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Abstract

Packing and covering problems for metric spaces, and graphs in particular, are of essential
interest in combinatorics and coding theory. They are formulated in terms of metric balls of
vertices. We consider a new problem in graph theory which is also based on the consideration
of metric balls of vertices, but which is distinct from the traditional packing and covering
problems. This problem is motivated by applications in information transmission when
redundancy of messages is not sufficient for their exact reconstruction, and applications
in computational biology when one wishes to restore an evolutionary process. It can be
defined as the reconstruction, or identification, of an unknown vertex in a given graph from
a minimal number of vertices (erroneous or distorted patterns) in a metric ball of a given
radius r around the unknown vertex. For this problem it is required to find minimum
restrictions for such a reconstruction to be possible and also to find efficient reconstruction
algorithms under such minimal restrictions.

In this paper we define error graphs and investigate their basic properties. A particular
class of error graphs occurs when the vertices of the graph are the elements of a group,
and when the path metric is determined by a suitable set of group elements. These are the
undirected Cayley graphs. Of particular interest is the transposition Cayley graph on the
symmetric group which occurs in connection with the analysis of transpositional mutations
in molecular biology [17, 19]. We obtain a complete solution of the above problems for the
transposition Cayley graph on the symmetric group.
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1 Introduction: A Graph-Theoretical Approach to
Efficient Reconstruction

The problem of the efficient reconstruction of sequences was introduced in [12, 13, 14] as a
problem in coding theory, and similar questions about the efficient reconstruction of integer
partitions were considered in [15, 18]. In this paper we discuss a graph-theoretical setting in
which efficient reconstruction problems can be studied as a uniform theory.

Let Γ = (V,E) be a simple, undirected and connected graph with vertex set V and edge set
E . We regard the vertices in V as units of information in the given reconstruction problem,
and for two vertices x 6= y in V we regard {x, y} as an edge of Γ if y is obtained from x, or
vice versa x from y , by a single error or single distortion of information. We might say that
x and y are erroneous single error representations of each other, and that Γ is a single error
graph. The precise definitions can be found in Section 2. The task of the reconstruction problem
now is to restore or reconstruct the original unit of information from sufficiently many erroneous
representations of it. In other words, an unknown vertex x in Γ is to be identified by suitable
knowledge about its neighbouring vertices in Γ.

We denote the path distance between two vertices x and y of Γ by d(x, y) and we let Br(x) =
{ y ∈ V : d(x, y) ≤ r } be the ball of radius r centered at x. For given r ≥ 1 denote by N(Γ, r)
the largest number N such that there exist a set A ⊆ V of size N and two vertices x 6= y with
A ⊆ Br(x) and A ⊆ Br(y). Thus any N +1 distinct vertices are contained in Br(x) for at most
one vertex x while there are some N vertices simultaneously contained in Br(x) and Br(y)
for some x 6= y. This means that an unknown vertex of Γ can be identified, or reconstructed
uniquely, by any set of N(Γ, r) + 1 or more distinct vertices at distance at most r from the
vertex, provides that such a set exists.

In graph theoretical terms we are therefore required, for an arbitrary graph Γ and an integer
r ≥ 1, to determine the number

N(Γ, r) = max
x,y∈V, x6=y

|Br(x) ∩Br(y)| (1)

and to construct an efficient algorithm by which any unknown vertex x in V can be identified
uniquely from an arbitrary set of N(Γ, r) + 1 vertices at distance r or less from x. Evidently we
can assume that r is at most d(Γ), the diameter of Γ. Throughout the paper we assume that
d(Γ) ≥ 2 and in particular |V | ≥ 3 .

Problems of this kind have been solved for some graphs and metric spaces of interest in coding
theory, and to give an impression of such results we review the example of Hamming spaces and
Johnson spaces. The Hamming space Fnq consists of qn vectors of length n over the alphabet
{0, 1, ..., q − 1} with metric d(x, y) given by the number of coordinates in which the vectors x
and y differ. This metric space can be represented by a graph Γ whose vertices are the vectors
of Fnq with two vectors connected by an edge if and only if they differ in a single coordinate.
The path distance between two vertices then is the Hamming distance between the corresponding
vectors. Therefore we can identify Fnq with this graph Γ . In [12, 13, 14] it was shown that for
any n, q and r we have

N(Fnq , r) = q

r−1∑
i=0

(
n− 1
i

)
(q − 1)i . (2)
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Furthermore, any x ∈ Fnq can be reconstructed from N = N(Fnq , r)+1 vectors of Br(x), written
as the columns of a matrix, by applying the majority algorithm to the rows of the matrix.

For any 1 ≤ w ≤ n − 1 the Johnson space Jnw consists of the
(
n
w

)
binary vectors in Fn2 of

length n and Hamming weight w , where distance is equal to half the (even) Hamming distance
in Fn2 . This distance coincides with the minimal number of coordinate transpositions needed to
transform one vector into the other. The Johnson space then can be viewed a graph Γ whose
vertices are the vectors of Jnw with two vectors connected by an edge if and only if one is obtained
from the other by a transposition of two coordinates. The path distance between two vertices of
Γ then is the Johnson distance between the corresponding vectors. Therefore we can identify Jnw
with this graph Γ . In [12, 13] it was also shown that for any n, w and r we have

N(Jnw, r) = n

r−1∑
i=0

(
w − 1
i

)(
n− w − 1

i

)
1

i+ 1
. (3)

Furthermore, any x ∈ Jnw can be reconstructed from N = N(Jnw, r)+1 vectors of Br(x), written
as the columns of a matrix, by applying a threshold algorithm to the rows of the matrix.

In the first part of this paper we make the notion of error graphs precise and develop the theory
needed to estimate N(Γ, r) in some general situations. In this respect our main results are
Theorems 1 and 2 which give lower bounds for N(Γ, 1) and N(Γ, 2) in terms of other graph
parameters. It may be useful to mention that the idea of reconstructing a vertex in a given graph
has nothing to do, a priory, with the classical Ulam problem of reconstructing a graph from the
isomorphism classes of its vertex-deleted subgraphs. So we do not refer to the well-known and
unresolved vertex-reconstruction problem. Nevertheless, error graphs are such a general tool that
even this problem can be phrased suitably a problem on error graphs.

In the second part of the paper we deal with error graphs for which the vertex set consists of the
elements of a group, and where the errors are defined by a certain set of group elements. Such
graphs turn out to be undirected Cayley graphs, and in Sections 4 and 5 we show that many
important error graphs occur as Cayley graphs. In Section 5 we discuss how transpositional
errors in biological nucleotide sequences can be described as errors in the transposition Cayley
graph Symn(T ) on the symmetric group. The remainder of the paper deals with this graph in
particular.

In Theorem 4 we determine the full automorphism group of the transposition Cayley graph
Symn(T ). The explicit value of N(Symn(T ), r) can be found in Theorems 5, 6 and 7 for 1 ≤
r ≤ 3. To state the main result on N(Symn(T ), r) for arbitrary r ≥ 1 let c(n, n − r) be the
number of permutations on {1..n} having exactly n − r cycles. Thus the c(n, n − r) are the
signless Stirling numbers of the first kind. We also need the following restricted Stirling numbers:
Let c31(n, n− r) be the number of permutations g on {1..n} having exactly n− r cycles such
that 1, 2 and 3 belong to the same cycle of g. The main result on N(Symn(T ), r) is Theorem 9.
It shows that for all r ≥ 1

N(Symn(T ), r) =
r−1∑
i=0

c(n, n− i)

+ c31(n, n− r) + c31(n, n− (r + 1)) . (4)

for all sufficiently large n. Furthermore, the maximum N(Symn(T ), r) = |Br(x)∩Br(y)| occurs
for any x 6= y for which x−1y is a 3 -cycle on {1..n}. We mention the connection between this
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theorem and the Poincaré polynomial of Symn(T ). When Γ is an arbitrary finite graph and v
a vertex of Γ let ci denote the number of vertices at distance i from v. Then

ΠΓ,v (t) :=
∑
0≤i

cit
i

is the Poincaré polynomial of Γ at v. When this polynomial is independent of v we write simply
ΠΓ(t). For the transposition Cayley graph Symn(T ) the Poincaré polynomial is

Π Symn(T ) (t) =
n−1∑
i=0

c(n, n− i) ti (5)

where the c(n, n− i) are the Sterling numbers appearing in (4). This shows that the reconstruc-
tion parameters N(Γ, r) are related to important graph invariants.

In this paper we have avoided technical terminology as far as possible in order to make this
material accessible to non-specialists. For the same reasons we have added a few key references
to texts in computing and computational biology.

2 Errors in Graphs

We will now fix the notation used for the remainder. Let Γ = (V,E) be a finite graph with
vertex set V and edge set E. All edges are undirected and there are no multiple edges or loops.
Let x, y be vertices. Then x and y are adjacent to each other if {x, y} is an edge. Further,
d(x, y) denotes the usual graph distance between the vertices, that is the length of a shortest
path from x to y. Put d(x, y) = ∞ if x and y are in different components. For i ≥ 0 we let
Bi(x) := {y ∈ V : d(x, y) ≤ i} and Si(x) := {y ∈ V : d(x, y) = i} be the ball and sphere of
radius i around x, respectively.

