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Abstract

For a vector space V over GF(q) let Lk be the collection of subspaces of dimension k. When
R is a �eld let Mk be the vector space over it with basis Lk . The inclusion map @ : Mk → Mk−1

then is the linear map de�ned on this basis via @(X ) :=
∑

Y where the sum runs over all
subspaces of co-dimension 1 in X . This gives rise to a sequence

M : 0← M0 ← M1 ← · · · ← Mk−1 ← Mk ← · · ·
which has interesting homological properties if R has characteristic p¿ 0 not dividing q. Fol-
lowing on from earlier papers we introduce the notion of �-homological, �-exact and almost
�-exact sequences where � = �(p; q) is some elementary function of the two characteristics.
We show that M and many other sequences derived from it are almost �-exact. From this
one also obtains an explicit formula for the Brauer character on the homology modules derived
from M. For in�nite-dimensional spaces we give a general construction which yields �-exact
sequences for �nitary ideals in the group ring RP�L(V ). c© 2000 Elsevier Science B.V. All
rights reserved.

MSC: 51D30; 20C20; 05E25; 06A08

1. Introduction

Let R be an associative ring with identity. Suppose that Mk for k=0; : : : are R-modules
and that @ : ⊕k Mk → ⊕k Mk is an R-homomorphism with @(Mk)⊆Mk−1. From this
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we obtain the sequence

M : 0 @←−M0
@←−M1

@←−· · · @←−Mk−1
@←−Mk

@←−· · · :
It is convenient to put Mk = 0 for k ¡ 0 and to de�ne @ : Mk → Mk−1 by putting
@(Mk) = 0 for such values of k. We refer to R also as the coe�cient domain.

Here we are concerned with the situation when @ is nilpotent so that @� =0 for some
�¿ 1. When � = 2 then M is a homological sequence in the usual sense. However,
for �¿ 2 the methods of classical homology theory do not apply immediately. Never-
theless, in a suitable setting, one can talk about homological properties of a sequence
such as M for any nilpotent map @.

For this purpose it is necessary to consider certain sequences obtained from M. Thus
let M be as above and suppose that �¿ 1 is an arbitrary �xed integer. Now select
positive integers i∗ ¡� and k∗ with k∗ + i∗ ¡� and consider the sequence

Mk∗ ; i∗ : 0← Mk∗ ← Mk∗+i∗ ← Mk∗+� ← Mk∗+i∗+� ← Mk∗+2� ← · · ·
in which each arrow is the appropriate power of @. Observe that Mk∗ ; i∗ is homological
if @�=0. Conversely, if Mk∗ ; i∗ is homological for every choice of k∗ and i∗ then @�=0
and M is said to be �-homological.

One further general notion for homological sequences is important. If

A : 0← A0 ← · · · ← Ak−1 ← Ak ← Ak+1 ← · · · ← 0

is homological then A is said to be almost exact if at most one of the homology
modules in A is non-zero. We extend this to �-homological sequences and call a
�-homological sequence M almost �-exact if each Mk∗ ; i∗ is almost exact.

The purpose of this paper is to investigate sequences such as M which are naturally
associated to the projective geometry over a �nite �eld. More precisely, let V be
a vector space of arbitrary dimension over the �eld GF(q) where q is some prime
power and let L be the lattice of all �nite-dimensional subspaces of V . If Lk denotes
the collection of subspaces of dimension k let Mk be the free R-module with Lk as
basis. The containment relation provides a natural inclusion map @ : ⊕k Mk → ⊕k Mk

de�ned on a basis by

@(X ) =
∑

Y;

where X is a �nite-dimensional subspace of V and where the sum runs over all sub-
spaces Y of co-dimension 1 in X .

If R has �nite characteristic p not dividing q then @ is nilpotent and we de�ne the
function � := �(p; q) as the least value � for which @� = 0. Our main results show that
M and various sequences constructed from it are almost �-exact.

Almost exact sequences play an important role in representation theory and com-
binatorics. For many important classes of partially ordered sets the order complex is
known to be almost exact, these include for example Cohen–Macauley posets, see for
instance [3]. Here the di�erential operator satis�es @2 = 0 independently of the charac-
teristic. This is not the case for our construction which leads to nilpotent maps only
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if the characteristic of R is non-zero. This may explain why we use the term modular
homology. While modular homology is quite di�erent from order homology it appears,
as we shall see, that quite general classes of partially ordered sets give rise to almost
exact sequences in both homology theories.

From the view point of group representation theory almost exact sequences are im-
portant because the Hopf–Lefschetz trace formula relates representations on the modules
of the sequence directly to the representation on its only non-trivial homology mod-
ule. This is very well studied for order homology and the Steinberg representations
which are fundamental in many respects. While the modular homology discussed here
has not yet been studied as extensively, nevertheless, several important families of
representations have already been described in these terms.

