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ABSTRACT. Let (Z~a, <)  be a finite partially ordered set with rank function. Then f f  is the disjoint 
union of the classes ~k of elements of rank k and the order relation between elements in ~k and 
~ak+ 1 can be represented by a matrix S k. We study partially ordered sets which satisfy linear 
recurrence relations of the type Sk(S r) -- Ck(S k_ OrSk _ 1 = ( d+ -- ckd[ )Id for all k and certain 
coefficients dk + , d k- and  Ck. 

1. INTRODUCTION 

Let  (cp, < )  be a finite par t i a l ly  o rdered  set with unique min imal  e lement  0. 

We  suppose  tha t  ~q~ admits  a r ank  funct ion I I: cp ~ N so tha t  for every x in 

any  sa tu ra ted  chain  0 < x l  < --. < xr = x has  length r = [xl depend ing  

only on x. We set ~k = {XIX ~ ~ ,  [X[ = k} and n k ---- I~l. W e  are  interested in 

the fol lowing regular i ty  condi t ions:  

RI  For every k = 0, 1 . . . .  and every x in ~ the numbers d~ :=  

I{Y [Y~ ~k+ l ,  Y > X}I and d k :=  [{z[ z~  ~k -1 ,  X > Z}[ depend only 

on k. 

RII  For every k = 1, 2 . . . .  there is a constant Ck such that i f  x'  v~ x 

belong to ~ k  then [ { y ] y E 2 P k + l , x ' <  y > x } [  =Ck[{Z[ZE~k_I, 
x'>z<x}l. 

Such a par t i a l ly  ordered  set will be called j o i n - m e e t  regular. The ma in  

examples  which mot iva te  this definit ion are  given in Section 2. 

A pose t  with r ank  function can be represented  by  a family of  incidence 

matr ices  S 0, $1, $2 . . . . .  S k , . . .  where the rows of  S k are indexed by the 

elements in £-q°k, the co lumns  indexed by the elements  of  5¢k+ a and  where 

(Sk)x,y = 1 if X < y and  (Sk)x,y = 0 otherwise.  In  this pape r  we shall  de te rmine  

some of  the l inear  invar iants  of  these matr ices  over  var ious  fields. 

The  first result  gives the re la t ionship  between local pa rame te r s  such as d~-, 

dk,  Ck and  the size of 2~° k. I t  is a consequence of a basic l emma  which t ransla tes  

the regular i ty  condi t ions  into a simple mat r ix  equat ion.  F r o m  this we also 
ob ta in  the eigenvalue d is t r ibu t ion  of  • z Sk Sk and  hence the r ank  of  the 
incidence matrices.  

In Section 3 we go on to consider  tact ical  decompos i t ions .  Here  two 
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families of incidence matrices arise; their invariants are treated in a very 
similar way. 

Section 4 deals with symmetric tactical decompositions in which the sets ~k 
and Yk + ~ are decomposed into equally many classes for some values of k. The 
main resuk~shows that the rational congruence relations which give rise to 
the Bruck-Ryser  theorem on symmetric 2-designs remain in force in this 
much more general situation. 

2. I N C I D E N C E  MATRICES AND EIGENVALUES 

Among the principal examples of jo in-meet  regular posets are finite 
dimensional projective spaces over a finite field. We consider these as the 
lattice of subspaces naturally ordered by inclusion; the regularity condition II 
essentially is the Grassrnan identity. 

Similarly, the 'characteristic 1' analogue of the above, namely the boolean 
algebra of subsets of a finite set, is jo in-meet  regular. 

There are many other examples. For  instance, 2-designs can be viewed in 
this way: Let ~ and ~ be the point and the block sets of a 2-(v, k, #) design. 
On ~ = {0} • ~ u ~ define an order by 0 < fi < ~ if and only if fi is on ~. 
Then ~ is jo in-meet  regular with parameters d~ -- v, d2 = k, ca = # and 
c z = 0. And conversely, a jo in-meet  regular set of this type is a 2-design. 

There are also general constructions. We mention a few: 

1. The t runcat ion-re ta ining the lower p a r t - o f  a jo in-meet  regular poset 
is jo in-meet  regular. 

2. Mirrors: if &a = & o 0 u S ¢ l ~ 2  U " " W ~ k W ~ k + l W " "  is jo in-meet  
regular we select some k and form a mirrored version ~ e * =  

,~70k.) ~1k. . )~2 k-) "'" k-) ~ k _ l  k.) ~kk-) ~ k _ l  " " ~ 2  k...),~l k-) ~Lt70 in which the 
order is reversed in the upper part. 

