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� 4Suppose that V s 1, 2, . . . , ab for some non-negative integers a and b. Denote
Ž .by P a, b the set of unordered partitions of V into a parts of cardinality b. In this

Ž .paper we study the decomposition of the permutation module C P a, b where C is
Ž .the field of complex numbers. In particular, we show that C P 3, b is isomorphic to

Ž .a submodule of C P b, 3 for b G 3. This settles the next unproven case of a
conjecture of Foulkes. Q 2000 Academic Press

1. INTRODUCTION

� 4For positive integers a and b let V s 1, 2, . . . , ab and denote by

< < <� 4P a, b s D , D , . . . , D D ; V , D l D s B if i / j, D s bŽ . � 41 2 a i i j i

Ž .the unordered a, b -partitions of V. Throughout G denotes the symmetric
Ž . Ž .group Sym ab . If F is any field let FP a, b be the permutation module

Ž .arising from the natural action of G on P a, b . Equivalently, one can
Ž .view FP a, b as the permutation representation of G on the cosets of the

Ž . Ž .wreath product Sym b X Sym a .
Ž .In this paper we study the decomposition of C P a, b where C denotes

Ž . Ž . Ž .the field of complex numbers and a, b s 3, k or k, 3 for arbitrary k.
Ž . w xThe decomposition of C P 3, k is already given in 16 . In Section 4 we

give a new proof of this result which allows us to prove the main theorem
of this paper:

Ž .THEOREM. If 3 F k then C P 3, k is isomorphic to a submodule of
Ž .C P k, 3 .
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w xThis settles a special case of a conjecture of Foulkes 6 which says that
Ž . Ž .C P a, b is isomorphic to a submodule of C P b, a for any a F b. The

w xliterature on this question includes 1, 2, 4, 6, 7, 9, 10, 11, 12, 13, 16 . The
w xresults in Thrall’s 1942 paper 16 give the decompositions of the permuta-

Ž . Ž .tion representations C P 2, b and C P b, 2 ; from these one can verify
w xFoulkes’ conjecture for a s 2 and b arbitrary. In 1944 Littlewood 11

went on to give the complete decompositions of the representations
Ž . Ž . w xC P b, 3 for b F 6 and C P b, 4 for b F 5. In 1950 Foulkes 6 decom-

Ž . Ž .posed C P b, 5 for b F 4 and C P b, 6 for b F 4. Using Littlewood’s
Ž .decomposition of C P 5, 4 Foulkes noticed that every term in the decom-

Ž . Ž .position of C P 4, 5 occurs in C P 5, 4 . On the basis of these results
w xFoulkes made the aforementioned conjecture. In 9 a proof of the conjec-

ture for a s 2 and b G 2 is given in terms of Gaussian coefficients and
w x w xplethysms. In 4 eigenvalue arguments already suggested in 1, 17 provide

w xyet another proof. In 1 it is shown that the truth of Foulkes’ conjecture
Ž . Ž .for the pair of integers b, b implies the result for a, b with a F b.

2. NOTATION AND GENERAL RESULTS

We adopt the basic notation about the representation theory of the
w xsymmetric groups introduced by James in 8 . We briefly recap some of the

definitions and introduce a join operation for tableaux.
Ž .If m s m , m , . . . , m is a partition of n and if t is a m-tableau then1 2 t

Ž .the row-stabilizer of the tableau t is the subgroup R of Sym n which fixest
all rows of t set-wise. Similarly, the column-stabilizer is the subgroup C oft

Ž .Sym n which fixes all columns of t set-wise. The signed column sum k ist
Ž .the element of C Sym n obtained by summing the elements of the column

stabilizer of t with signs attached. To each m-tableau t we associate the
� 4 � 4polytabloid e [ t k where t is the tabloid obtained from t. The modulet t

spanned by this polytabloid is known as the Specht module for m and is
denoted by S m. It is a well known fact that S m is irreducible and that all

Ž . mirreducible C Sym n -modules arise in this fashion. We will denote by M
Ž .and C Sym n -module generated by m-tabloids.

