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ON A CLASS OF PARTIALLY ORDERED SETS AND
THEIR LINEAR INVARTANTS

Otto Wagner zum 60. Geburtstag gewidmet

ABSTRACT. Let (%, <) be a finite partially ordered set with rank function. Then . is the disjoint
union of the classes %, of elements of rank k and the order relation between elements in %, and
%+, can be represented by a matrix S;. We study partially ordered sets which satisfy linear
recurrence relations of the type S(S3) — cSe—)™Sk—; = (@ — ¢,d;)Id for all k and certain
coefficients di+, d;- and ¢;.

1. INTRODUCTION

Let (&, <) be a finite partially ordered set with unique minimal element 0.
We suppose that ¥ admits a rank function| [: . £ — N so that for every x in
& any saturated chain 0 < x; < --- < x, = x has length r = |x| depending
only on x. We set %, = {x|xe %, |x| = k} and n, = |.%,|. We are interested in
the following regularity conditions:

RI For every k=0, 1,... and every x in %, the numbers d; :=
Hylye%s1, vy > x} and di :=|{z|ze %, _,, x > z}| depend only
on k.

RII For every k=1, 2,... there is a constant ¢, such that if x' # x
belong to %, then |{y|lye %, X' <y>x}|=cl{z]ze %1,
x' >z < xj|.

Such a partially ordered set will be called join—meet regular. The main
examples which motivate this definition are given in Section 2.

A poset with rank function can be represented by a family of incidence
matrices Sg, Sy, S,,..., Sk, ... where the rows of S, are indexed by the
elements in %, the columns indexed by the elements of %, ., and where
(Sp)yy = 1if x < y and (S)), , = 0 otherwise. In this paper we shall determine
some of the linear invariants of these matrices over various fields.

The first result gives the relationship between local parameters such as d,
dy , ¢, and the size of %,. It is a consequence of a basic lemma which translates
the regularity conditions into a simple matrix equation. From this we also
obtain the eigenvalue distribution of S,-S; and hence the rank of the
incidence matrices.

In Section 3 we go on to consider tactical decompositions. Here two
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families of incidence matrices arise; their invariants are treated in a very
similar way.

Section 4 deals with symmetric tactical decompositions in which the sets .,
and .%, , ; are decomposed into equally many classes for some values of k. The
main result-shows that the rational congruence relations which give rise to
the Bruck—Ryser theorem on symmetric 2-designs remain in force in this
much more general situation.

2. INCIDENCE MATRICES AND EIGENVALUES

Among the principal examples of join—meet regular posets are finite
dimensional projective spaces over a finite field. We consider these as the
lattice of subspaces naturally ordered by inclusion; the regularity condition IT
essentially is the Grassman identity.

Similarly, the ‘characteristic 1’ analogue of the above, namely the boolean
algebra of subsets of a finite set, is join—meet regular.

There are many other examples. For instance, 2-designs can be viewed in
this way: Let 2 and £ be the point and the block sets of a 2-(v, k, u) design.
On & = {0} U2 U Z define an order by 0 < 4 < £ if and only if 4 is on 4.
Then & is join—meet regular with parameters df =v, d; =k, ¢, = p and
¢, = 0. And conversely, a join—meet reguldr set of this type is a 2-design.

There are also general constructions. We mention a few:

1. The truncation - retaining the lower part — of a join—meet regular poset
is join—meet regular.

2. Mirrors: if =% v vBHu--VHULH V- 18 join—meet
regular we select some k and form a mirrored version ¥* =
G LUV VKBV LU LU, in which the
order is reversed in the upper part.

3. Co-catenation: if ¥ has a unique maximal element 1, and if .# is join—
meet regular with minimal element 0, then ¥ u .# is join—meet
regular upon identifying 14 = 0.

4. Direct or tensor products of join—meet regular sets retain the property.

Let now . be a partially ordered set with rank function. Every pair k # m of
integers gives rise to an incidence structure % ,, = (%, %) in which
incidence is induced by the order relation. As above we denote the incidence
matrix of %, ;. by S, and identify a standard basis vector of R™ with the
corresponding element of .%.