3. Co-catenation: if c f  has a unique maximal element l~e and if J l  is j o in -  
meet regular with minimal element 0~  then ~¢ ~ d// is jo in-meet  
regular upon identifying 1~ = Qa. 

4. Direct or tensor products of jo in-meet  regular sets retain the property. 

Let now &o be a partially ordered set with rank function. Every pair k ~ m of 
integers gives rise to an incidence structure ~k,,, = (L~°k, ~am;I) in which 
incidence is induced by the order relation. As above we denote the incidence 
matrix of 5¢k, k + 1 by Sk and identify a standard basis vector of R "~ with the 
corresponding element of &a k. 

Suppose that 5¢ satisfies the regularity condition RI. Then Sk(sk)Tx= 
Sk(Ex<yy) with y in £~qk+ 1 and further Sk(Y~<yy ) = d~x + E ~ , f ( x ' ) x '  where 
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f (x ' )  is the number of y for which x < y >  x'. Similarly, we get 
(Sk_OTSk_aX = d~ x + Z x , x , f * ( x ' ) x '  wheref*(x ' )  now is the number of z in 
~k-1  for which x > z < x'. Hence we have the basic 

L E M M A  2.1. I f  (~ ,  <)  satisfies RI then RII holds i f  and only if there 

are constants c, for  every k in { N i x  ~ ~ }  such that 

Sk(Sk) T -- ck(S* - 1)T Sk - 1 = (d~ -- Ckd[)Id. 

T H E O R E M  2.2. Let  (~,  <)  be jo in -mee t  regular. Then for  each value o f  k in 

{Ixl [xeS°}:  
(i) nk-1 < nk implies d~ >~ Ckd ~, and 

(ii) d~- > Ckd; implies nk ~ nk+j. 

This theorem is reminiscent of Fisher's inequality. It suggests that 
particular attention should be paid to the case nk- ~ = nk ; we shall come back 
to this question in Section 4. 

Proof  In Lemma 2.1 all matrices are symmetric and non-negative definite 
and have size nk. Hence all their eigenvatues are non-negative. The result will 
follow from an inspection of the lowest eigenvalues. If  n k_ 1 < nk then 
(Sk ~)xSk- i is singular so that d + - Ckd~ is the least eigenvalue Of Sk(Sk) x and 
hence is non-negative. Conversely, if the coefficient on the right-hand side in 
Lemma 2.1 is positive then Sk(Sk) x is non-singular and so in particular 

nk + l >>- nk. [] 

If 5 P = (~, ~ ;  I) is a finite incidence structure in general, with 'point set' ~ ,  

'block set' N, incidence relation I ~< ~ x ~ and incidence matrix S, the 
spectrum of 5 P is the collection of eigenvalues of the matrix SS ~. This will be 
denoted by spec(5 0 and we take account of the multiplicities of eigenvalues. 

Clearly the sum of the multiplicities is I~l. Note that the definition is slightly 
different from the usual one in the case of graphs where the eigenvalues of the 
adjacency matrix A = SS T - D are considered; here D is the diagonal matrix 

of vertex degrees. 
In particular, we can speak about the spectrum of 5ek,k+ i (k = 0, 1 . . . .  ) for 

any--poset with rank function. In the case of jo in -mee t  regular posets spectra 
can be determined completely. First we need 

L E M M A  2.3. Let  ~: V ~ V* and fl: V* ~ V be linear maps between vector 

spaces over some field. Denote by Ex rhe eigenspace o f  the map fie: V ~ V and 

by E* the eigenspace o f  the map aft: V* ~ V* for  the same value 2 in both cases. 
I f  2 ¢ 0 then ~: E z -~ E~ and fl: E* -~ E~ are isomorphisms. 