We will also need the concept of a tableau with repeated entries. To
distinguish these from tableaux with distinct entries we use capital letters

Ž U U U . Uand say that a m-tableau T has type m* s m , m , . . . , m if i occurs m1 2 l i
� 4 Ž .times in T for i g 1, 2, . . . , l . Denote by TT m, m* the set of m-tableaux

Ž . Ž .of type m*. We can define an action of Sym n on TT m, m* in the
Ž .following way. We label the place numbers of T g TT m, m* according to

the positions of the numbers 1, 2, . . . , n in t. That is, for i s 1, . . . , n let
Ž .T i be the entry in T which occurs in the same position as i occurs in t.

Ž . Ž . Ž y1 .Then for g g Sym n we have Tg i s T ig . We will say that T and T 9
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are row equï alent if T 9 s Tg for some permutation g in the row stabilizer
of the given tableau t.

w xWe use the standard diagrams for tableaux as in 8 and distinguish the
associated tabloids by drawing lines between rows. Given a m-tableau t
and a m-tableau T of type m*, we can construct a m*-tabloid by putting the
ij-entry of t into the row of the tabloid given by the ij-entry of T. It is easy
to see that given a m-tableau t there is a one-to-one correspondence
between m-tableaux T of type m* and m*-tabloids. Therefore we will not
distinguish between the module M m* and the isomorphic module of
m-tableaux of type m*.

Ž . Ž . m m*For T g TT m, m* define a C Sym n -homomorphism from M to M
given by

<� 4 � 4Q : t ¬ T 9 T 9 is row equivalent to TÝT

and extend linearly to the whole of M m. We will express elements in the
image of this homomorphism in terms of tableaux of type m*. We denote

m ˆthe restriction of Q to S by Q .T T

Remark. For g g R it is easy to see that Tg k s 0 if and only if some1 t 1 t
column of Tg contains two identical numbers. Thus we only need to1
consider those Tg which have distinct entries in each column.1

Ž .A tableau T in TT m, m* will be called semistandard if its entries are
non-decreasing along the rows and strictly increasing down its columns.

Ž . Ž .Let TT m, m* be the set of semistandard tableaux in TT m, m* . Theo
ˆ Ž .homomorphisms Q with T in TT m, m* are called semistandard homo-T o

morphisms. We need the following standard results.

ˆ� <THEOREM 2.1. If F is a field of characteristic zero then Q T gT
Ž .4 Ž m m*.TT m, m* is a basis for Hom S , M .o F SymŽn.

COROLLARY 2.2. If F is a field of characteristic zero then the dimension of
Ž m m*.the space Hom S , M is the number of semistandard m-tableaux ofF SymŽn.

type m*.

The proof of our main result is based on the fact that the multiplicity of
m Ž . Ž m Ž ..S in C P a, b is the dimension of Hom S , C P a, b . Thus it isC SymŽn.

sufficient to show for k G 3 that the number of linearly independent
m Ž .homomorphisms from S to C P k, 3 is greater than or equal to the

m Ž .multiplicity of S in C P 3, k . We will therefore construct a suitably sized
m Ž . Ž .set of non-zero homomorphisms Q from S to C P 3, k and C P k, 3 ,Ti

Ž .respectively, with the property that Q e involves an element which isT ti
Ž .not involved in Q e for all j with j - i. This ensures that our chosenT tj

homomorphisms are linearly independent.
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Essential will be the following join operation for tableaux. Let T 1 and
2 Ž .T be tableaux with or without repeated entries and let l be the larger of

the number of rows of T 1 and T 2. Write down the columns of T 1 of
length l followed by the columns of T 2 of length l, in the same order.
Continue this process for columns of length l y i with i s 1, 2, . . . , l y 1
or until all columns of T 1 and T 2 have been used up. The resulting
tableau is the join of T 1 and T 2, denoted by T 1 k T 2.

EXAMPLE 2.3. If T 1 and T 2 are the tableaux

11123 44455568
1 2T s and T s ,22 66777

33 88

then we have

1144455123568
1 2T k T s .2266777

3388

Ž .3. DECOMPOSING C P a, b

Semistandard homomorphisms give rise to CG-homomorphisms from
m Ž .S to a module isomorphic to C P a, b , in the following way.

DEFINITION 3.1. Two m-tableaux T and T* have the same pattern if the
entries of T can be relabeled to give T*.