Suppose that % satisfies the regularity condition RI. Then S,(S,)"x=
Si(Z.<,y) with y in &, ., and further S, (Z,.,y) = dy x + Z, .. f(x")x" where
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f(x') is the number of y for which x < y> x". Similarly, we get
(Sk—)TS,_ 1 x = dy x + Ty s fH*(X')x’ where f*(x') now is the number of z in
%, _ for which x > z < x". Hence we have the basic

LEMMA 2.1. If (%, <) satisfies Rl then RII holds if and only if there
are constants ¢, for every k in {lxllxeﬁf} such  that
Si(S)" — cx(Sx—1)"Sk—1 = (& — crdy)Id.

THEOREM 2.2. Let (¥, <) be join—meet regular. Then for each value of k in
{Ix|| xe £}:

() n_, < ny implies df = c,d;, and

@) dif > c,d; implies n, < n, 5.

This theorem is reminiscent of Fisher’s inequality. It suggests that
particular attention should be paid to the case n, _; = n,; we shall come back
to this question in Section 4.

Proof. In Lemma 2.1 all matrices are symmetric and non-negative definite
and have size n,. Hence all their eigenvalues are non-negative. The result will
follow from an inspection of the lowest eigenvalues. If n,_; < n, then
(S,_)"S,_, is singular so that d;f — c,d; is the least eigenvalue of S,(S,)T and
hence is non-negative. Conversely, if the coefficient on the right-hand side in
Lemma 2.1 is positive then S,(S;)T is non-singular and so in particular
My 2 My U

If & = (2, %4; 1) is a finite incidence structure in general, with ‘point set’ 2,
‘block set’” 4, incidence relation 1 < #x 4% and incidence matrix S, the
spectrum of & is the collection of eigenvalues of the matrix SST. This will be
denoted by spec(¥) and we take account of the multiplicities of eigenvalues.
Clearly the sum of the multiplicities is |#|. Note that the definition is slightly
different from the usual one in the case of graphs where the eigenvalues of the
adjacency matrix 4 = SST — D are considered; here D is the diagonal matrix
of vertex degrees.

In particular, we can speak about the spectrum of %, ., (k=0,1,...) for
any poset with rank function. In the case of join—-meet regular posets spectra
can be determined completely. First we need

LEMMA 2.3. Let V> V* and B:V* > V be linear maps between vector
spaces over some field. Denote by E, rhe eigenspace of the map Ba:V — V and
by E¥ the eigenspace of the map af: V* — V* for the same value A in both cases.
If A #0then a E, — E¥ and B: E¥ — E, are isomorphisms.

Proof. For xin E, we have afi(ax) = a(fox) = Aox so that a: E, — E¥, even
injectively as long as 4 # 0. Apply the same argument to S. ]
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THEOREM 24. Let (&, <) be join—meet reqular and suppose that we have
Ho S 1y < - S<muptosomevalueof k. If Aoy > Ay > ..., > A, denote the
distinct values in spec(Z,.,), With corresponding multiplicities g .,
W15 Hog» then the A, are integers and:

) t=kand p, =n;—n;_y for 0<i<k,

(i) Ao = di + Zocsarlscjcic)ds —dyy4) and
dig = + Zics<ilMsejcreds —dgyy) — (Li<j<nchdi
for 0 < i < k. In particular, 1,, = di — c,dy .

Proof. When & = (2,4%;1) is an incidence structure, its dual is the
incidence structure &' = (4, ;') in which the role of points and blocks is
interchanged while incidence is as in . Thus, if % has incidence matrix S,
then %’ has incidence matrix ST. It follows therefore from Lemma 2.3 that
spec(”') is obtained by appending |B| — || zeros to spec(¥) (or deleting
|P| — |B| zeros, if |B| < |P)).

This applies in particular to the incidence structures %, ;. Hence if
Aog—1> Atk—1 > 5., > Auy_, are the special values of %, _, , then those of
Lreg—18T€ Aggq > Ay g1 >,eeey >hppo1 = Apygg—g Where duyq ;o =0
has multiplicity n, — n,_;. It follows from Lemma 2.1 that the values in
spec( Ly 1) are

Crhox—1 + A —edy) > Gdy oy + (@ — qdi)>, ...,
>Cedpg—1 + (A — cpdy) = (df — cdy).

The formulae under (i) and (ii) are obtained by induction on k. It is now clear
that the 4, are rational numbers. However, as eigenvalues of an integer
matrix, they are algebraic integers and hence ordinary integers. O

REMARKS. 1. It is clear from the proof that the assumption n, < 1y, is
not really essential; the general case can be treated similarly.