Proof  For x in Ea we have ~fl(ex) = e(fl~x) = 2~x so that ~: E~ ~ E~, even 
injectively as long as 2 ¢ 0. Apply the same argument to ft. []  
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T H E O R E M  2.4. L e t  ( ~ ,  < )  be j o i n - m e e t  regular and suppose that we have 

n o ~ n 1 ~ ""  ~ n k up tO some value o f  k. I f  20,k > 21,k > . . . .  , > ~'t,k denote the 

distinct values in spec(Sqk,k+l) , with corresponding multiplicit ies PO,k, 

Pl,k," • ", Pt,k, then the 2i,k are integers and: 

(i) t = k and pi,k = nl - ni_ l f o r  O <~ i <~ k, 

(ii) 2O,k = d + + lgo~<k(Hs<j~kCj)(d + -- d[+l) and 

2i, k = d~ + Ei<~<k(Hs<j~kCj)(d + -- dT+ 1) -- (Hi~j~kCj)d? 

f o r  0 < i <~ k. In  particular, 2t, k = d + - Ckdk . 

Proof.  When 90 = (~,  2 ;  I) is an incidence structure, its dual is the 
incidence structure 90' = (2,  ~ ;  I') in which the role of points and blocks is 
interchanged while incidence is as in 90. Thus, if 9° has incidence matrix S, 

then 5 ~' has incidence matrix S T. It follows therefore from Lemma 2.3 that 
spec(Sg') is obtained by appending 121- I~1 zeros to spec(5 ~) (or deleting 

I~1 - 121 zeros, if 121 < I~1). 
This applies in particular to the incidence structures 5~k,k+ 1. Hence if 

20,k- 1 > 21,k- 1 > , ' " ,  > 2t.k- 1 are the special values of ~k -  1,k then those of 

"~k,k-I  are 20,k_ 1 > 21,k_ 1 > , . . . ,  >/~t*,k-1 ~ 2 t * + l , k - 1  where ~'t*+l,k-1 = 0 
has multiplicity n k - n k - 1 .  It  follows from Lemma 2.1 that the values in 

spec(~k ,k  + 1) are 

Ck2o,k_ 1 + (d~ - Ckd[) > Ck21,k-1 + (d + - C k d k ) > , . . . ,  

>Ck2t*,k-1 + (d~ -- Ckdk) >~ (d + -- Ckdk). 

The formulae under (i) and (ii) are obtained by induction on k. It  is now clear 
that the 2~,k are rational numbers. However, as eigenvalues of an integer 
matrix, they are algebraic integers and hence ordinary integers. []  

REMARKS.  1. It is clear from the proof  that the assumption n k ~ nk+ 1 is 
not really essential; the general case can be treated similarly. 

2. In characteristic zero the matrices S and SS  T have the same rank. (In 
characteristic p > 0 this may not be the case!) Therefore the theorem gives the 

rank of Sk for all values of k. In particular, rank(Sk)= n k unless 
(d  + - -  Ckdk)  --~ O, by Theorem 2.2. About this question see also Section 9 in 
Stanley [-10]. 

3. Defining the diameter of an incidence structure as the usual diameter in 
the bipartite incidence graph, one can show that the diameter is bounded by 
the number  of distinct eigenvalues in spec(SP). It  follows therefore that ~+q~k,k + 1 

has diameter at most  k + 1. 
4. If G is the automorphism group of ~ ,  its action on each ~° k naturally 

extends to a linear action on N"~. The incidence matrices give rise to maps 
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SkST:~nk_.~ ~nk and it is clear that these are G-maps. Therefore each 

eigenspace E~ for 2 in spec(~°k,k+l) is G-invariant so that we obtain 
decompositions of Rnk ~> Nnk-1 ~> ... ~> Rno into invariant G-modules. See 

Lemma 2.3 and also [43. In the case of the subspace or subset lattices 
mentioned at the beginning of this section, the E~'s are in fact irreducible. 

2.1. The Modular Case 

While we have seen that our spectra are integer valued, we have so far 
considered these only over the real numbers. One is tempted, therefore, to 
make at least some remarks in the case of a field in non-zero characteristic. 

The first obstacle is the fact that a symmetric matrix over such a field may not 
decompose and hence may not be diagonizable. We shall therefore say that 

the spectrum of ~t~k,k+ 1 exists over F, denoted by specF(~k,k+l) , if Sk ST is 
diagonizable as a matrix over F. A partial result is 

P R O P O S I T I O N  2.5. Let (2', <)  be a join-meet regular partially ordered set 
and let F be afield. Suppose that specF(~k- 1,k) exists for some value ofk. Then 
specF(~k,k+l) exists unless O F belongs to s p e c F ( ~  k_ 1,k)' 