For example,

44423 22213
T s and T* s223 113

3 3

have the same pattern.
aŽ .If T is a tableau of type b let T denote the corresponding unordered

Ž .partition in P a, b . In particular, if T and T* have the same pattern then
] Ž .T s T*. This yields a map from the space of tableaux to C P a, b . The

]ˆcomposition of Q and is denoted by Q . Thus any element involved inT T
� 4Q t k can be written in the form Tg g with g g R and g g C .T t 1 2 1 t 2 t

m Ž .Given a partition m of ab we can test whether S appears in C P a, b .
m mŽ .If S is a submodule of C P a, b then the image under Q of S isT

Ž .non-zero for some T. So, in fact, it is sufficient to show that Q e isT t
non-zero for some T.
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The following example and lemma illustrate these definitions.

EXAMPLE 3.2. Let T and t be given by

1112 1356T s and t s .
22 24

Then

1112 1121 1211 2111ˆ � 4Q t s q q qT 22 22 22 22

135 136 156 356
s q q q

246 245 243 241

and so

135 136 156 356 235 236ˆ � 4Q t k s q q q y yT t 246 245 243 241 146 145

256 356 245 246 256 456
y y q q q q

143 142 136 135 134 132

145 146 156 456
y y y y

236 235 234 231

135 136 235 236 245 246
s q y y q q

246 245 146 145 136 135

145 146
y y .

236 235

] Ž .Upon applying we get the following element of C P a, b :

135 136 235 236Ž . Ž . Ž . Ž .� 4Q t k s 2 q 2 y 2 y 2 .T t 246 245 146 145Ž . Ž . Ž . Ž .

LEMMA 3.3. If 0 F c F b the Specht module S ŽabycŽay1., c Žay1.. appears in
Ž .C P a, b if and only if c is e¨en. Moreo¨er, when c is e¨en then

ŽabycŽay1., c Žay1.. Ž .S appears in C P a, b with multiplicity one.

Ž Ž . Žay1..Proof. There is only one semistandard ab y c a y 1 , c -tableau
Ž a.of type b . Denote this tableau by T. By calculating the coefficients

Ž . Ž� 4 . Žof a, b -partitions involved in Q t k , where t is any ab yT t
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Ž . Žay1..c a y 1 , c -tableau, we see that the coefficient is a! if c is even and
zero otherwise.

Ž .We remark that the modules in the decomposition of C P 2, k come
straight from Lemma 3.3 and it can be checked by calculating dimensions
that these are all the modules in its decomposition.

Ž .4. THE DECOMPOSITION OF C P 3, k

Ž .In this section we give the decomposition of C P 3, k for k arbitrary.
w xThis decomposition is less straightforward and was done by Thrall 16 in

1942. We will outline a somewhat more modern proof of it.

Ž .THEOREM 4.1. The irreducible constituents of C P 3, k are:

Ž . Ž3ky4 uys, 2 uqs, 2 u. Ž .i S , where 0 F u, s and 3 k y 2u G 2 s, with multi-
plicity m andky2 u, s

Ž . Ž3ky4 uysy5, 2 uqsq4, 2 uq1. Ž .ii S , where 0 F u, s and 3 k y 2u y 3 G
2 s, with multiplicity m .ky2 uy3, s

The multiplicities m are gï en by¨ , s

0 if s s 1¡
c q 1 if s / 1 and s F ¨~m s¨ , s s y ¨ q 1
c y q 1 if s / 1 and s ) ¨ ,¢ 2

� 4 w xwhere s s 6c q r with r g 0, 2, 3, 4, 5, 7 and denotes the integer part
function.

Ž .Proof outline . Part 1. For each m in the theorem we construct an
� 4integer set I and a collection T : w g I of semistandard tableaux of typew

3Ž . � 4k with the property that Q : w g I are linearly independent homo-Tw
m Ž . mmorphisms from S to C P 3, k . To show that the multiplicity of S in

Ž . < <C P 3, k is at least m we require I G m . We choose the followingm m

Ž 3.semistandard tableaux of type k :

Ž . Ž .i If m s 3k y 4u y s, 2u q s, 2u and k y 2u G s then for w
ranging over the even numbers between 0 and 2c let T be the semistan-w
dard tableaux