The construction above for projective space can obviously be set up for quite
general classes of partially ordered sets. It makes sense therefore to study modu-
lar homology in greater generality. This has been carried out for the Boolean al-
gebra and certain of its rank-selected sublattices in [10,11]. Here typically the
sequence attached to the poset, for coe�cient domain of characteristic p¿ 0, is almost
p-exact and the non-trivial homologies are interesting, often irreducible representations
of the symmetric group. The results of this paper extend some of these observations
to projective spaces and may indicate that modular homology is an interesting gen-
eral tool to study both the poset and the modular representations of its automorphism
group.

The Boolean algebra and projective spaces are examples of di�erential posets and in
Section 3.2 we investigate modular homologies of such posets. We show that almost
exactness can be derived from two facts: One are suitable conditions on the structure
constants of the poset, the other is a statement to the extend that the kernel of @
can be generated by elements of suitably small ‘support’. This leads to the general
problem of determining the support size for kernels of inclusion maps in such posets.
In [10,2,12] we have done this by elementary means for the Boolean algebra and
products of chains but unfortunately we were not quite able to extend these techniques
to projective spaces. In the same section we shall also briey indicate how homotopy
arguments can be used to establish almost �-exactness.

Modular homology appears to be mentioned �rst in two papers [9] by Mayer in
1947, further historical remarks and references can be found also in [2]. More recent
papers 2 on the subject include Dubois-Violette [4] and Kapranov [8].

2. Notation

Let V be a vector space of arbitrary dimension over F = GF(q) with q a prime
power and let L be the lattice of all �nite-dimensional subspaces of V . Using a�ne

2 We wish to thank the referee for pointing these out to us and for other suggestions which led to improve-
ments in an earlier draft of this paper.
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dimensions, the dimension of L is dimL :=dimV and for k ¡∞ the collection of all
k-dimensional subspaces of V is denoted by Lk . The following standard analogues of
combinatorial functions will be useful. We put

[i]q := 1 + q + q2 + · · ·+ qi−1

and de�ne the q-factorial function by

(i!)q := [1]q · [2]q · · · · · [i]q:
The q-binomial function

( n
k

)
q is the number of k-dimensional subspaces in V :

(n
k

)
q

:= |Lk |=
[n]q · [n− 1]q · · · [n− k + 1]q

[k]q · [k − 1]q · · · [1]q

and it is convenient to put
( n
k

)
q = 0 if k ¡ 0 or k ¿n. As a reference to Gaussian

polynomials see Chapter 3 of [7] or the book of Andrews [1].
For the remainder we will assume that R is a �nite �eld of characteristic p¿ 0 and

in order to avoid confusion with the elements of L we will refer to vector spaces over
R as, evidently free, R-modules. This will also be useful later when we are concerned
with group actions over R. Thus the R-modules with L and Lk as basis will be denoted
by RL and RLk respectively. In particular, RL =

⊕
0≤k RLk . For RLk and RL we will

often write Mk and M respectively as the context is usually clear. In particular, M0

is the one-dimensional module with the null space as basis and for convenience we
put Mk = 0 for k ¡ 0 or k ¿dimV . For f =

∑
rX X ∈ M the support is the subspace

supp(f) generated by all X with rX 6= 0 and its dimension is the support dimension
of f.

The inclusion map @ : M → M is the R-homomorphism de�ned by @(X ) :=
∑

Y
for X ∈ L where the sum runs over all subspaces Y of co-dimension 1 in X . Instead
of @(f) we also write f′ and f(s) denotes [f(s−1)]′. It is clear that @ restricts to maps
@ : Mk → Mk−1 for all k.

3. Homology

We will now examine the homological properties of the inclusion maps just de�ned.
In the �rst part this is done for projective spaces. The results we obtain are very
similar to those holding in the Boolean lattice [10,11,2]. This is not accidental: In the
second part we shall explore this connection and explain how results of this kind can
be derived for join-meet regular and di�erential posets.

3.1. Projective spaces

Let L be the projective geometry associated to the vector space V of dimension
dimV ≤ ∞. Then @ : Mk → Mk−1 gives rise to the sequence

M : 0 @←−M0
@←−M1

@←−· · · @←−Mk−1
@←−Mk

@←−· · · :
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Table 1
The function �(p; q)

p Values of q

2 3 4 5 7 8 9 11 13 16 17 19 23 25 27

2 – 2 – 2 2 – 2 2 2 – 2 2 2 2 2
3 2 – 3 2 3 2 – 2 3 3 2 3 2 3 –
5 4 4 2 – 4 4 2 5 4 5 4 2 4 – 4
7 3 6 3 6 – 7 3 3 2 3 6 6 3 3 2

11 10 5 5 5 10 10 5 – 10 5 10 10 11 5 5
13 12 3 6 4 12 4 3 12 – 3 6 12 6 2 13
17 8 16 4 16 16 8 8 16 4 2 – 8 16 8 16
19 18 18 9 9 3 6 9 3 18 9 9 – 9 9 6

We are interested in the homological properties of M. So �x some i ≤ k and let
X ∈ Lk . Then @i(X ) = c

∑
Y where the sum runs over all Y ∈ Lk−i with Y ⊂X and

where c is the number of saturated chains Y = Y0⊂Y1⊂ · · ·⊂Yi = X . It is easy to
see that c = 1 · (1 + q) · · · · · (1 + q + q2 + · · ·+ qi−1) and so @i(X ) = (i!)q

∑
Y . If p

divides q then @i(X ) =
∑

Y 6= 0 for any i ≤ j and this case will be of no importance
to us. On the other hand, if p does not divide q then there will be values of i with
(i!)q ≡ 0 mod p.