Proof. Recall the formula Sk(Sk)T----Ck(Sk_I)Ts+_I(d~--Ckdk)Id from 
Lemma 2.1 which, of course, remains valid over F. We see that Sk(Sk) T is 

diagonizable if and only if (Sk_I)TSk_I is. If Ex, for 2 in speCr(~k-1,k),denotes 
the eigenspace of Sk-I(Sk-1) T for 2, then the (Sk-1)TEx together with K, the 

kernel of (Sk-1)TSk-1, provide a decomposition into eigenspaces for 
(Sk 1)TSk - 1, see Lemma 2.3. Hence Sk(Sk) T is diagonizable over F. [] 

Of cour se  specF(~(~0A) exists for trivial reasons so that one can use the 
proposition and proceed by induction. From the proof  it is clear that the 

crucial point at each step is the structure of the isotropic subspace of the form 
induced by Sk(Sk) T. 

3. T A C T I C A L  DECOMPOSITIONS 

Here we are interested in the linear invariants of a tactical decomposition in a 

partially ordered set. We start by giving the relevant definitions. Let 
Y = (N, ~ ;  I) be an incidence structure with 'point set' ~ ,  'block set' N and 
incidence relation I ~< ~ x N in general. 

Suppose that B is a partition of the block set into s classes 
B1 . . . . .  B j , . . . ,  B s. Given some point ~ in ~ ,  let cj be the number of blocks in 
Bj which are incident with/~. The integer vector cB(~) = (cl . . . . .  cj . . . . .  cs) is 
the scheme for ~ relative to B. 
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Dually, if P is a partition of the point set into t classes P1 . . . . .  P i , . . . ,  Pt 
then schemes for blocks are defined in the same way. A decomposition (P, B) 
of 5 p is tactical if elements belonging to the same point or block class have the 
same scheme. In this case two matrices arise: the point scheme matrix C B 
whose t rows are the schemes of point classes, and the block scheme matrix Cv 
whose s rows are the schemes of the block classes. In Chapter 1.1.3 of 
Dembowski's book these matrices are called simply the incidence matrices of 
the decomposition. The decomposition into singletons is trivially tactical and 
here Cn (=  C~) = S is the incidence matrix of 5 p. 

For  a given partition P of the point set denote by X the incidence matrix 
between points and point classes, that is X/,,i = 1 if fi belongs to Pi and 
X~,~ = 0 otherwise. The product x T x  =: Np is the diagonal matrix of class 
sizes of P. For a partition of the block set the corresponding matrices are 
denoted by Y and NB. A simple double counting argument - see also Section 
1.1.3 in [ 5 ] - s h o w s  that YCv = STx and XCn = SY. Hence 

LEMMA 3.1. (i) YCp = sTx  and XCB = SY; 
(ii) C~NBCp = XTSSTX and C~NpCB = yTsTsy; 

(iii) N B C  P = CTNp, NB(CpCB)  = CTN~,CB. N p ( C B C p )  = C~,NBC P and 
Np(C~Cp)Np' = (CBCe) T. 

The last equation shows that CB Cp is symmetric in the inner product induced 
by Np and so is diagonizable. Hence the collection of its eigenvalues, with 
multiplicities, will be called the spectrum of the decomposition and is denoted 
by spec(P, B). If (P, B) is the partition into singletons, then spec(P, B) is the 
spectrum for the whole structure, as defined earlier. 

Various connections between spec(P, B) and spec(5 p) can be established in 
general. Here we only need the following: 

(a) Considering the decomposition (B, P) in the dual of S#, the non-zero 
parts of spec(P, B) and spec(P, B) are identical, by Lemma 2.3. 

(b) If Ex is an eigenspace of CBCp then Lemma 3.1 shows that XEz is an 
eigenspace of SS T so that spec(P, B) is always part of spec(SP). 

Let now (~C~, <)  be a partially ordered set with rank function and suppose 
that ~ is a partition of ~C~¢ k for each value of k. We denote the number of 
classes in ~ by tk and set J -  = { ~ ]  k = 0, 1, 2 . . . .  }. For a subset R of the 
rank values {[x[ [ x ~ £~} we say that 9- is an R-tactical decomposition of £# if 
( ~ ,  9-m) is tactical in ~k,m for every k and m in R. 

Tactical decompositions arise naturally from groups of automorphisms: 
the orbits of the group on the elements of ~q is R-tactical for every R. 