1 ??? 1 1 ??? 1 1 ??? 1 1 ??? 12 ??? 23 ??? 3
2 ??? 2 2 ??? 2 3 ??? 3 .^̀ _̂ `_
3 ??? 3 s y w w^̀ _

2u



DENT AND SIEMONS242

Ž . Ž .ii If m s 3k y 4u y s, 2u q s, 2u and k y 2u - s then for w
Ž .ranging over the even numbers between s y k y 2u and 2c let T bew

the semistandard tableaux

1 ??? 1 1 ??? 1 1 ??? 1 2 2 2 ??? 23 ??? 3
2 ??? 2 2 ??? 2 3 ??? 3 3 ??? 3 .^̀ _̂ ` _
3 ??? 3 s y w w^̀ _

2u

Ž . Ž .iii If m s 3k y 4u y s y 5, 2u q s q 4, 2u q 1 and k y 2u y
3 G s then for w ranging over the even numbers between 0 and 2c let Tw
be the semistandard tableaux

1 ??? 1 1111 1 ??? 1 1 ??? 1 1 ??? 12 ??? 23 ??? 3
2 ??? 2 2222 2 ??? 2 3 ??? 3 .^̀ _̂ `_
3 ??? 3 3 s y w w^̀ _

2u

Ž . Ž .iv If m s 3k y 4u y s y 5, 2u q s q 4, 2u q 1 and k y 2u y
Ž .3 - s then for w ranging over the even numbers between s y k y 2u y 3

and 2c let T be the semistandard tableauxw

1 ??? 1 1111 1 ??? 1 1 ??? 12 ??? 2 2 ??? 23 ??? 3
2 ??? 2 2222 2 ??? 2 3 ??? 33 ??? 3 .^̀ _̂ ` _
3 ??? 3 3 s y w w^̀ _

2u

For linear independence, we show that for a fixed tableau t there is a
Ž . Ž . Ž .3, k -partition involved in Q e which is not involved in Q e for i g IT t T tw i

with i - w. This then implies that each S m has multiplicity at least m .m

Ž . Ž .Part 2. Determine the permutation rank of Sym 3k on P 3, k . This
involves counting 3 = 3 integer matrices with constant row and column
sum k, up to a certain equivalence. This can be done using Chapter 1 of
w x15 and it turns out that this permutation rank is

1 4 3 2� 4k q 6k q 64k q 192k q 160 q 128c if k is even288

1 4 3 2� 4k q 6k q 64k q 138k q 79 q 128c if k is odd,288



CONJECTURE OF FOULKES 243

where

1 if 3 divides kc s ½ 0 otherwise.

w xThese numbers are sequence 973 in Sloane’s book 14 from where one can
w xsee that they relate to certain seventhics of Cayley 3 .

Part 3. Complete the proof by showing that the expression for the
permutation rank is equal to Ým2 where m are the integers from Part 1.m m

w xFull details can be found in 5 .

Remark. Thrall gives the following method of calculating m whenm

Ž .m s m , m , m : ‘‘To the minimum of 1 q m y m and 1 q m y m we1 2 3 1 2 2 3
add whichever one of y2, 0, q2 will give a result divisible by 3. If this
result is even divide by 6 to get m . If this result is odd add or subtract 3m

according as m is even or odd and then divide by 6 to get m .’’2 m

Ž .5. MODULES IN THE DECOMPOSITION OF C P k, 3

Ž . Ž .We aim to show that all modules of C P 3, k appear in C P k, 3 with no
lesser multiplicity. We begin by describing a general method for construct-

Ž k .ing m-tableaux of type 3 from smaller tableaux and explain how we can
use these to obtain linearly independent homomorphisms from S m to

Ž .C P k, 3 . This method will be the basis of the proof of our main theorem.
Consider the tableaux P1, P 2, . . . , P10 given by

111222 1112
1 2P s P s433344 2233

665556 3444

11123 1112
3 4P s P s22 2233

33 3

112314 11122235
5 6P s P s2244 33444

33 55

112221 1121227 8P s P s
3333444 333

11129 10P s and P s 111.
22
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Note that any three identical digits of the P i are arranged in one of the
following ways.