De�nition 3.1. For co-prime integers p and q let �(p; q)¿ 0 be the least integer �
for which [�]q ≡ 0 mod p.

We have tabulated some values for �(p; q) in Table 1.
Instead of �(p; q) we often write just �. Note that � ≤ p and �=p if q ≡ 1 mod p. If

p does not divide q−1 then � is the order of q modulo p since (1+q+q2+· · ·+q�−1)=
(q�− 1)=(q− 1). In either case q� ≡ 1 mod p and if � ≥ 2 then ((�− 1)!)q 6≡ 0 mod p
while (�!)q ≡ 0 mod p. Therefore @� is the least power of @ that vanishes on M .

For general parameters 0¡i¡� and k we put Kk; i := ker @i ∩ Mk and Ik; i := @�−i

(Mk+�−i). As @� = 0 we have Ik; i⊆Kk; i and we denote by

Hk; i :=Kk; i=Ik; i ;

the homology module of the sequence

Mk−i
@i←−Mk

@�−i

←−Mk+�−i :

Our next result shows that this sequence is exact except for particular choices of k and i:

Theorem 3.1. Let R be a �eld of characteristic p¿ 0 and let L be the projective
geometry over the �nite �eld GF(q) where p does not divide q. Let i¡� := �(p; q)
and k be positive integers. Then Hk; i = 0 unless dimL¡ 2k + �− i¡dim  L + �.

Proof. To show that Ik; i⊇Kk; i let f ∈ Kk; i. As supp(f) has �nite-dimension it will
be su�cient to assume that V ⊇ supp(f) has �nite dimension, say dimV = n.
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The Case 2k + � − i ≤ n: Using the rank formula of Theorem 3.1 in [6] one can
show that the rank of @�−i : Mk+�−i → Mk is(n

k

)
q
−
(

n
k − i

)
q

+
(

n
k − �

)
q
−

(
n

k − i − �

)
q

+ · · · :

The same expression gives the dimension of Kk; i and hence Ik; i = Kk; i.
The Case n+�≤ 2k +�− i: Corresponding to @ : Mk→Mk−1 we de�ne a new map

� : Mk → Mk+1 by �(X ) :=
∑

Z for X ∈ Lk where the summation runs over all Z ⊃X
with dimZ = k + 1. The matrices of @i : Mk+i → Mk and �i : Mk→Mk+i are transposed
to each other so that in particular dim@i(Mk) = dim �i(Mk−i) and dim@�−i(Mk+�−i) =
dim ��−i(Mk). Hence,

dimHk; i = dimKk; i − dim Ik; i = dimMk − dim@i(Mk)− dim@�−i(Mk+�−i)

= dimMk − dim �i(Mk−i)− dim ��−i(Mk)

= dimMn−k − dim@i(Mn−k+i)− dim@�−i(Mn−k)

= dimKn−k;�−i − dim@i(Mn−k+i) = dimHn−k;�−i :

As n + � ≤ 2k + �− i we have 2(n− k) + �− (�− i) ≤ n and the result follows from
the �rst part.

It would be desirable to have a direct proof of this result as in [10,2] and in
Section 3.2 we will discuss how this might be done.

In view of Theorem 3.1 we make the following de�nition. If k and i¡� are integers
with

dimV ¡ 2k + �− i¡dimV + �;

then the three consecutive terms Mk−i ← Mk ← Mk+�−i in Mk∗ ; i∗ — or simply the
parameters (k; i) — are called a middle term. So note that either k − 1 ≡ k∗ mod �
or k ≡ k∗ mod �. Clearly, middle terms occur only if L is �nite and there may
be no middle term for a particular Mk∗ ; i∗ . However, if Mk∗ ; i∗ has a middle term
then it is also unique and we speak of the middle term of Mk∗ ; i∗ . A restatement of
Theorem 3.1 is therefore

Theorem 3.1′. For i∗ ¡� and k∗ with k∗ + i∗ ¡� the sequence Mk∗ ; i∗ is almost
exact. If Mk∗ ; i∗ contains no middle term then it is exact. If Mk∗ ; i∗ has middle term
(k; i) then its only non-trivial homology is the homology of Mk−i ← Mk ← Mk+�−i.

Remark. Analogous results for the Boolean lattice have been proved in [10,11]. Here
certain inductive systems of modular respresentations of the symmetric group occur,
such as for instance the representations of Ryba [14]. These do not generalize in
any obvious way to projective spaces. However, some case-by-case computations for
low-dimensional projective spaces show that also here homologies often are irreducible
P�L(n; q)-modules. While the inductive structure of these modules is probably a little
more complicated, we shall see in Section 4 that the Brauer character can be com-
puted explicitly from Theorem 3.1 and so these homology modules are in some sense
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described rather well. Their full classi�cation has not yet been completed and remains
an open problem.