Taking a particular class of partially ordered sets, for instance ~ = 2 a, 
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where fl is a set of size n, one might ask whether all {1,. . . ,n}-tactical 
decompositions arise as orbits of permutation groups on ~). I am not aware of 
examples which do not arise in this way. It may be of interest to answer this 
question. There are many examples if R is a 'small' subset of { 1 . . . . .  n}; these 
show also that many other questions can be phrased in terms of tactical 
decompositions: 

Suppose that ~ is a collection of k-subsets from ~ such that (~, 93) is a 
t - (n, k, #) design on ft. Let Jk be the partion of Sk into ~ and S k \ ~  and let 
~-* be the trivial partition (one class) of £,e* for k* ~< t and arbitrary for the 
remaining values of k. Then Y" is { 1, 2 . . . . .  t, k}-tactical. Conversely, straight- 
forward arguments show that tactical decompositions of this particular form 
define t-designs. One might take this observation as the general definition of a 

design on a partially ordered set with rank function. 
For  the remainder we consider only decompositions which are R-tactical 

for the whole set of rank values; for convenience we call such decompositions 
simply tactical. In what follows we determine their spectra. First we adapt the 
notation from above as follows: Considering 5¢ k as the 'points' and £*°k+ 1 as 
the 'blocks' in ~k,k+ 1 and supposing that a tactical decomposition (Jkk, Jkk+ 1) 
is given in ~Ck, k + 1, we put C~ := Cp, Ck := CB, Nk := Ne and Nk + 1 := NB. 
Furthermore, the incidence matrix between Jkk and ~k is Xk SO that 
(Xk)TXk = Nk and spec(Jkk, Yk+ 1) is formed by the eigenvalues of (Ck)(C~). 

For a field F let the vector spaces corresponding to ~k and Jk be denoted 
by F ~ k  and FJk  respectively. Our notation is summarized best in Figure 1 in 
which all arrows of the same type commute, by Lemma 3.1. 

(S~_ ~)r S~ 
"'" F ~ k -  1 ~ -~ F ~k  ~ ~ F Sgk + 1"'" 

Sk_ ~ S~ 

T' I? Xk-I Xk-1 Xk IXk Xk+l~ k + l  

c:_, O U c; 
• "" F~-k- 1 ~ ~ F J k  ~ " FJ-k + 1 "'" 

Fig. i. 

LEMMA 3.2. I f  J is a tactical decomposition in a jo in -mee t  regular partially 

ordered set ~%P with parameters d~, d ;  and Ck, then for all k in {Ix[ [x 6 ~q'} we 

have: 

(i) Ck C ;  -- ck (C~  O(Ck- ~) = (d~ - Ckdk) Id, and 

(ii) (C+)TNk+ 1C + -- Ck(C;_ 1)xUk l(Ck-1) = (d~ -- Ckdk)Uk. 

Proof  O) Follow the arrows around Figure 1 and apply Lemma 2.1. (ii) 
Multiply the matrices in Lemma 2.1 by Xk on the right and by its transpose 
on the left. Now use Lemma 3.1(i). []  
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Now it becomes clear how the results of Section 2 generalize to spectra of 

tactical decompositions. Indeed, at the expense of clarity the results of Section 
2 could have been stated in this general form realizing that spec(5 0 is the 
spectrum of the decomposition into singletons. 

T H E O R E M  3.3. I f  ~-- is a tactical decomposition in a jo in-mee t  regular 
partially ordered set ~ ,  let t k denote the number of  classes in Yk. Then for all k 

in {Ixllx e ~ }  (i) tk-1 < tk implies d]  >t Ckdk, and (ii) d~- > Ckd k implies 

tk ~ t k+ l .  

Proof Using Lemma 3.3 and taking into account that all spectra values 

are non-negative, the argument is identical to the one in Theorem 2.2. []  

REMARKS.  1. In the case of 2 n the second part  of 3.3 is Theorem 1 in 

Livingstone and Wagner [-7]. For  designs the inequality is the well-known 
result due to Block, Parker  and others. For  a general reference to orbit 
theorems, see [11]. 

(2) Note  the curious converse in the first part  of 3.3 and its combination 
with Theorem 2.2(ii). If  there is any tactical decomposition in ~o with 

tk_  I < t k t h e n  n k ~ rig+ 1 unless d~ = Ckdk ! 

The next result is the description of the spectrum of (Jk, Jk  + 1) in terms of the 
number of partition classes. 