1. They appear together in a single row.
2. Two of the them appear together in the second or the third row

with the remaining digit in the top row.
3. Two of them appear together in the second row with the remain-

ing digit in the third row.

We will use these properties to show that certain homomorphisms are
non-zero and linearly independent.

Ž .Step 1 construction of m-tableaux . We construct two sets of m-tableaux
Ž k . Ž .kof type 3 and a m-tableau of type 1 as follows. The first of these, of

Ž k .type 3 , will be of the form

10
iT* s a T* ,E i

is1

where a T*i is the join of T*i with itself a times in the normal sense.i i
Here T*i is a tableau with the same pattern as P i with the property that
the labeling set for the first tableau in the k-expression is 1, 2, . . . and so
that the remaining tableaux are labeled by consecutive numbers. Let t be

Ž k .the m-tableau, of type 1 , given by

10
it s a tE i

is1

where t i has the same shape as T*i. Without loss of generality we will
always label the first tableau in the expression with consecutive numbers
1, 2, . . . and in turn label each of the remaining tableaux increasingly. With
each T* we associate a tableau T formed by permuting the digits in its
rows until the numbers increase along rows. By construction the digits will
automatically be strictly increasing down the columns, so this tableau will
be semistandard.

Ž Ž� 4 . .Step 2 Q t k is non-zero . We use the tableaux constructed in StepT t
� 41 to show that the coefficient of T* in Q t k is non-zero. This coefficientT t
ˆ � 4is equal to the sum of the coefficients in Q t k will be the form Tgh withT t

g g R and h g C . Moreover, a tableau with the same pattern as T* cant t
be written correspondingly in the form

10
ia P9E i

is1
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such that P9i has the same pattern as P i and such that for i / j the
labelling set for P9i is disjoint from that of P9 j. Thus tableaux involved in

� 4Q t k with the same pattern as T* can be written in the formT t

10
ia T 9 gE i i

is1

where g g C i , the tableau E10 a T 9i is row equivalent to T and T 9igi t i iis1
has the same pattern as P i. Since any three identical digits can only appear
in the third rows of P1 and P 2, they can appear only in the third rows of
T 91 and T 92. Therefore T 93, T 95, and T 96 must have pairs of digits in their
third rows. Similarly, the second rows of T 91, T 96, T 97, and T 98 must
contain three identical digits, leaving pairs of digits in the second rows of
T 92, T 93, T 94, T 95, T 96, and T 99. By case by case analysis it can be checked
that T 9i must have the same pattern as a tableau row equivalent to T*i.

� 4Hence the coefficient of T* in Q t k is given by the product of theT t
i i� 4i icoefficients of T* in Q t k multiplied by the number of possibleT t

choices for the entries of the T i, where T i is the semistandard tableau row
equivalent to T*i. Trivially we can choose T 9i s T*i so it is sufficient to

i i� 4i iprove that the coefficient of T* in Q t k is non-zero for all i. TheT t
following lemma therefore concludes Step 2.

i i� 4i iLEMMA 5.1. For i s 1, 2, . . . , 10 the coefficient of T* in Q t k isT t
non-zero.

Proof. Without loss of generality we can choose the labelling set for
i � 4 ieach of the tableaux T* to be 1, 2, . . . and t to be the tableaux with the

digits 1, 2, 3, . . . placed in increasing order down its columns. It is a
i i� 4i istraightforward procedure to calculate the coefficient of T* in Q t k .T t

These coefficients can be seen to be 48, 24, 6, 6, 8, 4, 8, 2, 2, and 1,
respectively. Since these coefficients are all non-zero the proof is com-
plete.

Remark. As a direct consequence of the lemma, we have that S Ž6, 6, 6.

Ž . Ž8, 5, 2. Ž .appears in C P 6, 3 ; the module S appears in C P 5, 3 ; the modules
Ž4, 4, 4. Ž6, 4, 2. Ž6, 6. Ž . Ž5, 2, 2. Ž4, 4, 1.S , S , and S appear in C P 4, 3 ; the modules S , S ,

Ž6, 3. Ž . Ž4, 2. Ž .and S appear in C P 3, 3 ; the module S appears in C P 2, 3 ; and
Ž3. Ž .the module S appears in C P 1, 3 .