A further application of Theorem 3.1 concerns generators of the kernel of @i. If
(k; i) is not a middle term then the set {@�−i(X ): X ∈ Lk+�−i} generates the kernel of
@i : Mk → Mk−i. Hence

Corollary 3.2. Unless (k; i) is a middle term the kernel of @i : Mk → Mk−i is gener-
ated by elements of support dimension at most k + �− i.

3.2. Join-meet regular posets

Instead of projective space we consider more generally a partially ordered set (L;≤)
with rank function. We adopt the same notation as before: the collection of elements
of rank k is denoted Lk and RLk or Mk is the free R-module with basis Lk .

For X ∈ Lk the ‘up-degree’ is d+(X ) := |{Z ∈ Lk+1: X ¡Z }| and d−(X ) :=
|{Y ∈ Lk−1: Y ¡X }| is the ‘down-degree’. The following two regularity conditions
are of importance to us:

• R1: The up- and the down-degree are �nite and constant on Lk for all k. Thus
d+
k :=d+(X )¡∞ and d−

k :=d−(X )¡∞ are independent of X ∈ Lk , and
• R2: For each k there is a constant ck such that X; X ∗ ∈ Lk implies |{Z ∈ Lk+1: X ¡

Z ¿X ∗}|= ck · |{Y ∈ Lk−1: X ¿Y ¡X ∗}|.
The Boolean lattice 2n satis�es these conditions (with d+

k =n−k, d−
k =k and ck =1 for

all k ≤ n) and so do projective spaces (with d+
k =(qn−k−1)=(q−1), d−

k =(qk−1)=(q−1)
and ck = 1 for all k ≤ n). For an incidence structure with ‘point set’ P and ‘block
set’ B consider the poset L = {o} ∪ P ∪ B with o¡p¡b i� p ∈ P is incident with
b ∈ B. Then L satis�es R1 and R2 i� (P; B) is a 2-design. (Here c1 is the parameter
� of the design and so ck is not always equal to 1.) Similarly, symmetric designs can
be characterised by the condition that R1 and R2 hold in the poset {o} ∪ P ∪ B ∪ {1}
with o¡p¡b¡ 1 i� p is incident with b. In [15] we called a poset satisfying R1

and R2 join-meet regular. The posets for which ck = 1 for all k are the r-di�erential
posets of [16].

The notion of an inclusion map can, of course, be extended to such more general
objects. In fact, for any ranked locally �nite poset there are two natural homomorphisms
which are dual to each other: @ : Mk → Mk−1 and � : Mk → Mk+1 de�ned by
@(X )=

∑
Y where the summation runs over all Y ∈ Lk−1 covered by X , and �(X )=

∑
Z

where the summation runs over all Z ∈ Lk+1 which cover X .

Lemma 3.3. If L is join-meet regular and if ck ∈ R then f ∈ Mk implies

@�(f)− ck · �@(f) = (d+
k − ckd−

k ) · f:
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Proof. This follows directly from the regularity conditions if f ∈ Lk and hence by
linearity in general, alternatively see Lemma 2.1 in [15].

Lemma 3.4. Let L be join-meet regular; suppose that ck = · · ·= ck+i = 1 for some k
and i ≥ 1, and put dj := (d+

j − d−
j ). Then f ∈ Ker @ ∩Mk implies that

@i�i(f) = (dk)(dk + dk+1) · · · (dk + dk+1 + · · ·+ dk+i−2 + dk+i−1) · f:

Proof. For i = 1 this is Lemma 3.3. Hence suppose the result holds for i. Then
 := @i@��i = @i(dk+i + �@)�i by Lemma 3.3. Now continue  =dk+i@i�i + @i�(@�)�i−1 =
(dk+i + dk+i−1)@i�i + @i�2@�i−1, etc. As @f = 0 we get  (f) = (dk+i + dk+i−1 + · · ·+
dk)@i�i(f) which completes the proof.

Thus Ker @∩Mk ⊆ @i(Mk+i) if (dk)(dk + dk+1) · · · (dk + dk+1 + · · ·+ dk+i−1) 6= 0 in
R. That this observation can be made to work is illustrated in the following examples.
As before the characteristic of the coe�cient domain is denoted by p.

Lemma 3.5 (projective space). Let L be the projective space associated to GF(q)n.
For given k ≤ n and 0 ≤ j ≤ n− k we have

(a) d(j) := (dk + · · ·+dk+j−1 +dk+j) = (qk=(q− 1))(qn−2k−j − 1)(1 + q+ · · ·+ qj);
and in particular; when � := �(p; q) then;

(b) d(0)d(1) · · ·d(�− 2) 6≡ 0 mod p if and only if 2k − 1 ≡ nmod �.