2. In characteristic zero the matrices S and SST have the same rank. (In
characteristic p > 0 this may not be the case!) Therefore the theorem gives the
rank of §; for all values of k. In particular, rank(S,) = n, unless
(df — ¢dy) = 0, by Theorem 2.2. About this question see also Section 9 in
Stanley [10].

3. Defining the diameter of an incidence structure as the usual diameter in
the bipartite incidence graph, one can show that the diameter is bounded by
the number of distinct eigenvalues in spec(%). It follows therefore that & ; 4,
has diameter at most k + 1.

4. If G is the automorphism group of %, its action on each %, naturally
extends to a linear action on R"™, The incidence matrices give rise to maps
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S.ST:R™ — R™ and it is clear that these are G-maps. Therefore each
eigenspace E, for A in spec(Z,+,) is G-invariant so that we obtain
decompositions of R™ > R™-! > ... > R"™ into invariant G-modules. See
Lemma 2.3 and also [4]. In the case of the subspace or subset lattices
mentioned at the beginning of this section, the E,’s are in fact irreducible.

2.1. The Modular Case

While we have seen that our spectra are integer valued, we have so far
considered these only over the real numbers. One is tempted, therefore, to
make at least some remarks in the case of a field in non-zero characteristic.
The first obstacle is the fact that a symmetric matrix over such a field may not
decompose and hence may not be diagonizable. We shall therefore say that
the spectrum of %, +, exists over F, denoted by specg(% . +1), if S, St is
diagonizable as a matrix over F. A partial result is

PROPOSITION 2.5. Let (%, <) be a join—meet regular partially ordered set
and let F be a field. Suppose that specg(%; - 1 1) exists for some value of k. Then
specp(Zy i +1) exists unless Op belongs to specg(Z; — 1 ).

Proof. Recall the formula S.(S)T = (S, ,)'Si— 1 (df — cidy))Id from
Lemma 2.1 which, of course, remains valid over F. We see that S,(S,)T is
diagonizable if and only if (S, _,)"S,_, is. If E,, for 4 in spec(%, _, ,)denotes
the eigenspace of S,_ ,(S,_,)" for A, then the (S,_,)"E, together with K, the
kernel of (S,_;)"S,_., provide a decomposition into eigenspaces for
(Sx_1)*S,_1, see Lemma 2.3. Hence S,(S,)" is diagonizable over F. 0

Of course specy(Z,, ;) exists for trivial reasons so that one can use the
proposition and proceed by induction. From the proof it is clear that the
crucial point at each step is the structure of the isotropic subspace of the form
induced by S,(S)".

3. TACTICAL DECOMPOSITIONS

Here we are interested in the linear invariants of a tactical decomposition in a
partially ordered set. We start by giving the relevant definitions. Let
& = (2, %#; 1) be an incidence structure with ‘point set’ 2, ‘block set’” # and
incidence relation I < 2 x # in general.

Suppose that B is a partition of the block set into s classes
B,,...,Bj,..., B;. Given some point 4 in &, let c; be the number of blocks in
B; which are incident with 4. The integer vector cg(#) = (Cg,...,Cjy ..., C5) I8
the scheme for 4 relative to B.
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Dually, if P is a partition of the point set into ¢ classes Py,..., P;,..., P,
then schemes for blocks are defined in the same way. A decomposition (P, B)
of & is tactical if elements belonging to the same point or block class have the
same scheme. In this case two matrices arise: the point scheme matrix Cy
whose t rows are the schemes of point classes, and the block scheme matrix Cp
whose s rows are the schemes of the block classes. In Chapter 1.1.3 of
Dembowski’s book these matrices are called simply the incidence matrices of
the decomposition. The decomposition into singletons is trivially tactical and
here Cy (=CT) = S is the incidence matrix of &.

For a given partition P of the point set denote by X the incidence matrix
between points and point classes, that is X ,; =1 if 4 belongs to P; and
X 4 = 0 otherwise. The product XTX =:N, is the diagonal matrix of class
sizes of P. For a partition of the block set the corresponding matrices are
denoted by Y and Nj. A simple double counting argument — see also Section
1.1.3 in [5]—shows that YC, = 87X and XCy = SY. Hence

LEMMA 3.1. (i) YC, = S"X and XCy = SY;
(i) CINZCp = X"SSTX and CEN,Cy = Y'S'SY;
(iii) NgCp = CENp, Ng(CpCp) = CENpCp. Np(CzCp) = CENCp and
Np(CgCp)Np '= (Cp CP)T'

The last equation shows that C;Cp is symmetric in the inner product induced
by Np and so is diagonizable. Hence the collection of its eigenvalues, with
multiplicities, will be called the spectrum of the decomposition and is denoted
by spec(P, B). If (P, B) is the partition into singletons, then spec(P, B) is the
spectrum for the whole structure, as defined earlier.