T H E O R E M  3.4. Let Y be a tactical decomposition in a jo in-mee t  regular 
partially ordered set ( ~ ,  <) and suppose that the numbers of  partition classes 

t i = 1~] satisfy t o <. tl <~ "" <<. tk up to some value of  k. Then spec(~k, Jk+l )  

consist of  the values 2o, k > 21,k > "'" > 2k,k from spec(~k,k+0 where 2i, k has 
multiplicity ti - t l-1 for 0 <<. i <. k. 

Proof  The argument is identical to the one proving Theorem 2.4. []  

We conclude with some remarks about  the spectrum of tactical decom- 
positions in ~k,,. when k < m are arbitrary. These are determined in a very 

similar fashion if ~ satisfies a chain condition: For all x in ~k and y in ~ . ,  the 

number  of saturated chains x = Xo < xl < "" < Xm-k = Y is either a const- 
ant (depending only on k and m) or is zero. This condition certainly holds in 
the subspace and subset lattices, but there are instances where this is not the 
case. 

4. S Y M M E T R I C  D E C O M P O S I T I O N S  

Let J- ,  as before, be a tactical decomposition in the jo in -mee t  regular poset 
c¢; we include the possibility that ~ = Y when Y is the decomposition into 
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singletons. The principal assumption of this section is that tk = tk+ 1 for some 

k so that there are equally many classes in ~k and in 4,+1- Such a 
decomposition will be called symmetric. 

This situation occurs automatically if nk = nk+ 1 = ranko(Sk), as for in- 
stance in the case of symmetric 2-designs with k = 1. However, there are 

many examples of symmetric decompositions when nk < nk+ i" They have 
been studied in [1], [-3] for subset lattices, in [8] for Steiner triple systems and 
in [-2] for projective spaces. 

From the previous section we may assume that the determinant Ak of 

C / C  + is known. Let 7r k = det(Nk) and 7rk+ 1 = det(Nk+ 1) be the products of 
the lengths of the classes in ~k and Jk+ 1 respectively. Then, by Lemma 3.1(iii). 

P R O P O S I T I O N  4.1. I f  (3"-k, J-k+O is symmetric in 5 f  then nkAk= 

~z k + l(det(Ck+)) 2 and Tc k + lAg = n k (det(Ck)) 2. 

The determination of the class lengths in tactical decompositions seems to be 
a rather difficult problem. Some results for subset lattices can be found in [-9] 

but these are specific to permutation groups. In this respect the proposition is 
a first step for symmetric decompositions. 

Lemmas 3.1(iii) and 3.2(ii) yield much stronger results if one considers the 
basic equations as rational congruence relations for matrices. 

Two rational square matrices A and B are congruent if there is a non- 
singular rational matrix C such that CTAC = B. Equivalently, A and B give 

rise to quadratic forms which differ only by a change of basis. This permits 
the application of the classical theory of quadratic forms due to Hasse and 
Minkowski for which we refer again to Section 1.1.3 in Dembowski 's  book, in 
particular with respect to the Hasse symbol Hp. A principal result is the fact 

that two matrices A and B are congruent if and only if lip{A} = Hp{B} for all 
primes p. A consequence of Lemma 3.2(ii) is therefore 

T H E O R E M  4.2. Let  (:-k, Jk+a) be symmetric in £# and suppose that A k -76 O. 

Then Hp{Nk+l}  = Hp{(d + - Ckdk)Nk + Ck(Ck-OTUk_l(Ck_O} for  all 
primes p. 

This statement is, of course, only useful if enough is known about  
(C~ 1)TNk_I(Ck_O. On occasions, however, this is automatic. Assume for 
instance k -- 1. Then Ck-1 is the row vector of class sizes of ~-1 and N o = 1. 
Hence ( C k _ I ) T N k _ I ( C k _ I ) = N T J N 1  where J is the all-one matrix and 
(d + - c ld[ )N1  + Cl (Co)TNo(Co)  = UT[-(d + - c l d ; ) N ;  1 + c l J ] U l .  The 
evaluation of the Hasse invariants for such a matrix becomes quite feasible, 
see Section 1.1.3 in Dembowski 's  book. We have therefore an extension of the 
Bruck-Ryser  theorem on symmetric 2-designs. 
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C O R O L L A R Y  4.3. I f  (3-1,3-2) is symmetric in ~f  

Hp{N2}  = Hp{(d~ - c l d [ ) N ~  1 + c l J }  for  all primes p. 

with A1 =/: 0 then 
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