Proof. From the de�nition we get dk+j = [(qn−k−j − 1)− (qk+j − 1)]=(q− 1) and (a)
is checked easily for j ≤ 2. Thus compute

d(j)− d(j − 1) =
qk

q− 1
[(qn−2k−j − 1)(1 + q + · · ·+ qj)

− (qn−2k−j+1 − 1)(1 + q + · · ·+ qj−1)]

=
qk

q− 1
(qn−2k−j − qj) = dk+j

which proves (a). For (b) note that qs� ≡ 1 mod p for any integer s, see the paragraph
after De�nition 3.1. Now apply (a).

Precisely the same arguments can be applied to the lattice 2
 of all subsets of a set

 of cardinality n:

Lemma 3.6 (subset lattice). Let L = 2
 with |
| = n and suppose that k ≤ n and
0 ≤ j ≤ n− k are given. Then

(a) d(j) := (dk + · · ·+ dk+j−1 + dk+j) = (n− 2k − j)(1 + j); and in particular;
(b) d(0) · d(1) · · · · · d(p− 2) 6≡ 0 mod p if and only if 2k − 1 ≡ nmod p.

Proof. By de�nition dk+j = (n − k − j) − (k + j) and applying the same procedure
as in Lemma 3.5 yields the result. As is often the case, 2n appears as the ‘projective
space with q = 1′ and Lemma 3.6 is the special case of Lemma 3.5 for q = 1.
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In [10] we have proved the analogue of Theorem 3.1 above for the Boolean lat-
tice 2
, stating that any interval of M is p-exact unless it contains a middle term.
To show how useful the Lemmas 3.5 and 3.6 are we sketch an independent proof
of this result. As starting step use the ‘support size theorem’ (Theorem 2.2 in [10],
see also its generalization in [2]), stating that the kernel of @ :Mk → Mk−1 is gen-
erated by elements of support size at most 2k, irrespective of the characteristic of
the coe�cient domain. Secondly, if f ∈ Ker @ ∩ Mk , we select some set 
∗ of car-
dinality 2k with supp(f)⊆
∗⊆
. Now apply Lemma 3.5 to n∗ = 2k to show that
d :=d(0)d(1) · · ·d(p − 2) 6= 0 in R. Denote by �∗ the map relative to 
∗ and put
F :=d−1(�∗)p−1(f). Then f = @p−1(F) and we have Hk;1 = 0. For i¿ 1 and 2k +
p−i≤ n similar arguments can be used to determine Hk; i and for parameters 2k−i ≥ n
easy symmetry arguments as in the second part of the proof of Theorem 3.1 will suf-
�ce. This argument shows also that the modular homology of an in�nite but locally
�nite join-meet regular poset can be decided entirely from the structure coe�cients.

This proof thus falls into two parts, one relying on a good bound for the sup-
port size or support dimension of generators for the kernel of @, and the other based
on the structure coe�cients of the poset. The essential tool is Lemma 3.3 which in
e�ect gives a homotopy equivalence. This may indicate that some of the standard no-
tions from homotopy theory can be adapted also to modular homology. For further
information on this question we refer also to Chapter 1.12 in [13], Section 2 in [4]
and Kapranov’s paper [8]. As to the �rst part: A proof of Theorem 3.1 along the
same lines would require a theorem about generators of the kernel of @. We have the
following:

Projective Support Dimension Conjecture. Let R be an arbitrary associative ring with
1 and let @ : Mk → Mk−1 be the inclusion map for a projective geometry over a �nite
�eld. Then Ker @∩Mk can be generated by elements of support dimension at most 2k.

In [7] (p. 65) it is shown that the Specht module attached to Mk has generators of
support dimension 2k. This does not yet imply the conjecture as the Specht module
may be strictly contained in the kernel of @. Parts of the conjecture are implied by
Corollary 3.2 when k ≥ � and it may be possible to settle the remainder with the help
of Theorem 3.1. However, the real task is to �nd an elementary and independent proof
as in [10,2]. We have been unable to make much progress on this question and leave
it as an open problem.

4. The Lefschetz character and group actions

We will now investigate group actions on the modules of a �-homological sequence
and describe two general constructions which will lead to a wealth of almost �-exact
sequences.
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4.1. The Hopf–Lefschetz trace formula

We begin by recollecting some standard results from algebraic topology. Let R now
be a �eld and let Ak for k ≥ 0 be �nite-dimensional R-modules with an R-homomorphism
@:

⊕
k Ak →

⊕
k Ak . Suppose that

A : 0← A0 ← · · · ← Ak−1
@←−Ak ← Ak+1 ← · · · ← 0

is a homological sequence of �nitely many non-zero terms. We use the natural notation
Kk :=Ak ∩ Ker @ and Ik := @(Ak)⊆Kk−1, and for k = 0; 1; : : : we denote the homology
modules by Hk :=Kk=Ik+1. Their dimension are the Betti numbers �k := dim Hk .