We put ki(x) = |Si(x)| and for y ∈ Si(x) we set

ci(x, y) := |{z ∈ Si−1(x) : d(z, y) = 1}| ,

ai(x, y) := |{z ∈ Si(x) : d(z, y) = 1}| ,

bi(x, y) := |{z ∈ Si+1(x) : d(z, y) = 1}| . (6)

It is clear that b0(x, y) = k1(x), that a1(x, y) = a1(y, x) is the number of triangles over the
vertices x and y , and that c2(x, y) is the number of common neighbours of x and y ∈ S2(x).
Let

λ = λ(Γ) = max
x,y∈V, d(x,y)=1

a1(x, y)

µ = µ(Γ) = max
x,y∈V, d(x,y)=2

c2(x, y). (7)

Since |Br(x) ∩Br(y)| > 0 for x 6= y only if d(x, y) ≤ 2r we have

N(Γ, r) = max
1≤s≤2r

Ns(Γ, r) (8)
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where
Ns(Γ, r) = max

x,y∈V, d(x,y)=s
|Br(x) ∩Br(y)|. (9)

In particular, N1(Γ, 1) = λ+ 2 and N2(Γ, 1) = µ so that

N(Γ, 1) = max(λ+ 2, µ). (10)

Finding or estimating the value N(Γ, r) for graphs of interest in applications is the main aim of
our investigation here. We note the following general bounds for N(Γ, r).

Lemma 1 Suppose that x 6= y are vertices in the connected graph Γ = (V,E) at distance
s = d(x, y) from each other. Let r ≥ 0 be an integer.

(i) If r ≥ s then Br(x)∩Br(y) = Br−s(x) ∪ [(Br(x) \Br−s(x))∩Br(y)].In particular, we have

Ns(Γ, r) ≥ |Br−s(x)| and
N(Γ, r) ≥ max

x∈V
|Br−1(x)| . (11)

(ii) If r < s then Br(x) ∩Br(y) = Br(y) ∩ [Br(x) \Bs−r−1(x)] .

Proof: One should think of Br(x) \Br−s(x) as an annulus around x. (i) Starting on a path of
length s from y to x any vertex in Br−s(x) can be reached by a further path of length at most
r − s . The other statements are immediate from this. (ii) This is an direct consequence of the
triangle inequality. 2

We set
ki(Γ) = max

x∈V
ki(x) and k(Γ) = k1(Γ). (12)

Then Γ is regular of valency k (or k -regular) if all its vertices have constant valency k = k(Γ) .
A k -regular graph is distance-regular if the numbers ci(x, y) and bi(x, y) (and hence ai(x, y) =
k − ci(x, y) − bi(x, y) ) do not depend on x ∈ V and y ∈ Si(x) , for all i = 0, 1, ..., d(Γ) . A
distance-regular graph of diameter 2 is strongly regular. A good reference to strongly regular
graphs is Chapter 21 in [21] or also [4]. In such a graph there are integers λ and µ so that
any pair of vertices x 6= y is simultaneously adjacent to exactly λ vertices if {x, y} is an edge,
and to exactly µ vertices if {x, y} is not an edge. Our use in (7) of the symbols λ and µ is
therefore a natural extension to graphs which are not strongly regular.

Let Aut(Γ) be the automorphism group of Γ. If Γ is vertex-transitive (that is, for any two
vertices in V there is an automorphism of Γ mapping one onto the other) then ki(x) = ki(Γ)
is constant for all x ∈ V and i . In particular, such a graph is regular. However, even for
vertex-transitive graphs the ci(x, y) and bi(x, y) usually depend on y ∈ Si(x), and this can
cause difficulties in finding N(Γ, r). This phenomenon can be observed already on relatively
small graphs, see the Remark following Lemma 4.

The Hamming and Johnson graphs are examples of error graphs in which two vertices x 6= y are
joined by an edge if and only if there exists a single error (the substitution of a symbol or the
transposition of two coordinates, respectively) which transforms x to y and there exists a single
error which transform y to x. This observation leads to a natural general theory of single errors
which we began in [13]. For this we let V be a finite (or countable) set. A single error on V is
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an injection h : Vh → V defined on a non-empty subset Vh ⊆ V so that h(x) 6= x for all x ∈ Vh .
A non-empty set H of single errors will be called a single error set, or just error set, provided
the following two properties hold:

(i) For each h ∈ H and x ∈ Vh there exists some g ∈ H so that h(x) ∈ Vg and g(h(x)) = x ,
and

(ii) For all distinct pairs x, y ∈ V there exist x = x1, x2, ..., xm = y ∈ V and h1, h2, ..., hm−1 ∈
H such that xi+1 = hi(xi), for i = 1, ...,m− 1 .

For such a set H we construct the error graph ΓH = (V,E) where E = { {x, h(x)} : x ∈
V and h ∈ H } . Note, by the conditions on H we see that ΓH has no loops and that all edges
are undirected. The condition (ii) says that there is a path between any two vertices, and hence
that ΓH is connected. Furthermore, the usual path distance d(x, y) on ΓH now measures the
minimum number of single errors required to transform x to y or y to x .

It is easily seen that every connected simple graph Γ can be represented as an error graph where
we can assume in addition that the single error set consists of involutions (that is, partial maps
h defined on suitable subsets of V such that h−1 = h ). For if c : E → {1...χ} ⊆ N is an edge
colouring of Γ then each fiber c−1(i) with i = 1, ..., χ defines a natural involutionary error hi
which is obtained by interchanging the two end vertices of any edge coloured by i. In particular,
every connected graph Γ is an error graph with at most χ = χE(Γ) errors where χE(Γ) is the
edge-chromatic number of Γ.

By Vizing’s theorem [22] this minimum number (over all Γ ) is equal to k(Γ) + 1 where k(Γ)
is the maximum degree of Γ , as in (12). It is a natural question to ask whether any connected
simple graph Γ can be represented as an error graph ΓH for some error set H of cardinality
k(Γ). The answer is affirmative, see [13], where it is also shown that the property (i) can in
general not be replaced by a stronger property H = H−1 (meaning that h−1 ∈ H if h ∈ H ).

In the examples discussed before, the Hamming graph is an error graph when V = Fnq and when
H consists of the n(q − 1) non-zero vectors h ∈ Fnq of Hamming weight 1, with action given
by h(x) = h + x for x ∈ V . Also the Johnson graph Jnw is of this form when we view V as
the set of all w -element subsets of {1, .., n} and when H is the set of all

(
n
2

)
transpositions

(i, j) interchanging i and j in {1, .., n}, in their natural permutational action on V obtained
by permuting the coordinates of vectors. In order to make sure that the single error property
h(x) 6= x holds for all vertices x ∈ Vh one has to restrict the domain of (i, j) to those sets which
contain exactly one of i and j .

Similarly, the insertion and deletion errors for finite sequences over an alphabet A can be de-
scribed in this fashion as an infinite error graph. As vertex set we consider the set V =
A0 ∪ A1 ∪ A2 ∪ ... ∪ An ∪ ... of all finite words over A. As single error set we take H :=
{d1, d2, .., dm, ...} ∪ {i1(a), i2(a), ..., im(a), ... : a ∈ A} where dm deletes the mth entry in
any word of length ≥ m while im(a) inserts a as the mth entry in any sequence of length
≥ m− 1 . As expected, the usual graph metric is indeed the Levenshtein error distance [11] for
sequences. Situations where the model of undirected single error graphs is not applicable include
asymmetric errors, some further comments can be found in [13].
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3 Some Bounds for Regular Graphs

For the remainder we assume that Γ is a connected and regular graph on v ≥ 4 vertices, with
degree 2 ≤ k = k(Γ) and parameters λ = λ(Γ) , µ = µ(Γ) . We have 0 ≤ λ ≤ k − 1, 1 ≤ µ ≤ k
and the diameter of Γ is d(Γ) ≥ 1.

For some classes of regular and strongly regular graphs on v vertices we have N(Γ, 1) = o(v)
as v → ∞. The following strongly regular graphs are well known, see Chapter 21 in [21] or [4].
The triangle graph T (m) is strongly regular with parameters v = m(m − 1)/2, k = 2(m − 2),
λ = m − 2, µ = 4 and hence N(T (m), 1) = m. The lattice graph L2(m) is strongly regular
with parameters v = m2, k = 2(m − 1), λ = m − 2, µ = 2 and hence N(L2(m), 1) = m.
Meanwhile the Paley graphs P (q) (q a prime congruent to 1 mod 4) is strongly regular with
parameters v = q, k = (q−1)/2, λ = (q−5)/4, µ = (q−1)/4 and hence N(P (q), 1) = (q+3)/4.
The complement of a strongly regular graph Γ is also strongly regular (although not necessarily
connected). This complementary graph Γ has parameters v(Γ) = v, k(Γ) = v − k − 1, λ(Γ) =
v − 2k − 2 + µ, µ(Γ) = v − 2k + λ, and hence N(Γ, 1) = v − 2k + max(µ, λ).

Let Otm = Om ? Om ? ... ? Om be the product of t copies of the empty graph on m vertices.
This is the complete t -partite graph with v = tm, each part consisting of m vertices and edges
connecting vertices from different parts in all possible ways. If t ≥ 2 this graph is connected and
strongly regular.

The complete graph on v vertices is denoted by Kv. We recall that a 1-factor of a graph is a
collection of disjoint edges covering all vertices (a complete matching of the vertices of Γ). When
v is even consider the graph obtained from Kv by removing the edges of a 1-factor. This graph
is strongly regular with parameters k = µ = v− 2 , λ = v− 4 and coincides with Ot2 with t = v

2 .
Conversely, if Γ is a regular of degree k = v − 2 then v is even and Γ = Ot2 with t = v

2 . When
t = v

2 then N(Ot2, 1) = λ+ 2 = v − 2 = 1
2 (v + λ). More generally we have:

Theorem 1 Let Γ be a regular graph with k ≤ v − 2. Then we have

N(Γ, 1) ≤ 1
2

(v + λ) (13)

with equality if and only if k−λ = v− k divides v and Γ is the strongly regular graph Otm with
m = k − λ and v = tm.

Proof: By (10) we have N(Γ, 1) = max{λ + 2, µ}. If Γ = Otm with v = tm then k = v −m,
µ = v −m and λ = v − 2m so that N(Γ, 1) = µ = 1

2 (v + λ). For the converse assume first that
λ = k − 1. In this case (10) implies that N(Γ, 1) = k + 1 which is not possible as k + 1 is the
cardinality of any single ball. Therefore λ ≤ k − 2 and from the assumptions in the theorem it
follows that λ ≤ v − 4 or 1

2λ + 2 ≤ 1
2v. Hence λ + 2 ≤ 1

2 (v + λ) with equality if and only if
λ = v − 4. In the latter case only k = v − 2 is possible and so we have the situation already
discussed, Γ is Otm with m = k − λ = v − k = 2 and v = 2t.