Various connections between spec(P, B) and spec(#) can be established in
general. Here we only need the following:

(a) Considering the decomposition (B, P) in the dual of &, the non-zero
parts of spec(P, B) and spec(P, B) are identical, by Lemma 2.3.

(b} If E, is an eigenspace of CzC, then Lemma 3.1 shows that XE; is an
eigenspace of SST so that spec(P, B) is always part of spec(¥).

Let now (&, <) be a partially ordered set with rank function and suppose
that 7, is a partition of % for each value of k. We denote the number of
classes in 7, by , and set = {7, |k =0,1,2,...}. For a subset R of the
rank values {|x| Ixef} we say that Z is an R-tactical decomposition of & if
(T, T 1s tactical in &, , for every k and m in R.

Tactical decompositions arise naturally from groups of automorphisms:
the orbits of the group on the elements of % is R-tactical for every R.

Taking a particular class of partially ordered sets, for instance & = 2%
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where Q is a set of size n, one might ask whether all {1,...,n}-tactical
decompositions arise as orbits of permutation groups on Q. I am not aware of
examples which do not arise in this way. It may be of interest to answer this
question. There are many examples if R is a ‘small’ subset of {1,. .., n}; these
show also that many other questions can be phrased in terms of tactical
decompositions:

Suppose that & is a collection of k-subsets from Q such that (Q, %) is a
t — (n, k, y) design on Q. Let 7, be the partion of % into # and £\% and let
T ¥ be the trivial partition (one class) of £ for k* < t and arbitrary for the
remaining values of k. Then 7 is {1,2,...,¢, k}-tactical. Conversely, straight-
forward arguments show that tactical decompositions of this particular form
define ¢t-designs. One might take this observation as the general definition of a
design on a partially ordered set with rank function.

For the remainder we consider only decompositions which are R-tactical
for the whole set of rank values; for convenience we call such decompositions
simply tactical. In what follows we determine their spectra. First we adapt the
notation from above as follows: Considering .%, as the ‘points’ and %, ., as
the ‘blocks’ in %, ; +; and supposing that a tactical decomposition (7, Z; 4 ;)
is given in %, ;,,, we put G := Cp, C; := Cy, N;:= Np and Ny := Np.
Furthermore, the incidence matrix between ., and %, is X, so that
(XX, = N, and spec(%, 7, +,) is formed by the eigenvalues of (C; XC;").

For a field F let the vector spaces corresponding to %, and 7, be denoted
by F.%, and FZ, respectively. Our notation is summarized best in Figure 1 in
which all arrows of the same type commute, by Lemma 3.1.

ST s,
o F_, & ; F%, < FL,

k-1 S
1 T 1
X4y |Xk—1 X ‘Xk Xie+1 |Xk+1
U (o N U cy U

“FIy =T FI & FT g
-

Fig. 1.

LEMMA 3.2. If J is a tactical decomposition in a join—meet regular partially
ordered set ¥ with parameters d;}, d;; and c,, then for all k in {|x| [x e L} we
have:

(i) Ce Cf — (G NCi-y) = (& — ¢y ) 1d, and

(i) (CI' N1 CF — a(Ci )Ny (G- ) = (di — ¢,di )Ny

Proof. (i) Follow the arrows around Figure 1 and apply Lemma 2.1. (ii)
Multiply the matrices in Lemma 2.1 by X, on the right and by its transpose
on the left. Now use Lemma 3.1(i). O
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Now it becomes clear how the results of Section 2 generalize to spectra of
tactical decompositions. Indeed, at the expense of clarity the results of Section
2 could have been stated in this general form realizing that spec(&) is the
spectrum of the decomposition into singletons.

THEOREM 33. If 9 is a tactical decomposition in a join—meet regular
partially ordered set £, let t, denote the number of classes in 7. Then for all k
in {|Ix||xe L} () ti-1 <t, implies df = ¢ dy, and (ii) df > ¢, di implies
by S lygy

Proof. Using Lemma 3.3 and taking into account that all spectra values
are non-negative, the argument is identical to the one in Theorem 2.2. []

REMARKS. 1. In the case of 22 the second part of 3.3 is Theorem 1 in
Livingstone and Wagner [7]. For designs the inequality is the well-known
result due to Block, Parker and others. For a general reference to orbit
theorems, see [11].