Suppose that the group G acts on each Ak and commutes with @. Then there is a
natural G action on each Hk . We denote the character of G on Ak by �(g; Ak) and the
character of G on Hk by �(g; Hk). The Hopf–Lefschetz trace formula then states:

Theorem 4.1.
∑

(−1) k�(g; Hk) =
∑

(−1) k�(g; Ak):

For the elementary proof see for instance [13]. In an almost exact sequence there will
be at most one non-trivial homology module and this is usually called the Lefschetz
module of the sequence. As a corollary we have therefore

Theorem 4.2. If A is almost exact with Lefschetz module H then �(g; H) =
±∑

(−1) k�(g; Ak):

The ± sign is not an ambiguity: it depends on the position of H in the sequence
and so choose the parity such that �(1; H) ≥ 0. An interesting further observation
can be made when each Ak is a permutation module for G. Here let �x(g; Ak) denote
the number of �xed points of g on the set underlying Ak . Then clearly �x(g; Ak) ≡
�(g; Ak) mod p.

Theorem 4.3. If A is almost exact with Lefschetz module H de�ne ��(g; H) := ±∑
(−1) k�x(g; Ak). Then ��(g; H) is the Brauer character of G on H .

The proof of this result is not very di�cult and is left to the reader. A special case
which can be proved independently is the following dimension formula:

Theorem 4.4. If A is almost exact with only non-trivial homology H then H has
dimension dim(H) = |∑ (−1) kdimAk |.

4.2. Finite-dimensional spaces

We now return to the more speci�c situation when V is a vector space over GF(q)
of dimension n ≤ ∞ and R a �eld of characteristic p not dividing q. Throughout �
stands for �(p; q).
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The projective general semi-linear group P�L(V ) of V acts on L by X 7→ X g and
this action extends linearly to M . Also the group ring RP�L(V ) over R acts naturally
on M : for a =

∑
g agg ∈ RP�L(V ) we put X a :=

∑
g agX g and extend this to M by

f =
∑

fXX 7→ fa :=
∑

fXX a. This action commutes of course with the inclusion
map and so all homologies are RP�L(V )-modules.

First suppose that V = (GF(q))n has �nite dimension and that G is a subgroup of
P�L(V ). Then the orbit module of G is

MG
k := {f ∈ Mk : fg = f; ∀g ∈ G}:

Its natural basis are the ‘orbit sums’
∑

X ∗∈XG X ∗ where as usual XG := {X g: g ∈ G}
and, in particular,

nG
k :=dimMG

k

is the number of G-orbits on Lk . Such orbit numbers play an important role in enumer-
ating combinatorial structures and con�gurations in projective spaces, see also [17,18].
As @(MG

k )⊆(MG
k−1) we obtain a sequence of orbit modules

MG: 0 @←−MG
0

@←−MG
1

@←−· · · @←−MG
k−1

@←−MG
k

@←−· · ·
which is always �-homological. For 0¡i∗ ¡� and 0 ≤ k∗ with k∗ + i∗ ¡� we obtain
as before a sequence

MG
k∗ ; i∗ : 0← MG

k∗ ← MG
k∗+i∗ ← MG

k∗+� ← MG
k∗+i∗+� ← MG

k∗+2� · · ·
in which arrows are appropriate powers of @. For 0¡i¡� let KG

k; i denote ker @i ∩
MG

k and let HG
k; i :=KG

k; i=@
�−i(MG

k+�−i) be the corresponding homology module. The
dimension of HG

k; i is the Betti number �G
k; i :=dimHG

k; i. In particular, if G is the identity
group then HG

k; i = Hk; i and we put �n
k; i :=dimHk; i.

Theorem 4.5. Let M be the sequence associated to the subspace lattice of GF (q)n

over a coe�cient �eld R of characteristic p¿ 0 co-prime to q and let G be a subgroup
of P�L(V ) whose order is co-prime to p. Then HG

k; i =0 unless (k; i) is a middle term.
In particular; MG is almost �-exact.
Denote the Lefschetz modules of Mk∗ ; i∗ and MG

k∗ ; i∗ by Hk; i and HG
k; i; respectively.

If G E K ⊆P�L(n; q) then HG
k; i is an RK-module with Brauer character

�(x; HG
k; i) =±

∑
t∈Z

�x(x;MG
k−�t)− �x(x;MG

k−i−�t);

where �x(x;MG
k ) denotes the number of G-orbits on Lk left invariant by x ∈ K .

Further; if C denotes the �xed module of G on Hk; i then C ∼= HG
k; i and G has a

�xed-point free representation on Hk; i=C whose Brauer character is

�(x; Hk; i=C) = �(x; Hk; i)− �(x; HG
k; i);

where �x(x;Mk) is the number of spaces in Lk left invariant by x ∈ G.
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For the dimensions of the various homology modules we have therefore

Corollary 4.6. (1) dimH = �n
k; i =

∑
t∈Z

(
n

k−�t

)
q
−

(
n

k−i−�t

)
q
;

(2) �n
k; i ≥ dimHG = �G

k; i =
∑

t∈Z nG
k−�t − nG

k−i−�t ; and
(3) If p does not divide |K | then �G

k; i ≥ �K
k; i.