Ž m Ž ..Step 3 a lower bound for the multiplicity of S in C P k, 3 . The final
step is to use the semistandard tableaux constructed in Step 1 to show that

m Ž .the corresponding homomorphisms from S to FP k, 3 are linearly
independent, hence giving a lower bound for the multiplicity of S m in

Ž . � U 4 � 4FP k, 3 . Let T : 0 F i F q and T : 0 F i F q be the tableaux andi i
semistandard tableaux, respectively, constructed in Step 1. We show that if
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U� 4 � 4j g 0, 1, . . . , q with j - i then T is involved in Q t k but not ini T ti
� 4Q t k . This condition ensures that Q , Q , . . . , Q are linearly inde-T t T T Tj 0 1 q

pendent and gives the lower bound q q 1 for the multiplicity of S m in
Ž .C P k, 3 .

m Ž .From Theorem 4.1 we see that if S appears in FP 3, k then m has one
of two shapes:

Shape 1.

)) ??? )) ) ??? ) ) ??? )
)) ??? )) ) ??? ) ,^` _
)) ??? )) s^ ` _

2u

with u and s non-negative integers satisfying 3k G 6u q 2 s. Here S m has
multiplicity m :ky2 u, s

Shape 2.

)) ??? )) )))) ) ??? ) ) ??? )
)) ??? )) )))) ) ??? ) ,^` _
)) ??? )) ) s^ ` _

2u

with u and s non-negative integers satisfying 3k G 6u q 2 s q 9. Here S m

has multiplicity m .ky2 uy3, s
We first deal with partitions of Shape 1:

Ž . Ž3ky4 uys, sq2 u, 2 u.THEOREM 5.2. For 3 k y 2u G 2 s the multiplicity of S
Ž .in the decomposition of C P k, 3 is at least m .ky2 u, s

Proof. The idea is to carry out the three steps described at the
beginning of this section.

Step 1. We begin by considering the case when s s 1. Since m sky2 u, 1
0 for all values of k, there is nothing to prove. Therefore assume that
s / 1. Then s can be written uniquely in the form s s 6c q r for a

� 4non-negative integer c and r g 0, 2, 3, 4, 5, 7 . When k y 2u - s y 2c we
wŽ . xhave m s c y s y k q 2u q 1 r2 q 1 s 0 and so we only needky2 u, s

to consider the case when k y 2u G s y 2c. Write c s e q f and r s
� 4 � 42 r q 3r for 0 F e, f F c, r g 0, 1, 2 and r g 0, 1 . Note that there is1 2 1 2

a unique way of writing r in this form. To construct suitably sized sets of
tableaux of Shape 1, we split this step into four cases to accommodate all
possible values of u and s.
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Ž .Case 1. If u / 1 then we write 2u in a unique way in the form
2u s 6u q 4u where u and u are non-negative integers with u g1 2 1 2 1
� 4 U Ž . Ž k .0, 1 . Denote by T the 3k y 4u y s, s q 2u, 2u -tableau of type 3f
given by

u T*1 k u T*2 k eT*7 k 3 f T*9 k r T*8 k r T*9
1 2 2 1

k k y s y 2u q 2 e T*10 .Ž .

Since k y 2u G s y 2c and e F c we can always construct a tableau of
this kind by taking e large enough so that k y 2u G s y 2 e. Let t be the
Ž . 1 2 7 8 9 103k y s, s -tableau constructed from the tableaux t , t , t , t , t , and t
as described at the beginning of this section and let T be the semistan-f
dard tableau row equivalent to TU. The number of times T*9 appears inf
the expression for TU depends on the size of k y 2u. If k y 2u G s thenf
f can take any value between 0 and c since k y s y 2u q 2 e will always
be non-negative. If k y 2u - s then k y s y 2u q 2 e s k y s y 2u q

Ž .2c y 2 f will be non-negative for 0 F f F c y s y k q 2u r2. Thus f can
wŽ . xtake c q 1 different values if s F k y 2u and c y s y k q 2u q 1 r2

q 1 different values if s ) k y 2u.