It is left to show that µ ≤ 1
2 (v+λ) and to find the conditions for equality. For a k -regular graph

(V, E) and a vertex x in V we count the number of edges between S1(x) and S2(x). This gives∑
y∈S1(x)

(k − 1− a1(x, y)) =
∑

z∈S2(x)

c2(x, z),
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see again the definitions in (7). This gives k(k − 1 − λ) ≤ µk2(x) and since k2(x) ≤ v − k − 1
we obtain

k(k − 1− λ) ≤ µk2(x) ≤ µ(v − k − 1). (14)

Since 1 ≤ µ ≤ k we get k − 1− λ ≤ v − k − 1 and hence µ ≤ k ≤ 1
2 (v + λ) as required.

If µ = k = 1
2 (v + λ) then we have equalities in (14). For a regular graph is well-known that the

inequalities in (14) turn into equalities if and only if the graph is strongly regular, see for instance
Problem 21A in [21]. So let Γ be strongly regular with µ = k. Then any pair of distinct and
non-adjacent vertices have the same k neighbours. It follows that x = x′ or x is not adjacent
to x′ defines an equivalence relation on the vertices of Γ, with all equivalence classes of size
m := v − k. Hence m divides v = tm and Γ = Otm. 2

Theorem 2 (Linear Programming Bound) Let Γ be a regular graph of valency k ≥ 2. Then

N2(Γ, 2) ≥ µ
(
k − 1− 1

2
(µ− 1)(N(Γ, 1)− 2)

)
+ 2. (15)

We note that this rather general bound is quite sharp, see the comment following Theorem 6.

Proof: There are two vertices x, x′ ∈ V with d(x, x′) = 2 so that the set Y = {y1, .., yµ} of all
vertices at distance 1 from both x and x′ has µ ≥ 1 elements. If µ = 1 then y1 has k − 2
neighbours other than x and x′. It follows that N2(Γ, 2) ≥ |B2(x) ∩B2(x′)| ≥ 3 + k − 2 and so
(15) holds. Hence we assume that µ ≥ 2.

Let U =
⋃µ
i=1B1(yi)\{x, x′}. We show that the number of elements in U is at least µ

(
k − 1− 1

2 (µ− 1)(N(Γ, 1)− 2)
)
.

For h = 1, ..., µ let U(h) be the vertices of U which belong to exactly h of the sets B1(yi), as
i = 1, ..., µ . In particular, U = U(1) ∪ ... ∪ U(µ) is a partition and so

|U | =
µ∑
h=1

|U(h)| .

Next observe that the set {(z, B1(y)) : y ∈ Y and z ∈ B1(y) ∩ U } has cardinality

µ∑
h=1

h|U(h)| = µ(k − 1)

and the set {(z, {B1(y), B1(y′)}) : y 6= y′ ∈ Y and z ∈ B1(y) ∩B1(y′) ∩ U } has cardinality

µ∑
h=2

(
h

2

)
|U(h)| =

∑
{y,y′}⊆Y, y 6=y′

(|B1(y) ∩B1(y′)| − 2) ≤
(
µ

2

)
(N(Γ, 1)− 2) .

The last inequality holds as y 6= y′ implies |B1(y) ∩B1(y′)| ≤ N(Γ, 1).

Set uh := |U(h)| for h = 1, ..., µ and u := |U |. To find a lower bound for u we minimize

u− µ(k − 1) = −1u2 − 2u3 − ...− (µ− 1)uµ
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for the non-negative integers u2, ..., uµ subject to the constraints

µ∑
h=2

huh ≤ µ(k − 1)

and
µ∑
h=2

(
h

2

)
uh ≤

(
µ

2

)
(N(Γ, 1)− 2) .

Let u∗ ≤ u − µ(k − 1) be the required minimum. Then by the duality of linear programming,
see for instance Section 7.5 in [16], the value of u∗ maximizes

−µ(k − 1)n1 −
(
µ

2

)
(N(Γ, 1)− 2)n2

subject to n1, n2 ≥ 0 and the dual constraints

hn1 +
(
h

2

)
n2 ≥ h− 1 for h = 2, ..., µ .

Note that n1 = 0 and n2 = 1 satisfies the dual constraints for all µ ≥ 2 and hence

u− µ(k − 1) ≥ u∗ ≥ −
(
µ

2

)
(N(Γ, 1)− 2) .

Therefore u ≥ µ
(
k − 1− 1

2 (µ− 1)(N(Γ, 1)− 2)
)

as required. 2

Note for instance that N2(Γ, 2) ≥ k+1 when µ = 1, N2(Γ, 2) ≥ 2k when µ = 2 and N(Γ, 1) = 2 ,
and N2(Γ, 2) ≥ 3k − 4 when µ = 3 and N(Γ, 1) = 3 .

Corollary 1 Suppose that Γ is a regular graph of valency k with no triangle nor pentagons. If
µ ≥ 2 and k ≥ 1 +

(
µ
2

)
then

N2(Γ, 2) ≥ N1(Γ, 2).

Proof: We have λ = 0 since Γ has no triangles so that N(Γ, 1) = µ by (10). Similarly,
N1(Γ, 2) = 2k as Γ contains no pentagons. Using (15) we get

N2(Γ, 2)− 2k ≥ µ

(
k − 1− 1

2
(µ− 1)(N(Γ, 1)− 2)

)
+ 2− 2k

= µ

(
k − 1− 1

2
(µ− 1)(µ− 2)

)
+ 2− 2k

= (µ− 2)
(
k − 1−

(
µ

2

))
≥ 0

and this completes the proof. 2
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4 Single error sets as group generators

An important class of graphs associated to single error sets is obtained when the vertex set of the
graph are the elements of a finite group. So we let G be a finite group and consider the elements
of G = V as the vertices of the error graph Γ = ΓH for some error set H. The neutral element
of G is denoted by e = eG and 1 = {eG} is the identity subgroup of G. We suppose that the
single error set is determined as a subset H of G so that the action of errors on vertices is given
by the group product. That is, if h ∈ H and x ∈ G then h(x) := xh−1 . In this situation H is
a single error set if and only if H does not contain eG and

(i) H satisfies H = H−1(= {h−1 : h ∈ H }) , and

(ii) H generates G as a group.

The first condition is clear since there is some g in H with g(h(x)) = (xh−1)g−1

= x for a vertex x in V if and only if g = h−1 belongs to H. The second condition is a
restatement of the connectedness of the error graph. Note that we have set h(x) := xh−1, rather
than h(x) := xh. This is advisable so that the multiplication of errors as elements of G agrees
with the co-cattenation of the corresponding maps, (gh)(x) = x(gh)−1 = xh−1g−1 = g

(
h(x)

)
.

As is well known, in this situation ΓH is the undirected Cayley graph on G for the generating
set H, and H is the Cayley set for ΓH . Note conversely that every undirected Cayley graph
can be viewed as a single error graph.

In the following we review some of the theory of Cayley graphs from the viewpoint of single error
graphs. Let H be a Cayley set in the finite group G with corresponding graph ΓH = (V, E) on
the vertex set V = G and let Aut(ΓH) be the automorphism group of ΓH . We consider two basic
kinds of automorphisms of ΓH . For each g in G the left-multiplication on V, with g : x 7→ gx
for x ∈ V, induces an automorphism of ΓH since g : {x, xh−1} 7→ {gx, gxh−1} maps edges to
edges. If we think of {x, xh−1} as being labelled by h = {x−1(xh−1), (hx−1)x} = {h−1, h},
the quotients of its end vertices, then {gx, gxh−1} has the same label as {x, xh−1}. Therefore
left-multiplication by elements of G are automorphisms that preserves all edge labels.

This action is transitive on vertices and only the identity element fixes any vertex. This is
therefore the regular action of G on itself. This property characterizes Cayley graphs: Γ is the
Cayley graph of some group if and only if Γ admits a group of automorphisms that acts regularly
on its vertices, see for instance Chapter 6 in [1]. Note however that the graph usually does not
determine the group.

We now describe graph automorphisms that change edge labels. Let C be a group of automor-
phisms of G as a group. For the action of β ∈ C we write β : x 7→ β(x) and so β(xy) = β(x)β(y)
as β is an automorphism of the group structure. We will also require that C preserves H, in
the sense that β(h) ∈ H for all h ∈ H and β ∈ C. Then C is a group of automorphisms
of ΓH since β : {x, xh−1} 7→ {β(x), β(xh−1)} = {β(x), β(x)β(h)−1} maps edges to edges, as
β(h)−1 = β(h−1) ∈ H. Note that the label of β({x, xh−1}) now is β(h).

The semi-direct product G ·C is the (abstract) group of all pairs (g, β) with multiplication
(g′, β′)(g, β) = (g′β′(g), β′β). It acts on the graph as automorphisms by setting

(g, β) : x 7→ gβ(x) for x ∈ V.
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This gives an injective group homomorphism from G·C to Aut ΓH so that we can regard G·C
as a subgroup of Aut ΓH . We collect these facts:

Proposition 1 Let ΓH be the error graph on the group V = G with error set H. Then the
left-multiplication of vertices by elements of G forms a group of automorphisms of ΓH which
acts regularly on the vertex set V. If C is a group of automorphisms of G (as a group) such that
β(H) ⊆ H for all β in C then the semi-direct product G·C is contained in the automorphism
group of ΓH .