Proof. If (k; i) is not a middle term suppose that f ∈ MG
k ∩ Kk; i. By Theorem 3.1

there is some F ∈ Mk+�−i with @�−i(F) = f. Therefore F∗ := |G|−1 ∑
g∈G Fg belongs

to MG
k+�−i and @�−i(F∗) = f. Thus MG is almost �-exact.

As G E K elements of K permute the orbits of G so that MG
k is a permutation

module for K and each k. The formula for �(x; HG
k; i) now follows from Theorems 4.5

and 4.3. In Proposition 4.4 in [2] it is shown more generally that the �xed module of
the homology is isomorphic to the homologies of the �xed modules, at least as long
as the group order is co-prime to the characteristic. The latter also implies that no
element of G �xes all cosets of C in Hk; i so that G is �xed point free on Hk; i=C. The
formula for the character on Hk; i=C follows from the �rst part of the Theorem with
G = 1. The corollary is straightforward.

Remark. (1) The inequality �n
k; i¿

∑
t∈Z nG

k−�t − nG
k−i−�t is speci�c to the group order,

it may not hold when |G| has order divisible by p.
(2) If the order of G is co-prime to two di�erent prime p1 and p2 and if �(p1; q)=

�(p2; q) then the Lefschetz modules in these characteristics have the same dimension.
In fact, more generally, the Brauer characters for characteristics p1 and p2 are the
same.

(3) For �xed � the function ’n
k; i :=

∑
t∈Z

(
n

k−�t

)
q
−
(

n
k−i−�t

)
q

is periodic in k and

i of period at most �. When q = 1 the functional relations for binomial coe�cients
immediately carry over to ’n

k; i and hence to the Betti numbers. For instance, we have
�n
k; i = �n−1

k; i + �n−1
k−1; i as this holds for binomial coe�cients. More interestingly we have

also �n
k; i =�n−1

k; i+1 +�n−1
k−1; i−1 and this corresponds directly to an inductive decomposition

of the corresponding homology module, see Theorem 6.2 in [2]. There are q-analogues
of such formulae for q¿ 1 but it is not yet clear if these relate to similar inductive
decompositions. It may even be possible to derive relations for �G

k; i for a general group
G of order coprime to p.

(4) The inequality �G
k; i ≥ �K

k; i for |G| and |K | co-prime to p implies for large p¿n
a Fisher type inequality nG

k − nG
k−i ≥ nK

k − nK
k−i which may be of independent interest.

When �(p; q) = 2 then �-exact sequences are exact in the usual sense and so this
case warrants special attention:

Theorem 4.7. For a coe�cient �eld of characteristic p¿ 0 let M be the sequence
for the subspace lattice of V = GF(q)n and suppose that 1 + q ≡ 0 mod p. Further;
let G⊆P�L(V ) have order co-prime to p.
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(1) If n is odd then M and MG are exact;
(2) If n = 2m is even then �n

m;1 = (q − 1)(q3 − 1) · : : : · (qn−1 − 1) ≥ �G
m;1

= nG
m − 2

∑
k=1::m(−1) k+1nG

m−k .

Proof. The condition 1 + q ≡ 0 mod p is equivalent to �= 2 and for odd n there is no
k with n¡ 2k + 1¡n+ 2. Thus (1) follows from Theorems 3.1 and 4.5. If n is even,
then (m; 1) is the only middle term and �n

m;1 can be evaluated from Corollary 4.6. The
formula for �n

m;1 is Theorem 3.4 of [1].

Remark. This result has recently also been proved by Fisk in [5].

We conclude this section by giving an application which allows to compute the rank
of orbit inclusion matrices. For this let t ≤ k and t + k ≤ n (so that nG

t ≤ nG
k ).

De�ne the matrix WG
t; k whose columns are indexed by G-orbits on Lk , rows indexed

by G-orbits on Lt , such that the (i; j)-entry, for a �xed X ∈ Lk in the jth orbit, counts
the number of Y ∈ Lt with Y ⊆X belonging to the ith orbit.

Viewing WG
k−i; k as a matrix over R it is clear that up to a constant WG

k−i; k is the
matrix of @i : MG

k → MG
k−i. As the initial section of the sequence MG

k∗ ; i∗ is exact
by Theorem 4.5 it is easy �nd the rank of the inclusion maps in that section in the
sequence. The following generalizes a rank formula of [6].

Corollary 4.8. If p does not divide the order of G and if k; 0¡i¡� satisfy 2k−i ≤ n
then nG

k−i − nG
k−� + nG

k−�−i − · · · is the p-rank of WG
k−i; k .

4.3. In�nite-dimensional spaces

Now suppose that L has in�nite dimension. Let RP�L(V ) be the group ring of
P�L(V ) over R. Here we will use the convention that a subring of RP�L(V ) may not
contain the identity of RP�L(V ). So if A is such a subring of RP�L(V ) we put

Ak := 〈fa: a ∈ A; f ∈ Mk〉:
As the inclusion map naturally restricts to @ :Ak→Ak−1 we have a sequence of
M -submodules

A : 0 @←−A0
@←−A1

@←−· · · @←−Ak−1
@←−Ak

@←−· · ·
which is always �-homological. So consider �-exactness:

De�nition 4.1. A subring A of RP�L(V ) is ample if f ∈ Ak with @(f) = 0 implies
that there is some F ∈ Ak−1+� with f = @�−1(F).