(2) Note the curious converse in the first part of 3.3 and its combination
with Theorem 2.2(ii). If there is any tactical decomposition in ¥ with
te—q < t, then m, < n,,, unless d;f = ¢, d; !

The next result is the description of the spectrum of (4, ;. 1) in terms of the
number of partition classes.

THEOREM 3.4. Let & be a tactical decomposition in a join—meet regular
partially ordered set (£, <) and suppose that the numbers of partition classes
t; = | T} satisfy to < t; < - <ty up to some value of k. Then spec(Fy, Ty 1 1)
consist of the values Ay, > Ay > -+ > A, from spec(%4 ) where A, has
multiplicity t; — t,_, for0<i<k

Proof. The argument is identical to the one proving Theorem 2.4. O

We conclude with some remarks about the spectrum of tactical decom-
positions in % , when k < m are arbitrary. These are determined in a very
similar fashion if % satisfies a chain condition: For all x in %, and y in .%,, the
number of saturated chains x = x, < x;, < --- < x,,_, = ¥y is either a const-
ant (depending only on k and m) or is zero. This condition certainly holds in
the subspace and subset lattices, but there are instances where this is not the
case.

4. SYMMETRIC DECOMPOSITIONS

Let 77, as before, be a tactical decomposition in the join—meet regular poset
Z; we include the possibility that & = J when  is the decomposition into
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singletons. The principal assumption of this section is that t, = £, ; for some
k so that there are equally many classes in 4, and in Z,,,. Such a
decomposition will be called symmetric.

This situation occurs automatically if n, = n,,; = ranky(S,), as for in-
stance in the case of symmetric 2-designs with k = 1. However, there are
many examples of symmetric decompositions when n, < n,,,. They have
been studied in [ 1], [3] for subset lattices, in [ 8] for Steiner triple systems and
in [2] for projective spaces.

From the previous section we may assume that the determinant A, of
Ci C/ is known. Let m, = det(N,) and 7, ., = det(N,,) be the products of
the lengths of the classes in 7, and 7, , , respectively. Then, by Lemma 3.1(iii).

PROPOSITION 4.1. If (9, Tix+1) is symmetric in ¥ then mA, =
e+ 1(det(CY))? and w1 Ay = i (det(Cy))%.

The determination of the class lengths in tactical decompositions seems to be
a rather difficult problem. Some results for subset lattices can be found in [9]
but these are specific to permutation groups. In this respect the proposition is
a first step for symmetric decompositions.

Lemmas 3.1(iii) and 3.2(ii) yield much stronger results if one considers the
basic equations as rational congruence relations for matrices.

Two rational square matrices A and B are congruent if there is a non-
singular rational matrix C such that C'AC = B. Equivalently, 4 and B give
rise to quadratic forms which differ only by a change of basis. This permits
the application of the classical theory of quadratic forms due to Hasse and
Minkowski for which we refer again to Section 1.1.3 in Dembowski’s book, in
particular with respect to the Hasse symbol H,. A principal result is the fact
that two matrices 4 and B are congruent if and only if H,{4} = H,{B} for all
primes p. A consequence of Lemma 3.2(ii) is therefore

THEOREM 4.2. Let (7, 7, +1) be symmetric in & and suppose that A, # 0.
Then Hp{Nk+ 1= Hp{(dl:r — Cdy )Ny + ¢ (Cy - 1)TNk~1(CI:—1)} for  all
primes p.

This statement is, of course, only useful if enough is known about
(Ce_1)"Ny_1(C¢_ ). On occasions, however, this is automatic. Assume for
instance k = 1. Then C,_, is the row vector of class sizes of 7; and N, = 1.
Hence (C;_{)"N,_(Ci_;) = N1JN, where J is the all-one matrix and
(@df —cd)N, + c1(Co)'No(Cq) = Ni[d{ — cidi)INT '+ ¢, JIN,. The
evaluation of the Hasse invariants for such a matrix becomes quite feasible,
see Section 1.1.3 in Dembowski’s book. We have therefore an extension of the
Bruck—Ryser theorem on symmetric 2-designs.
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COROLLARY 43. If (7,,93) is symmetric in & with A, #0 then
H,{N,} = H,{(d{ — c,d{)N{' + ¢ J} for all primes p.
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