A common example of this situation occurs when we consider conjugation by group elements.
Let b ∈ G. Then conjugation by b is the automorphisms

x 7→ bxb−1 =: xb for x ∈ G

and
xG := {xb : b ∈ G}

is the conjugacy class of x. In this case the error set H is invariant under conjugation if and
only if H is a union of conjugacy classes. For C we then take the group C := G/Z where
Z = Z(G) = {b ∈ G : xb = x for all x in G} is the center of G. These are the inner
automorphisms of G. So in this situation G·C is a group of automorphism of ΓH . In Chapter 5
we will analyse this example further when G is the symmetric group Symn on the set {1..n} and
when H is the set of all transpositions on {1..n}. There we shall see that the full automorphism
group of the error graph can be larger than G·C, even if C is the group of all automorphisms
of G as a group.

Another interesting example occurs when Γ is the Hamming graph. Here G is the vector space
Fnq where Fq is the field of q elements and H is the set of all vectors of the shape (0, .., 0, a, 0, .., 0)
with a 6= 0. Then G acts on itself as a group of translations, that is, maps of the kind g : x 7→ g+x
for all x ∈ Fnq . For C we can take the monomial subgroup C = (F×q )n ·Symn ⊆ GL(n, q) acting
naturally as linear maps on V. More precisely, C is the group of all n×n matrices with exactly
one element from the multiplicative group F×q in each row and column. So here Fnq · C is a
group of affine linear maps on Fnq that acts naturally as automorphisms on the Hamming graph
Γ.

Considering again the general case we let ΓH = (G, E) be an error graph with error set H. We
have seen that any group automorphism β fixing H as a set induces an automorphism of ΓH .
Evidently β also fixes the identity element e = eG in G. Assume therefore more generally that
C is a group of automorphisms of ΓH which fixes e. For any x ∈ V

xC := {β(x) : β ∈ C}

is the orbit of x under C. In order to analyze the parameters ki(x), ai(x, y), bi(x, y) and
ci(x, y) note that ΓH is vertex transitive and therefore it suffices to consider the spheres with
center eG . Hence we abbreviate all parameters, writing Si , Bi , ki = |Si| , ai(y) , bi(y) and
ci(y) , suppressing the reference to x = eG in each case. In general these parameters still depend
on y although automorphisms provide at least for some form of regularity:

Proposition 2 Let ΓH be the error graph on the group V = G with error set H and suppose
that C is a group of automorphisms of ΓH which fixes e = eG . Then for each i ≥ 0 the sphere
Si = Si(e) is a union of C -orbits.
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Further, suppose that y and y′ belong to the same C -orbit and that r, t ≥ 0. Then |Sr∩St(y)| =
|Sr ∩ St(y′)| and |Br ∩ Bt(y)| = |Br ∩ Bt(y′)|. In particular, ai(y) = ai(y′) , bi(y) = bi(y′) and
ci(y) = ci(y′) for all i ≥ 0.

Proof: Let y ∈ Si and let e, y1, ..., yi = y be a shortest path from e to y. If β ∈ C then it
is clear that β(e) = e, β(y1), ..., β(yi) = β(y) is a shortest path from e to β(y). It follows that
β(Si) = Si is a union of C -orbits. Now suppose that y′ = β(y). Then β (Si(y)) = Si (β(y)) =
Si(y′) and so |Sr ∩St(y)| = |β (Sr ∩ St(y)) | = |β (Sr)∩β (St(y)) | = |Sr ∩St(y′)|. The remainder
follows immediately, including the statement on ai, bi and ci since these numbers are of the
shape |Sr ∩ St(y)| for particular choices of r and t. 2

If H is the single error set of ΓH we set H0 := {eG} and Hi := HHi−1 inductively for i > 0 .
Clearly, ΓH is regular of degree k(Γ) = |H| . If as before Si denotes the sphere of radius i
around e = eG then evidently S1 = H1 = H, S2 = H2 \ (H1 ∪H0) and more generally,

Si = Hi \ (Hi−1 ∪Hi−2 ∪ ... ∪H1 ∪H0).

The following is easily shown and gives the value of N(ΓH , 1) by using (10).

Lemma 2 In an error graph ΓH with error set H we have

λ(ΓH) = max
x∈S1

| {(h, h′) : x = hh′ with h, h′ ∈ H} | and

µ(ΓH) = max
x∈S2

| {(h, h′) : x = hh′ with h, h′ ∈ H} | .

5 Permutations distorted by transpositional errors

In the following we consider Cayley graphs when G = Symn is the symmetric group acting on
the set {1..n}. Any subset H of G which generates G with e 6∈ H and H = H−1 is a Cayley
set for G.

We express permutations in the usual cycle notation. (Throughout the word ‘cycle’ always refers
to a particular kind of permutation, and never to a graph or subgraph.) A transposition on
{1..n} is a permutation of the shape x = (i, j) with 1 ≤ i 6= j ≤ n if we suppress the 1 -cycles
of x . Particularly important graphs occur when H = {(1, 2), (2, 3), ..., (n− 1, n)} are the n− 1
Coxeter generators of the symmetric group. These form a minimal set of transpositions needed
to generate Symn. This set corresponds to the fundamental reflections associated to a chamber
for the A -type Dynkin diagram. The chambers give rise to a triangulation of the euclidean
unit sphere in Rn−1. In this situation the graph distance function d(x, y) in ΓH is a discretized
version of the geodetic distance on this sphere and presents the distance between two facets in the
triangulation of the sphere, see for instance the book [2] of Grove and Benson on finite reflection
groups. In this interpretation Br(x) is the ‘cap’ of facets on the sphere at distance ≤ r from
the facet x and N(Γ, r) is the number facets common to two such caps, with suitable distinct
centers. Note also that here d(e, −) evaluated for a single variable is the word length function
in the corresponding Weyl group. This Cayley graph is of considerable importance in Lie theory
and in many other parts of mathematics and physics. For a recent treatment of its combinatorics
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we refer to [3]. We add that in computer science this graph is known as the bubble–sort Cayley
graph and is used as a model for interconnection networks [8, 9]. Various other Cayley graphs on
Symn have been considered in the literature, we mention in particular Diaconis’ book [5] where
metrics on Symn more generally are discussed.

By contrast we may consider the error graph on Symn when the single error set H consists
of all transpositions (i, j) on {1..n}. This clearly is a highly redundant system of generators,
situated at the other extreme to the case of the Coxeter elements in Symn which form a minimal
generating set. In this situation a single error (i, j) transforms the vertex x to its neighbour
x(i, j) and all choices for 1 ≤ i 6= j ≤ n are admissible. A graph ΓH of this type will be called
a transposition Cayley graph, and these graphs are the subject of the remainder of the paper.

It may be useful to describe errors of this kind in a slightly more general setting. Let A
be a finite alphabet with |A| ≥ 2 and let An be the set of all words of length n over A.
Then the single transposition error (i, j) on the coordinates of An is the map (i, j) : a =
(a1, ..., ai, ..., aj , ..., an) 7→ a(i, j) = (a1, ..., aj , ..., ai, ..., an) with all other entries of a un-
changed. This gives rise to an error distance dA on An where dA(a, b) is the least number of
single transposition errors needed to transform a to b, if this is possible. In this case we must
have b = ag for some g ∈ Symn and dA(a, b) ≤ d(eG, g) where the latter denotes the distance
in the transposition Cayley graph. (Observe that dA(a, a(i, j)) = 0 if and only if ai = aj while
d (eG, (i, j)) = 1 independently.) Note that this distance function defines a graph on An. Each
component is an error graph with involutory errors (i, j) if we restrict the domain of the single
error (i, j) to the words a in which ai 6= aj . In this way the transposition error graph ΓH can
be said to control the transposition errors on An.

In molecular biology transpositional errors are one of the three known mechanisms in the mutation
and evolution of genetic information. The so-called replication slippage applied to a nucleotide
sequence is a process that results in some strings of consecutive nucleotides being reversed or
repeated in the sequence. Such replication slippages usually recur and give rise to so-called mi-
crosatellites which contain a high degree of information about the evolutionary process undergone
by the nucleotide sequence in question, and often this happens in the non-coding part of the nu-
cleotide sequence. For general information see Futuyma’s book [7] on evolutionary biology as
well as [17] and [19].

Replication slippage is therefore a combinations of two kinds of errors on sequences, on the one
hand the insertion-deletion process already mentioned at the end of Section 2 and the trans-
positional errors in the transposition Cayley graph on the other. It may be worth to mention
that the other principal mutation mechanisms are point mutations referring to the replacement
of one nucleotide by another, and frame shifts which are the insertion or deletion of a group of
nucleotides. Both of these are therefore covered by the insertion-deletion process.

Evidently any interval transposition or reversal (of a part of a nucleotide sequence) can be ex-
pressed as a product of single transpositional errors. However, it should be interesting to introduce
such products as new single errors, and to consider the resulting error graph on Symn. A second
point of interest should be to study the resistance to transpositional errors: As the nucleotide
alphabet consists of just four letters, a single transpositional error is expressed only in a small
proportion of all possible words in An, leaving many others unchanged by that error.

Returning to the general discussion of the transposition Cayley graph we note the following
conventions. Permutations in Symn are multiplied from the right so that (xy)(j) = x(y(j)) for
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all x, y ∈ Symn and j ∈ {1..n}. If x is written as a product of hi disjoint cycles of length i
for 1 ≤ i ≤ n then the cycle type of x is denoted as ct(x) = 1h12h2 ... nhn . Here it is essential
to include 1 -cycles so that

∑
i i hi = n. As is well-known, two permutations are conjugate to

each other through an element of Symn if and only if they have the same cycle type. Writing
G = Symn therefore the conjugacy class

(1h12h2 ... nhn)G := xG = { g−1xg : g ∈ G }

is the set of all permutations having the same cycle type as x .

We let H = T := { (i, j) ∈ Symn : 1 ≤ i 6= j ≤ n} = (1n−2 21)G be the set of all transpositions of
{1..n} . Thus ΓT is the transposition Cayley graph on Symn and will be denoted by Symn(T ).
The following collects some easily established facts.