Lemma 4.9. A is ample if and only if A is �-exact.

Proof. One implication is obvious and A is �-homological in any case. We show the
exactness of Ak−i ← Ak ← Ak−i+� by induction on i. The de�nition of ampleness is
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the case i = 1. So suppose that Ak−i ← Ak ← Ak−i+� is exact for all k and suppose
that f ∈ Ak satis�es f(i+1) = 0. Then [f′](i) = 0 and by induction there is some
F0 ∈ Ak−i−s+� with F (�−i)

0 = f′. Hence [F (�−i−1)
0 − f]′ = 0 and so there is some

F1 ∈ Ak−1−i+� with F (�−i−1)
1 = F (�−i−1)

0 − f. Hence f = [F0 − F1](�−i−1).

We give some examples of ample rings. An element g ∈ P�L(V ) is �nitary if
its �xed-space Fix(g) := {v ∈ V : vg = v} has �nite co-dimension in V . An element
a =

∑
agg ∈ RP�L(V ) is �nitary if ag 6= 0 implies that g is �nitary and a subring of

RP�L(V ) is �nitary if it is the R-linear span of �nitary elements in RP�L(V ).

Theorem 4.10. If A is a �nitary subring of RP�L(V ) then A is �-exact.

Proof. Let f = fa1
1 + fa2

2 + · · · + fat
t ∈ Ker @ ∩ Ak with fi ∈ Mk and ai ∈ A. If

ai =
∑

s ai; sgi; s let Wi; s :=Fix(gi; s) and let Si be the support of fi. Then
⋂

i; s Wi; s has
�nite co-dimension in V and so there is a �nite-dimensional subspace V ∗ which is
invariant under all gi; s and which contains Si for all i ≤ t. Furthermore, enlarging V ∗

if necessary, we can assume that dimV ∗ ≡ 2k − 1 mod p.
Let M∗

j for 0 ≤ j denote the module relative to the lattice of subspaces of V ∗ and
let �∗ : M∗

j → M∗
j+1 be the map described in Section 3.2. By Lemma 3.4 we have

@�−1(�∗)�−1(f) = (dk)(dk + dk+1) · · · (dk + dk+1 + · · · + dk+�−2) · f where d := (dk)
(dk +dk+1) · · · (dk +dk+1 + · · ·+dk+�−2) is non-zero by Lemma 3.6. Hence @�−1[d−1 ·
(�∗)�−1(f)] = f. It remains to show that (�∗)�−1(f) ∈ Ak+�−1.

As all terms in ai =
∑

s ai; sgi; s leave V ∗ invariant we have �∗(fai
i ) = [�∗(fi)]ai . Thus

(�∗)�−1(fa1
1 +fa2

2 + · · ·+fat
t )=[(�∗)�−1(f1)]a1 +[(�∗)�−1(f2)]a2 + · · ·+[(�∗)�−1(ft)]at

which belongs to Ak+�−1.

Here are some consequences of Theorem 4.10. Firstly, it gives a simple and
self-contained proof for the fact that M is �-exact if V is in�nite dimensional: take
as A the subring generated by the identity of P�L(V ). In Section 4 of [11] we have
considered orbit modules associated to groups acting on L. These are constructed as
follows. For a subgroup G of P�L(V ) let A := 〈g1 − g2: gi ∈ G〉 be the augmentation
ideal of G so that Ak = 〈X g1 − X g2 : X ∈ Lk ; gi ∈ G〉.

Observe that X +Ak=X ∗+Ak for X; X ∗ ∈ Lk i� X and X ∗ belong to the same G-orbit
and further, that X1; X2; : : : is a system of orbit representatives i� X1 + Ak; X2 + Ak; : : :
is a basis of Mk=Ak . For this reason we call

Ok :=Mk=Ak

the orbit module of G on Lk and so we obtain an orbit module sequence induced from
M, that is

O(G) : 0 @←−O0
@←−O1

@←−· · · @←−Ok−1
@←−Ok

@←−· · · :
As M is �-exact we know that O(G) is �-exact if A has this property. Thus

Theorem 4.11. If G is a �nitary subgroup of P�L(V ) then O(G) is �-exact.
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Suppose now that the group G has �nitely many orbits on some Lk . Then t ¡ k
implies nG

t ≤ nG
k and one can de�ne the WG

k−i; k as before. It is quite easy to see that
WG

k−i; k is the matrix of @i : OG
k → OG

k−i up to a constant. Therefore one can write
down a formula for its rank just as in Corollary 4.8.

Theorem 4.12. Let p be a prime and let G be a �nitary subgroup of P�L(V ) with
nG
k ¡∞ for some k. If 0¡i¡� := �(p; q) then nG

k−i − nG
k−� + nG

k−i−� − nG
k−2� · · · is

the p-rank of WG
k−i; k .
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