Case 2. If u s 1 and k y 2 ) s then let TU be given byf

T*3 k eT*7 k 3 fT*9 k r T*8 k r T*9 k k y s y 3 q 2 e T*10 .Ž .2 1

Ž .Let t be the usual 3k y 4u y s, s q 2u, 2u -tableau and let T be thef
semistandard tableau row equivalent to TU. It is clear that f can take anyf

Ž .value between 0 and c since k y s y 3 q 2 e s k y s y 3 q 2 c y f is
always non-negative for f in this range.

Ž .Case 3. u s 1 and k y 2 F s with c G 1. For f - c that is, e / 0 , let
TU be given byf

T*4 k T*4 k e y 1 T*7 k 3 fT*9 k r T*8 k r T*9Ž . 2 1

k k y s y 2 q 2 e T*10Ž .

Ž . Uand when f s c so e s 0 , let T be given byf

T*5 k T*9 k T*9 k 3 c y 1 T*9 k r T*8 k r T*9 k k y s y 2 T*10 .Ž . Ž .2 1

We require k y s y 2 q 2 e to be non-negative so f can take any value in
Ž . Ž Ž .the range 0 F f F c y s y k q 2 r2. Let t be the usual 3 k y 2u y

.s q 2u, s q 2u, 2u -tableau and let T be the semistandard tableau rowf
equivalent to TU.f
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Ž .Case 4. If u s 1 and k y 2 F s with c s 0 then r / 0 since k G 3 . If
r s 1 then let2

TU s T*6 k r T*9 k k y r y 2 T*10 .Ž .f 1

Otherwise, if r s 0 then let2

TU s T*5 k r y 1 T*9 k k y r y 2 T*10 .Ž . Ž .f 1

By assumption k y r y 2 s k y s y 2 is non-zero and it is clear that f can
Ž Ž . .only be zero. Let t be the usual 3 k y 2u y s q 2u, s q 2u, 2u -tableau

and let T be the semistandard tableau row equivalent to TU.f f

Step 2. Since the tableaux given in Step 1 were constructed in the way
described at the beginning of this section, Lemma 5.1 tells us that the
homomorphisms Q are non-zero.Tf

Step 3. For each TU where f runs over the values in the appropriatef
range we need to show that the Q are linearly independent. To do thisTfU � 4we show that if i - f then T is not involved in Q t k . In the first twof T ti

cases it can be seen, by counting pairs in the second row of T , that thei
U � 4coefficient of T in Q t k is zero. In Case 3, when f - c we can againf T ti Ucount pairs in the second row of T and see that T is not involved ini f

U U U� 4Q t k . To complete Case 3 we show that T , T , . . . , T are notT t o 1 cy1i
� 4involved in Q t k . Since f can only be equal to c when k s s q 2, this isT tc

the only case which needs to be considered. We know that T has a pair ofc
digits in its third row and so this pair will always be in the first two

ˆ � 4columns of an element involved in Q t k . However, the first two columnsT tcU � 4of T with i - c have distinct entries. As Q t k / 0, this case is nowi T tc

complete. In Case 4 we know from Theorem 4.1 that m F 1 and sinceky2, r
we have constructed one non-zero homomorphism from S Ž3Žky2.yrq2, sq2, 2.

Ž .to C P k, 3 there is nothing more to prove.
Comparing case by case the number of values f can take with the

multiplicity m given in Theorem 4.1 shows that we have constructedky2 u, s
the required number of linearly independent homomorphisms and the
proof is complete.

Ž .THEOREM 5.3. For 3 k y 2 u y 3 G 2 s the multiplicity of
Ž3ky4 uysy5, sq2 uq4, 2 uq1. Ž .S in the decomposition of C P k, 3 is at least

m .ky2 uy3, s

Proof. This proof also follows the three steps outlined at the beginning
of the section and is completely analogous to the proof of Theorem 5.2.
For each TU which we constructed in the last proof, we ‘‘replace’’ three off
the T*10 by T*4. Therefore f can take c q 1 different values if k y 2u y
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wŽ Ž . . x3 ) s and c y s y k y 2u q 3 q 1 r2 q 1 different values if k y
3 y 2u F s. This is the number of linearly independent homomorphisms

Ž3Žky2 uy3.ysq2 uq4, sq2 uq4, 2 uq1. Ž .from S to C P k, 3 .

The main theorem therefore follows from Theorems 4.1, 5.2, and 5.3.
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