Lemma 3 For n ≥ 3 the transposition Cayley graph Symn(T ) is a connected
(
n
2

)
-regular graph

of order n! and diameter n− 1. It is t -partite for any 2 ≤ t ≤ n.

Proof: The group Symn has order n! and is generated by its
(
n
2

)
transpositions. Its diameter

is at most n−1 since any permutation is a product of at most n−1 transpositions. On the other
hand, an n -cycle can not be written in terms of fewer than n−1 transpositions. No two elements
in the same sphere Si could be adjacent to each other as they have the same determinant (−1)i.
Hence S0, S1, S2, ..., Sn−1 is a partition into n parts from which a t -partition can be obtained
for any t ≤ n . 2

For the product of a permutation with a transposition the following simple rule is essential. If
x = (i1, .., ik)(j1, .., j`) consists of two disjoint cycles and if t = (i, j) interchanges elements from
different cycles, say i1 = i and j1 = j without loss of generality as the cycles are determined
only up to cyclic reordering, then

xt = (i1, j2, j3, .., j`, j1, i2, i3, .., ik) =: s (16)

is a single cycle obtained by joining up the two cycles of x . Conversely, upon multiplying this
equation again by t , we see that multiplying the single cycle s by a transposition of some two
elements from that cycle gives x = xtt = st , hence splitting that single cycle into two cycles.
Therefore multiplying any permutation x by a transposition results in a permutation which either
joins up two cycles of x or splits one cycle of x into two, with no other changes.

Following the earlier convention whereby Si = Si(e) we have that H = T = S1 consists of all
transpositions, S2 consists of all 3 -cycles (i, j, k) and all double transpositions (i, j)(k, `) with
i, j, k, ` distinct, and so on. As multiplication by a transposition increases or decreases the
number of cycles by one it follows by induction that Si consists of all permutations expressible
as a product of n− i disjoint cycles, counting also all 1 -cycles.

The path distance between two permutations x and y is the least number d of transpositions
ti such that xt1...td = y . Equivalently d is the least number of transpositions needed to write
x−1y and also equal to the number of bisections and gluings needed to transform the cycles of
x into those of y . The number of distinct paths from x to y is equal to the number of paths
from e to x−1y and about these the following theorem gives complete information. It is based
on Ore’s theorem on the number of trees with n labeled vertices, see also Theorem 2 in [10].
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Theorem 3 [6] Suppose that x has cycle type ct(x) = 1h12h2 ...nhn and let 1 ≤ i ≤ n − 1 be
such that

∑n
j=1 hj = n − i is the number of cycles in x. Then the number of distinct ways to

express x as a product of i transpositions is equal to

i!
n∏
j=1

(
jj−2

(j − 1)!

)hj

. (17)

By the discussion above x cannot be written in fewer than i transpositions. The special case
i = n − 1 and hn = 1 means that each of the (n − 1)! cycles of length n has nn−2 different
representations as a product of n− 1 transpositions. This number coincides with the number of
trees with n labelled vertices, see also Section 5.3 in Stanley [20].

Let 1 ≤ i ≤ n−1. If y ∈ Si has cycle type ct(y) = 1h12h2 .. nhn and consists of
∑n
j=1 hj = n− i

cycles then y is a product of i transpositions. As det y = (−1)i we must have ai(y) = 0 . As a
single cycle of length j can be split into two cycles as in (16) in

(
j
2

)
different ways, we have ci(y) =∑n

j=1

(
j
2

)
hj . From

∑n
j=1 jhj = n it follows that ci(y) =

∑n
j=1

(
j
2

)
hj = 1

2

(∑n
j=1 j

2hj − n
)

.
If we regard y as an element of Symm with m > n then it is clear from (16) that ci(y) is
independent of n . Finally, bi(y) =

(
n
2

)
− ci(y) . We collect these facts:

Lemma 4 In Symn(T ) the set Si , where 1 ≤ i ≤ n− 1, consists of all permutations of {1..n}
which are composed of exactly n− i disjoint cycles, including 1 -cycles.

If y ∈ Si has cycle type ct(y) = 1h12h2 .. nhn then

ci(y) =
1
2

 n∑
j=1

j2hj − n

 ,

ai(y) = 0 and

bi(y) =
1
2

n2 −
n∑
j=1

j2hj

 .

If y is regarded as an element in Symm with m > n then only bi(y) depends on n.

Remark: Loosely speaking, if y belongs to Si we can think of ci(y) as the ‘downward’ degree
of y, namely the number of neighbours of y in the next lower sphere Si−1. The fact that this
degree is independent of n will be used later on. Similarly

(
n
2

)
− ci(y) is the ‘upward’ degree

of y. The transposition Cayley graphs are not distance-regular and they illustrate the fact that
the up- and downward degrees are not constant for elements in the same sphere. This can be
seen already in Sym4(T ). If y in S2 is a 3 -cycle then c2(y) = 3 according to the three choice
of a transposition splitting the 3 -cycle. On the other hand, if y = (1, 2)(3, 4) in S2 is a double
transposition then c2(y) = 2 as there are just two ways to split one of the two cycles. This is
true for any n ≥ 4.

Next we discuss the automorphism group of the transposition Cayley graph. As before let G =
Symn = V and set Γ = Symn(T ). Let (a, b) be an element of the direct product G×G . Then
(a, b) : x 7→ axb−1 for x ∈ V is an automorphism of Γ since for any transposition t we have
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xt 7→ axtb−1 = (axb−1)(btb−1) in which btb−1 again is a transposition. Note that only the
identity of G×G fixes all vertices since axb−1 = x for all x ∈ V implies that a = b and hence
that a ∈ Z(G) = 1. This implies that we can view G×G as a subgroup of Aut(Γ). Recall the
discussion in Section 4. If we let C be the group of conjugation automorphisms, x 7→ xb for
all b ∈ G, then C is the diagonal subgroup {(b, b) : b ∈ G} ⊆ G × G. Furthermore, we have
G×G = G·C as subgroups of Aut(Γ).

A further automorphism of Γ comes from the inversion map

ı : x↔ x−1 for x ∈ V.

While ı is not an automorphism of the group it is an automorphism of the graph. For if {x, y} is
an edge with y = xt and t a transposition then y−1 = x−1(yty−1) where yty−1 is a transposition
and so {y−1, x−1} is an edge. Since (ı(a, b)ı) (x) = (ax−1b−1)−1 = (b, a)(x) for all x ∈ V we see
that ı normalizes G×G by interchanging the two direct factors. This shows that the semi-direct
product (Symn × Symn) · 〈ı〉 is contained in Aut(Symn(T )) .

Theorem 4 For n ≥ 3 the full automorphism group of Symn(T ) is the semi-direct product
(Symn × Symn) · C2 where C2 = 〈ı〉 is the group of order 2 obtained by inverting the elements
in V = Symn .

Proof: As before set G = Symn, Γ = Symn(T ) and let A be the group of all automorphisms
of Γ. When n = 3 when Γ is the complete bipartite graph K3,3 and in this case the statement
can be checked directly from the description of the action of (Sym3 × Sym3) · 〈ı〉 on Γ .

Now suppose that n > 3 and let α′′ ∈ A. As G acts vertex transitively by left-multiplication we
select g′′ ∈ (G× 1) ⊆ (G×G) such that α′ := g′′α′′ fixes eG . This implies that α′ fixes Sr as
a set, for all r ≥ 1 , see Proposition 2. Furthermore, α′ fixes each of the two conjugacy classes
(1n−331)G and (1n−422)G in S2 since c2 = 3 on the first class while c2 = 2 on the second class,
see the remark following Lemma 4.

For 1 ≤ i ≤ n let the pencil Pi be the set Pi = { (i, j) ∈ S1 : 1 ≤ j ≤ n and i 6= j}.
Then the following holds: any pair x 6= y ∈ Pi has exactly two joint neighbours in (1n−331)G,
and Pi is a maximal subset of S1 with this property. Conversely, any set of n − 1 vertices
in S1 satisfying this property is a pencil. Since (1n−331)G is invariant under α′ we see that
α′(Pi) again is a pencil. On the other hand, the diagonal element (g, g) ∈ G × G satisfies
(g, g)(i, j) = g · (i, j) · g−1 = (g(i), g(j)) so that (g, g)(Pi) is the pencil Pg(i) . This means that
the diagonal group induces the full symmetric group on pencils while fixing eG . In particular,
we can find some g′ = (g, g) ∈ G × G such that α := g′α′ fixes each pencil as a set, in
addition to the vertex eG. Let x = (i, j) be an element of S1 . Then {x} = Pi ∩ Pj so that
{α(x)} = α(Pi) ∩ α(Pj) = {x}. Hence α fixes all elements in B1(eG) pointwise.

Note that (1, 2), (1, 3) and (2, 3) are pairwise joined to two elements in S2 , and no others,
namely x = (1, 2, 3) and y = (1, 3, 2) . Thus α fixes {x, y} as a set and if ı denotes the
inversion automorphism mentioned before, then either α or ıα fixes all of B1(eG) ∪ {(1, 2, 3)}
pointwise. By the following lemma either ıg′g′′α′′ or g′g′′α′′ is the identity automorphism of
Γ and so α′′ = g′′−1g′−1ı or α′′ = g′′−1g′−1 belongs to (Symn × Symn) · C2. 2

16



Lemma 5 For n ≥ 3 only the identity automorphism of Symn(T ) fixes every vertex in B1(eG)∪
{(1, 2, 3)}.

Proof: This is evident for n = 3. Suppose therefore that n ≥ 4 and that α is an automorphism
fixing every vertex in B1(eG) ∪ {(1, 2, 3)}.

Then each double transposition in (1n−422)G is fixed by α as these elements have exactly
two neighbours in S1, with no two double transpositions having the same S1 -neighbours. The
elements in (1n−3, 31)G fall into pairs [(i, j, k), (i, k, j)] of 3–cycles, each pairwise linked to the
three fixed elements (i, j), (j, k) and (i, k) in S1. Therefore α either fixes or interchanges the
members in each pair. We show that α fixes these elements and hence is the identity on S2 .

