2 , 2, 3 . Then

X ˜ y1there exists g g G such that L l gHg ; Z.

˜ y1 XProof. Suppose the contrary. Then L l gHg o Z for each g g G .
By Lemma 7.7 L : Z is even and contains a unique subfield D such that
D : Z s 2.

Step 1. Suppose first that D s L so L : Z s 2. As n ) 2, L is re-
Ž . Ž .ducible and completely reducible in M n, F ; hence there is a non-trivial

Ž .idempotent e g M n, F that centralizes L. If n ) 4, we are done by
Lemma 7.4. The case n s 4 follows from Lemma 7.1 if q / 3. If q s 3
then the group LU is not an elementary abelian 2-group. Hence we are
again done by Lemma 7.1.

Step 2. Suppose that D / L. By minimality of L we have D l gHgy1

X ˜ y1; Z for some g g G . If x g L l gHg and x f Z then by Lemma 7.7
² : Ž . y1X : Z is even where X s x . By Lemma 7.6 D : X. As t x s x l forg

Ž .some l g F, we have t X s X so t ¬ X is an automorphism of X. Henceg

Ž . U . U Ž U .t D s D and s D s L . Set N s N D . Then s g N for anyg g S g

g g GX. Let Y be the subgroup of N generated by s for g g GX. Clearly,g
Y does not contain GX. As s s gs gy1 in S, the group Y is GX-invariant.g
Then Y contains GX. This is a contradiction.

THEOREM 7.9. Let A ; G be an abelian group with a cyclic unipotent
X y1 ˜Ž .subgroup U A . Then there exists g g G such that g Ag l H : Z.
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Ž . ² :Proof. Let A s B = U A and set L s B . Then L is a semisimple
algebra. If L is not simple then L contains an idempotent satisfying the
requirement of 7.4 so the result follows by 7.8. Thus, we can assume that
Ž . Ž .U A / 1. Let u g U A be an element of order p. Set V s V and0

Ž .V s u y Id V for i ) 0. Let V / 0, V s 0. Then dim V y k / 1 asi iy1 k kq1
LV s V and dim V is a multiple of L : Z. By replacing A by a conjugatek k k
we can assume that V has a non-degenerate subspace of co-dimensionk

˜ ˜F 1. Then A l H : B. Indeed, if not then u g A l H. Let W be the
radical of V . Then W / 0, as if W s 0; then V s V [ V H . As u ¬ V s Id,k k k k
we have V : V H for all i. But V f V H .i k k k

˜Therefore dim W s 1. Let b g B l H. Then bW s W as AV s V andk k
˜ ² :b g A l H. But if b f Z then K s b is a subfield of dimension ) 1

˜over Z and KW s W, which is impossible. It follows that B l H : Z. As
˜A l H : B, we are done.

Proof of Theorem 1.2. The theorem follows from the discussion above.
Indeed, by Proposition 3.1 and Theorem 3.4 it suffices to prove it for the

Ž .cases where M s K GrB and B is either a line stabilizer of the natural
Ž .module for GL n, q or one of the groups listed in Theorem 3.2. The case

Ž .where B is a line stabilizer is examined in Proposition 3.1. The case 3.2 vi
Ž . Ž .is considered by Lemma 4.3, while the cases 3.2 iv and 3.2 v are treated

Ž . Ž .in Lemma 4.2. The case 3.2 iii is exposed in Theorem 7.9. The cases 3.2 i
Ž .and 3.2 ii are done by Theorem 6.6.

Proof of Theorem 1.1. The theorem follows from Theorem 1.2.
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