Evidently (1, 2, 3) and (1, 3, 2) are both fixed. Hence look at the three pairs [(1, 4, 2), (1, 2, 4)] ,
[(1, 3, 4), (1, 4, 3)] and [(2, 3, 4), (2, 4, 3)]. As can be calculated, the six 4 -cycles in S3 involving
1, 2, 3 and 4 are partitioned into two sets X , all connected to (1, 2, 3), and Y, all connected to
(1, 3, 2). The sets X and Y are therefore fixed by α as sets. It turns out that (1, 4, 2) is linked
to two vertices in X while (1, 2, 4) is linked to two vertices in Y . This means that (1, 4, 2) and
(1, 2, 4) are each fixed by α . The same argument extends to all other 3–cycles. Hence B2(eG)
is fixed pointwise. For the remainder the argument becomes more homogeneous. Suppose that
x and y = α(x) are in Sr with r > 2. By induction we can assume that α fixes all vertices in
Sr−1 and this means that x and y have the same neighbours N(x) = N(y) in Sr−1. We claim
that this forces x = y. The elements in N(x) are obtained by ’splitting’ any cycles appearing in
x into two cycles in all possible ways, see (16). In particular, x and y have the same orbits on
{1..n} and if there are at least two orbits of length > 1 then N(x) = N(y) forces x = y. In the
remaining case x and y consist of a single cycle of length ` ≥ 4 with all other vertices fixed. It
is easy to see that ` > 3 and N(x) = N(y) again forces x = y. 2

6 Distance statistics in the transposition graph

Let Si be the sphere of radius i ≤ n − 1 and centre eG in the transposition Cayley graph
Symn(T ). Then Si is a union of Symn -conjugacy classes and the parameters ai(y) , ci(y) and
bi(y) are constant on these classes, for all 1 ≤ i ≤ n − 1. It will be useful to set si(n) := |Si|,
and in more customary symbols, c(n, n− i) := |Si|.

Then c(n, n− i) is the number of permutations in Symn having n− i cycles, for 1 ≤ i ≤ n− 1,
and these are the signless Stirling numbers of the first kind, see for instance Chapter 1.3 in
Stanley’s book [20]. We have c(n, n) = 1 , c(n, n − 1) =

(
n
2

)
, c(n, n − 2) = 2

(
n
3

)
+ 3

(
n
4

)
,

c(n, n− 3) = 3
(
n
4

)
+ 20

(
n
5

)
+ 15

(
n
6

)
and so on, up to c(n, 1) = (n− 1)! . The generating function

of c(n,m) satisfies

g(t) :=
n∑

m=1

c(n,m)tm = t(t+ 1) · · · (t+ n− 1)

and from this we get the product form

ΠSymn(T ) = tng(t−1) = (1 + t)(1 + 2t) · · · (1 + (n− 1)t)
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for the Poincaré polynomial (5) of Symn(T ). From the definition it is clear that si(n) is a
polynomial in n when i is fixed. The leading term counts the number of permutations of cycle
type 1n−2i 2i and so we note:

Lemma 6 If i is fixed and n ≥ 2i then si(n) is a polynomial in n of degree 2i. Its leading
term is the leading term of 1

i!

(
n
2

)(
n−2

2

)
· · ·
(
n−2i+2

2

)
and is equal to 1

i!2in
2i.

For y ∈ Si with cycle type ct(y) = 1h12h2 ... nhn let as before (1h12h2 ... nhn)G = yG be the
conjugacy class of y . Then

|(1h12h2 ... nhn)G| = n!
1h1h1!2h2h2! · · ·nhnhn!

,

and

Si =
⋃

h1+h2+···+hn=n−i

(1h1 2h2 ... nhn)G , (18)

see again Chapter 1.3 in [20]. Omitting cycle types of multiplicity 0 we therefore have S1 =
(1n−2 21)G, S2 = (1n−3 31)G ∪ (1n−4 22)G and so on. For small values of r one can compute
N(Symn(T ), r) easily from this information.

6.1 The value of N(Symn(T ), r) for r ≤ 3

As we have observed, Symn(T ) is not distance-regular and as a consequence it is not straightfor-
ward to determine the value N(Symn(T ), r) for general r. We begin to evaluate N(Symn(T ), r)
for r ≤ 3 when closed formulae can be obtained.

Theorem 5 For n ≥ 3 we have

N(Symn(T ), 1) = 3 . (19)

Proof: From Lemma 4 we have λ(Symn(T )) = 0 since a1(z) = 0 for z ∈ S1 and moreover
c2(y) = 3 if y has cycle type ct(y) = 1n−3 31 and c2(y) = 2 if y has cycle type ct(y) = 1n−4 22.
Therefore, from (7) we have µ(Symn(T )) = 3 and by (10) we get (19). 2

Theorem 6 For n ≥ 5 we have

N(Symn(T ), 2) = N2(Symn(T ), 2) =
3
2

(n+ 1)(n− 2). (20)
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Remark: From this result one can see that the bound in Theorem 2 is indeed very good:
Working out the parameters for the transposition Cayley graph gives the bound N(Symn(T ), 2) ≥
N2(Symn(T ), 2) ≥ 3

2 (n+ 1)(n− 2)− 1 from Theorem 2.

Proof: By vertex transitivity it suffices to compute |B2∩B2(y)| withB2 = B2(e). This quantity
depends only on the conjugacy class to which y belongs, this is a consequence of Proposition 2
and Theorem 4. Therefore we need to consider the number N(y) of all vertices in B2 which are
at distance ≤ 2 from a given vertex y ∈ Si when i runs from 1 to 4. By (18) we have

S4 = (1n−5 51)G ∪ (1n−6 21 41)G ∪ (1n−6 32)G ∪ (1n−7 22 31)G ∪ (1n−8 24)G,

S3 = (1n−4 41)G ∪ (1n−5 21 31)G ∪ (1n−6 23)G

and so on. The numbers N(y) are presented in Table 1. The row index is the conjugacy class
which contains y while the column index is the conjugacy classes contained in B2. The value of
N(y) is worked out using (16).

N(y) (1n−3 31)G (1n−4 22)G (1n−2 21)G (1n)G

(1n−5 51)G 10 10 0 0
(1n−6 21 41)G 4 6 0 0
(1n−6 32)G 2 9 0 0
(1n−7 22 31)G 1 7 0 0
(1n−8 24)G 0 6 0 0
(1n−4 41)G 4 2 6 0
(1n−5 21 31)G 1 3 4 0
(1n−6 23)G 0 3 3 0
(1n−3 31)G 6(n− 3) + 2 3

(
n−2

2

)
3 1

(1n−4 22)G 4(n− 2) 2
(
n−2

2

)
− 1 2 1

(1n−2 21)G 2(n− 2)
(
n−2

2

) (
n
2

)
1

Table 1

When we consider the corresponding rows in the table we get N4(Symn(T ), 2) = 20 when n ≥ 5,
N3(Symn(T ), 2) = 12 when n ≥ 4, N2(Symn(T ), 2) = 3

2 (n + 1)(n − 2) and N1(Symn(T ), 2) =
(n− 1)n for all n ≥ 3 . This proves the theorem due to (8). 2

To estimate the number of vertices in |Br ∩ Br(y)| for an arbitrary y we consider the paths
t1t2 · · · tr∗ with r∗ ≤ r starting at y and leading to a vertex z = yt1t2 · · · tr∗ belonging to
Br. We say that this path has a descent at step k < r∗ if yt1t2 · · · tk−1 ∈ Ss for some s
while yt1t2 · · · tk−1tk ∈ Ss−1. The number of ways to continue the path at yt1t2 · · · tk−1 by a
descent is the downward degree c(eG, yt1t2 · · · tk−1) of (6) which by Lemma 4 is independent
of n . Similarly, we say that the path has an ascent at step k if yt1t2 · · · tk−1 ∈ Ss while
yt1t2 · · · tk−1tk ∈ Ss+1. In this case the number of choices to continue the path at yt1t2 · · · tk−1

by an ascent is the upward degree b(eG, yt1t2 · · · tk−1) which by Lemma 4 is of order n2. Hence

Lemma 7 The number of vertices z = yt1t2 · · · tr∗ reachable from y on a path with a ascents
is at most kyn2a where ky is some constant independent of n.
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Let Ei,i+1 be the set of edges joining a vertex in Si to one in Si+1. As Symn(T ) is k -regular
with k = |S1| and as ai(z) = 0 for all z ∈ Si , see Lemma 4, we have |Ei−1,i|+ |Ei,i+1| = k · |Si|
and hence

|Er−1,r| = k · (|Sr−1| − |Sr−2|+ |Sr−3| − ...+ (−1)r−1|S0|) (21)

for all r. For the transposition y ∈ T let Er−1,r(y) be the set of all edges in Er−1,r of the form
{z, zy} . (These are the edges in Er−1,r that are labelled by y .) Evidently all automorphisms of
Symn(T ) fixing eG permute Er−1,r as a set and since the conjugation action is transitive on T
every edge label must appear an equal number of times in each orbit. Hence

|Er−1,r(y)| = |Sr−1| − |Sr−2|+ |Sr−3| − ...+ (−1)r−1|S0| (22)

for all r. If y = (j1, j2) then the end vertices v− ∈ Sr−1 and v+ ∈ Sr of {v−, v+} ∈ Er−1,r(y)
are composed of cycles in which j1 and j2 occur in different, respectively the same, cycle(s).
Hence (22) gives the number of permutations in Sr−1 with j1, j2 in different cycles and, at the
same time, the number of permutations in Sr with j1, j2 in the same cycle.

Theorem 7 Let Γ = Symn(T ) be the transposition Cayley graph and suppose that n ≥ 4.
Then we have

(i) N1(Γ, 3) = 2|S0|+ 2|S2| and
(ii) N2(Γ, 3) = |S0|+ |S1|+ |S2|+ (n+ 2)(n− 3) +

+ 24
(
n− 3

2

)
+ 22

(
n− 3

3

)
+ 6
(
n− 3

4

)
.

Furthermore we have N(Γ, 3) = N2(Γ, 3) for all n ≥ 16.

Proof: We need to compute |B3 ∩ B3(y)| when e = eG and y have distance d(e, y) ≤ 6 from
each other. When d(e, y) = 5 or 6 then a path of length ≤ 3 from y to a vertex in B3 can not
have any ascents. Therefore the number of such vertices is independent of n by Lemma 7. (The
same phenomenon can be seen in the upper part of Table 1.) When d(e, y) = 3 or 4 then the
corresponding paths have at most one ascent so that |B3 ∩B3(y)| is of order at most n2. When
d(e, y) = 1 or 2 then |B3 ∩ B3(y)| is of order at least n4 as we will show now. It follows that
the cases 3 ≤ d(e, y) ≤ 6 can be ignored for large enough n, and a lower bound for n for this to
be true will be given at the end of this proof.

(i) Finding N1(Symn(T ), 3) : Let y be in S1. Then by Lemma 1 we have |B3 ∩ B3(y)| =
|B2|+M(y) where M(y) is the number of vertices z ∈ S3 with d(z, y) ≤ 3, and hence d(z, y) = 2.
If z = yt1t2 ∈ S3 with transpositions ti then also z−1 = t2t1y ∈ S3, see Theorem 4. Hence
M(y) is the number of all t2t1y belonging to S3. As any element in S2 is of the shape t2t1 for
some t1 and t2 we see that M(y) = |E2,3(y)| = |S2| − |S1|+ |S0| by (22). Therefore

N1(Symn(T ), 3) = |B2|+ |S2| − |S1|+ |S0| = 2|S2|+ 2|S0|. (23)

(ii) Finding N2(Symn(T ), 3) : Let y = y1y2 be in S2 with transpositions yi. By Lemma 1
we have |B3 ∩ B3(y)| = |B1| + M(y) where M(y) is the number of vertices z ∈ S2 ∪ S3 with
d(z, y) ≤ 3. As above, if z = yt1 · · · tr∗ ∈ S2 ∪ S3 with r∗ ≤ 3, consider instead z−1 =
tr∗ · · · t1y2y1 ∈ S2 ∪ S3, that is, all paths from eG of length ≤ 5 ending in y2y1 at a vertex in
S2 ∪ S3. Let Z be the set of all such vertices z−1, in particular then M(y) = |Z|.
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Let u = t2t1 ∈ S2 be arbitrary. If t1 = y1 then u = (t2y2)y2y1 ∈ Z ∩ S2. Otherwise uy1 =
(t2t1y2)y2y1 ∈ Z∩S3. Denote the vertices in Z of this kind by Z0, in particular then |Z0| = |S2|.

Next let e = {v+, v−} ∈ E2,3(y1) with v+ = v−y1 ∈ S3 and v− = v+y1 ∈ S2. Then v− belongs
to Z if and only if v+y2 belongs to S2. Let the vertices of this type be denoted by Z1. Thus |Z1|
is the number of u = v+ ∈ S3 such that both uy1 and uy2 belong to S2. When y1 = (1, 2) and
y2 = (2, 3) then (16) implies that |Z1| is the number of elements in (1, 2, 3)(4, 5)G or (1, 2, 3, 4)G

with 1, 2, 3 in the same cycle. This number is

|Z1| = 2
(
n− 3

2

)
+ 6(n− 3) = (n+ 2)(n− 3) . (24)

When y1 = (1, 2) and y2 = (3, 4) then |Z1| is the number of elements in (1, 2, 3)(4, 5)G,
(1, 2, 3, 4)G or (1, 2)(3, 4)(5, 6)G in which 1, 2 and 3, 4 appear in the same cycle(s). This number
is

|Z1| = 4(n− 4) + 6 +
(
n− 4

2

)
=
(
n

2

)
. (25)

Finally let e = {v+, v−} be in E3,4(y1) with v+ ∈ S4 and v− ∈ S3. Then v− belongs to Z if
and only if u = v+ ∈ S4 has the property that both uy1 and uy2 belong to S3. Let Z2 be the
set of all such vertices v− . When y1 = (1, 2) and y2 = (2, 3) then |Z2| is the number of elements
in (1, 2, 3)(4, 5, 6)G, (1, 2, 3)(4, 5)(6, 7)G, (1, 2, 3, 4)(5, 6)G or (1, 2, 3, 4, 5)G with 1, 2, 3 in the
same cycle. This number is

|Z2| = 4
(
n− 3

3

)
+
(
n− 3

2

)(
n− 5

2

)
+ 3!(n− 3)

(
n− 4

2

)
+ 4!

(
n− 3

2

)
= 24

(
n− 3

2

)
+ 22

(
n− 3

3

)
+ 6
(
n− 3

4

)
. (26)

(Note, the term
(
n−3

2

)(
n−5

2

)
accounts for the two choices of a 3 -cycle on {1, 2, 3} while avoiding

duplication in the choice of two 2 -cycles from the remaining n−3 and n−5 vertices, respectively.)

When y1 = (1, 2) and y2 = (3, 4) then |Z2| is the number of elements in (1, 2, 3)(4, 5, 6)G,
(1, 2, 3)(4, 5)(6, 7)G, (1, 2, 3, 4, 5)G, (1, 2, 3, 4)(5, 6)G or (1, 2)(3, 4)(5, 6)(7, 8)G in which 1, 2, and
3, 4 appear in the same cycle(s). This number is

|Z2| = 4(n− 2)(n− 5) +
[
4(n− 4)

(
n− 5

2

)
+ 2
(
n− 4

3

)]
+

+ 4!(n− 4) +
[
6
(
n− 4

2

)
+ 6
(
n− 4

2

)
+ 6
(
n− 4

2

)]
+

+
1
2

(
n− 4

2

)(
n− 6

2

)
= 24(n− 4) + (n− 5)(13n− 44) + 14

(
n− 4

3

)
+ 3
(
n− 4

4

)
. (27)

It is clear that Z = Z0 ∪Z1 ∪Z2 is a disjoint union. Comparing (24)+(26) to (25)+(27) one can
check that the first expression is bigger than the second for all n ≥ 4. Hence |B3 ∩B3(y)| takes
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its maximum when y ∈ (1, 2, 3)G for all n ≥ 4. Therefore

N2(Symn(T ), 3) = |S0|+ |S1|+ |S2|+ (n+ 2)(n− 3) +

+ 24
(
n− 3

2

)
+ 22

(
n− 3

3

)
+ 6
(
n− 3

4

)
(28)

and this complete the second part of the theorem.

We now return to the comment at the beginning of this proof. Comparing (23) to (28) shows
that N2(Γ, 3) > N1(Γ, 3) for all n ≥ 4. When y belongs to S3 or S4 a very rough upper
bound for |B3 ∩ B3(y)| can be obtained by following through the argument in Lemma 7. By
Lemma 4 the downward degree for a vertex in Sj(e) is at most

(
j+1

2

)
while the upward degree

is at most
(
n
2

)
− j. By considering the possible ascent-descent combinations of a path from y to

a vertex in B3 we can work out that N4(Γ, 3) ≤ −455 + 155
(
n
2

)
and N3(Γ, 3) ≤ −132 + 65

(
n
2

)
.

Using the same arguments we can bound N6(Γ, 3) ≤ 1575 and N5(Γ, 3) ≤ 525. Evaluating these
inequalities it can be seen that N2(Γ, 3) > Nj(Γ, 3) for j = 3, 4, 5, 6 from n ≥ 16 onwards. We
note that a better lower bound n ≥ 10 can be obtained by a more careful albeit tedious count
of the possible paths. This completes the proof. 2

6.2 The asymptotic behaviour of N(Symn(T ), r)

The main work in this section will be to find N1(Symn(T ), r) and N2(Symn(T ), r) for arbitrary
r and sufficiently large n . It will turn out that this determines N(Symn(T ), r) in general. Let
b(n, r) denote the cardinality of the ball of radius r in Symn(T ), thus

b(n, r) = |Br| =
∑

0≤i≤n

si(n) =
∑

0≤i≤n

c(n, n− i)

in terms of the signless Stirling numbers of the first kind.

First we consider N2(Symn(T ), r). By Lemma 1 we have N2(Symn(T ), r) = b(n, r − 2) +
|(Sr ∪ Sr−1) ∩ Br(y∗)| where y∗ suitably is a 3 -cycle or a double transposition. We set A :=
|(Sr ∪ Sr−1) ∩ Br(y∗)| and let y∗ = y1y2 with two transpositions yi. We now need to find the
number A of all z in Sr ∪ Sr−1 which can be reached on a path t1t2...tr∗ of length r∗ ≤ r
starting from y∗ . This means that z = y1y2t1t2...tr∗ and applying the inversion automorphism,
see Theorem 4, we obtain the element z−1 = tr∗ · · · t2t1y2y1 in Sr∪Sr−1. This represents a path
from e = eG in which y2 and y1 are the last edges. If Z denotes the set of all such elements
z−1 then |Z| = A.

Let u be in Sr−1 and suppose that u = tr−1 · · · t2t1 is the product of suitable transpositions
ti . If t1 = y1 then u = (tr−1 · · · t2y2)y2y1 so that u ∈ Z. Otherwise uy1 = (tr−1 · · · t2t1y2)y2y1

belongs to Z. Thus every u in Sr−1 gives rise to one element in Z. The set of elements of this
type is denoted by Z0 , and in particular |Z0| = |Sr−1|.

The next type of vertices in Z are of the shape z−1 = tr∗ · · · t2t1y2y1 where both z−1 and
tr∗ · · · t2t1 belong to Sr−1 while tr∗ · · · t2t1y2 belongs Sr. This type will be called Z1, evidently
this set is disjoint from Z0.
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The remaining vertices in Z are of the shape z−1 = tr∗ · · · t2t1y2y1 where both z−1 and
tr∗ · · · t2t1 belong to Sr while tr∗ · · · t2t1y2 belongs Sr+1. These are the vertices of type Z2

and it follows that Z = Z0 ∪ Z1 ∪ Z2 is a disjoint union. Therefore

N2(Symn(T ), r) = b(n, r − 1) + max(|Z1|+ |Z2| : y∗ ∈ S2) (29)

where Z1 and Z2 depend on the choice of y∗ as either a 3 -cycle or a double transposition. We
can now prove the following theorem:

Theorem 8 Let Γ = Symn(T ) be the transposition Cayley graph. Suppose that r ≥ 2 and
that y is a transposition.

(i) For n− 1 ≥ r we have

N1(Γ, r) = b(n, r − 1) + |Er−1,r(y)| =

= 2 ·
(
|Sr−1|+ |Sr−3|+ |Sr−5|+ · · ·

)
. (30)

(ii) For n sufficiently large we have

N2(Γ, r) > N1(Γ, r) . (31)

Proof: (i) Let y be in S1 . By Lemma 1 we have N1(Γ, r) = |Br∩Br(y)| = |Br−1|+|Sr∩Br(y)|.
Hence we need to find the number M(y) = |Sr ∩Br(y)| of all z ∈ Sr which can be reached on a
path of length ≤ r from y . Such a path is necessarily of the shape z = yt1t2 · · · tr−1, consisting
of r − 1 transpositions ti . Applying the inversion automorphism, as above, we obtain a path
z−1 = tr−1 · · · t2t1y starting from e to z−1 ∈ Sr with y as last edge. Evidently any vertex in
Sr−1 can be reached by a suitable choice of tr−1 · · · t2t1 and therefore M(y) = |Er−1,r(y)|. The
result now follows from (22).

(ii) Let Z1 and Z2 have the same meaning as in (29). By the first part of this theorem and
the equation (29) it will be sufficient to show that |Z2| ≥ |Er−1,r(y)| for all large enough n.
We evaluate |Z2| for y∗ = y1y2 with y1 = (1, 2) and y2 = (2, n). The vertices in Z2 are in
one-to-one correspondence with vertices u ∈ Sr+1 such that uy1 and uy2 ∈ Sr. By the basic
property (16) this is the case if and only if 1, 2, n belong to the same cycle of u . Let U be the
set of such elements, |U | = |Z2|. To count |U | consider elements u′ in the symmetric group G′

on {1, 2, ..., n− 1} which have the following properties: (i) both 1 and 2 are in the same cycle
of u′ , and (ii) u′ has (n− 1)− r cycles. Thus u′ is in Sr ∩G′ and it follows from (22) that the
total number of such elements u′ is

a : = |Er−1,r(y1) ∩ { {x, x∗} : x, x∗ ∈ G′} |
= |Sr−1 ∩G′| − |Sr−2 ∩G′|+ |Sr−3 ∩G′| − ...+ (−1)r−1|S0 ∩G′| .

By Lemma 6 it follows that the coefficient of the leading power of n in |Sr−1| and in |Sr−1∩G′|
is the same. Therefore

a = |Er−1,r(y1) ∩ {{x, x∗} : x, x∗ ∈ G′} | = |Sr−1|+ f(n)
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for a polynomial f(n) of degree ≤ 2(r−1)−1. Any u′ of the kind just considered is a permutation
on {1, 2, ...n − 1} in which 1 and 2 appear in the same cycle, say of length cu′ ≥ 2. Now we
may insert n into that cycle, in cu′ distinct ways, to get cu′ different elements in U. Thus
|Z2| = |U | ≥ 2a and therefore

|Z2| ≥ 2 · |Sr−1|+ 2f(n) . (32)

Since the leading term of |Er−1,r(y)| is |Sr−1| by (22) it follows that |Z2| ≥ |Er−1,r(y)| for all
large enough n. 2

In the expression N2(Symn(T ), r) = b(n, r− 1) + max(|Z1|+ |Z2| : y∗ ∈ S2) stated in (29) the
term |Z1|+ |Z2| depends on the choice of y∗. We therefore turn to evaluating |Z1|+ |Z2| for the
two possible choices y∗ = (1, 2, 3) and y∗ = (1, 2)(3, 4).

This leads us to the following definition. Let c31(n, n − i) be the number of vertices in Si in
which the letters 1, 2, 3 appear in a single cycle, and let c22(n, n− i) be the number of vertices
in Si in which the letters 1, 2 and 3, 4 appear in the same cycle or cycles. For instance,

c31(n, n) = c31(n, n− 1) = 0, c31(n, n− 2) = 2,
c31(n, n− 3) = (n+ 2)(n− 3), and

c31(n, n− 4) = 24
(
n− 3

2

)
+ 22

(
n− 3

3

)
+ 6
(
n− 3

4

)
. (33)

Similarly we have

c22(n, n) = c22(n, n− 1) = 0, c22(n, n− 2) = 1,

c22(n, n− 3) =
(
n

2

)
, and

c22(n, n− 4) = 24(n− 4) + (n− 5)(13n− 44)

+ 14
(
n− 4

3

)
+ 3
(
n− 4

4

)
. (34)

For this see again (24), (25), (26) and (27). As we have already observed in the proof of the last
theorem, the general rule (16) implies that Z1 and Z2 in (29) satisfy

|Z1|+ |Z2| = c31(n, n− r) + c31(n, n− (r + 1)) (35)

when y∗ is a 3 -cycle and

|Z1|+ |Z2| = c22(n, n− r) + c22(n, n− (r + 1)) (36)

when y∗ is a double transposition. We obtain an estimate for c31(n, n− r) and c22(n, n− r) as
follows:

Lemma 8 For fixed i ≥ 2 and n sufficiently large we have

c31(n, n− i) =
2

(i− 2)!

(
n− 3

2

)(
n− 5

2

)
· · ·
(
n+ 3− 2i

2

)
+ f1 (37)
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and

c22(n, n− i) =
1

(i− 2)!

(
n− 4

2

)(
n− 6

2

)
· · ·
(
n+ 2− 2i

2

)
+ f2 (38)

where the fi are polynomials in n of degree < di = 2(i − 2). In particular, c31(n, n − i) and
c22(n, n− i) are polynomials of degree di and c31(n, n− i) = 2 c22(n, n− i)+f3 with a polynomial
f3 of degree < di.

Proof: Let C31(n, n− i) ⊆ Si and C22(n, n− i) ⊆ Si be the sets counted by c31(n, n− i) and
c22(n, n − i) respectively. For i = 2, when 0! = 1, we see that C31(n, n − 2) consists of the
two 3 -cycles (1, 2, 3) and (1, 3, 2) while C22(n, n− 2) consists of the single double transposition
(1, 2)(3, 4) only. This established the base of induction and accounts for the factor 2 throughout.
We will prove the statement (37) concerning c31(n, n− i), the corresponding statement (38) for
c22(n, n− i) follows in exactly the same way.

If g ∈ Symn let supp(g) be its support, that is all symbols moved by g . The cardinality of the
support of any g ∈ C31(n, n−i) is at most 3+2(i−2). Let Ci0 := C31(n, n−i)∩(1n−2i+12i−231)G

and let Ci1 = C31(n, n− i) \ Ci0. Then

|Ci0| =
2

(i− 2)!

(
n− 3

2

)(
n− 5

2

)
· · ·
(
n+ 3− 2i

2

)
and by induction we assume that |Ci1| = f1 has degree < di . Since

|Ci+1
0 | = 2

(i− 1)!

(
n− 3

2

)(
n− 5

2

)
· · ·
(
n+ 3− 2i

2

)
·
(
n+ 1− 2i

2

)
it remains to show that the number of elements in Ci+1

1 is a polynomial of degree at most di+1.

By considering cycle types it is easy to see that any vertex in Ci+1
1 has at least one neighbour

in Ci0 or in Ci1. In the first case, if g = u · (j1, j2) with u ∈ Ci0 then at least one of {j1, j2}
must be in the support of g as otherwise g ∈ Ci+1

0 . The number of such elements g therefore
is polynomial of degree at most di + 1. The number of vertices of the second kind is clearly at
most f1

(
n
2

)
, again of degree at most di + 1. Hence c31(n, n− i) has the required expression. In

the case of c22(n, n− i) the same arguments apply. 2

Theorem 9 Let Γ = Symn(T ) be the transposition Cayley graph and suppose that r ≥ 1.
Then for all sufficiently large n we have

N(Γ, r) = N2(Γ, r)

= b(n, r − 1) + c31(n, n− r) + c31(n, n− (r + 1)) . (39)

Remark: For r ≤ 3 we already have computed the value of N(Symn(T ), r) in Theorems 5, 6
and 7 when N(Symn(T ), r) indeed agrees with (39). In these theorems the lower bound on n
was explicit and hence better than the condition here. Nevertheless, analysing the arguments
here it is likely that the bound n > 3r is sufficient.

Proof: We can assume that r > 3 . By (29), (35) and Lemma 8 it follow that N2(Γ, r) =
b(n, r − 1) + c31(n, n − r) + c31(n, n − (r + 1)) and this establishes the second equation. By
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Theorem 8 we know that N2(Symn(T ), r) > N1(Symn(T ), r) and both terms are polynomial of
degree 2(r− 1). It remains to show that Ns(Symn(T ), r) is polynomial of degree < 2(r− 1) for
2 < s. For y ∈ Ss consider all paths z = yt1 · · · tr∗ of length r∗ ≤ r to a vertex z ∈ Ss∗ with
s∗ ≤ r. If a and b are the number of ascents and descents then a+b = r∗ ≤ r and a−b = s∗−s.
From this it follows that a < r − 1 and the required fact now follows from Lemma 7. 2
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