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Let V be a set, R a ring of characteristic p ) 0, and denote by M thek
R-module with k-element subsets of V as basis. The set inclusion map  : M ªk
M is the homomorphism which associates to a k-element subset D the sumky 1
Ž . Ž . D s G q G q ??? qG of all its k y 1 -element subsets G . In this paper we1 2 k i

study the chain

0 ¤ M ¤ M ¤ M . . . M ¤ M ¤ M . . . )Ž .0 1 2 k kq1 kq2

arising from  . We introduce the notion of p-exactness for a sequence. If V is
Ž .infinite we show that ) is p-exact for all prime characteristics p ) 0. This result

can be extended to various submodules and quotient modules, and we give general
constructions arising from permutation groups with a finitary section. Two particu-
lar applications are the following: The orbit module sequence of such a permuta-
tion group on V is p-exact for every prime p, and we give a formula for the p-rank
of the orbit inclusion matrix if the group has finitely many orbits on k-element
subsets. Q 1996 Academic Press, Inc.

1. INTRODUCTION

Let V be a set and 2 wV x the finite subsets of V. On 2 wV x consider the
map D ª G q G q ??? qG which associates to a k-element subset D the1 2 k

Ž .formal sum of all its k y 1 -element subsets G . To make sense of thisi
summation we regard subsets as elements of a module with coefficients in

� < < <some ring. So if R is that ring, denote by M s Ýr D D : V, D s k,k D

191

0021-8693r96 $12.00
Copyright Q 1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.



MNUKHIN AND SIEMONS192

4r g R the module with k-element subsets of V as basis. The map isD

called the set inclusion map and denoted by  . In this paper we study the
chain

0 ¤ M ¤ M ¤ M . . . M ¤ M ¤ M . . . 1Ž .0 1 2 k kq1 kq2

arising from  , in particular when the characteristic of R is a prime p / 0.
Ž .The first result Theorem 3.4 shows that for infinite V all subsequences

of the kind

??? ¤ M ¤ M ¤ M ¤ M ¤ M ???kyp kypqi k kqi kqp

Ž .are exact for arbitrary k and each i with 0 - i - p. A sequence as in 1
satisfying this property is called p-exact.

In Section 4 we study sequences of submodules and quotient modules of
Ž .the M . In particular, one of the main results Theorem 4.4 shows thatk

there is a general construction which yields p-exact chains of submodules
derived from group rings and ideals of permutation groups with a finitary
section on V. These are groups on V for which there is an infinite subset
VU so that each group element moves at most finitely points from VU.

Two results can be derived from this. If G is a permutation group on V
the orbit module M G represents the G-orbits on k-element subsets of V.k
These are related to the augmentation ideal in RG, and in Theorem 4.5
we prove that the orbit module sequence of a finitary group is p-exact for
every prime p ) 0. The second application is Theorem 4.6. It gives a
p-rank formula for the orbit inclusion matrix of a group with finitary
section and finitely many orbits on k-element subsets.

Some of these results, as one might suspect, remain true when V is
finite. A principal difference, however, is that the homology modules in the

Ž . < <sequence 1 become non-trivial when k is about V r2. As the techniques
are rather different we felt it more appropriate to deal with the finite case

w xseparately. The paper 8 contains a very detailed analysis of the homologi-
Ž .cal properties of 1 when V is finite.

Most results in the literature on the modular behaviour of inclusion
maps consider only the case of finite V. Probably the most beautiful

w xamong these is the theorem of Wilson 13 . It applies to the situation when
R is the ring of integers and says that for the inclusion map M ª Mk t
Ž .associating to D the sum of all its t-element subsets there are suitable
bases in M and M for which the map has diagonal matrix. It has thek t

k k y 1 k y t q 1 k y tŽŽ . Ž . Ž . Ž ..form diag , , . . . , , where the ith entry has multiplic-
t t y 1 1 0

Ž . Ž .ity dim M y dim M . The proof of this result does not involve anyi iy1
kind of homological considerations even though the formula for the
multiplicities suggests this connection.



ON MODULAR HOMOLOGY 193

From Wilson’s theorem one can see that the p-rank of the inclusion
Ž .map is some alternating sum of terms "dim M . This coincides with thei

w xearlier modular rank formulae in 3]5, 14 . Comparing these to Theorem
4.5 it appears that the latter indeed is an infinite version of these results.
Clearly, the alternating sums stem from the homological properties of the
map and we believe that homology is the natural approach to modular
inclusion maps.

2. INCLUSION MAPS

We begin by introducing our notation. Let R be an associative and
commutative ring with 1 and V some infinite set. Then R2 wV x denotes the
R-module of all formal sums Ýr D in which D is a finite subset of V andD

r g R is zero for all but finitely many D. For a natural number k theD

collection of all k-element subsets of V is denoted by V�k4 and RV�k4 ;
R2 wV x denotes the submodule of expressions Ýr D with r s 0 unlessD D

D g V�k4. We abbreviate RV�k4 by M as the context usually is clear. Notek
in particular that R2 wV x s [ M . Finally we assume that R actsk g N k
faithfully on M so that the k-element subsets form a basis.k

wV x Ž .For f s Ýr D g R2 the support supp f is the union of all D forD

Ž .which r / 0. Two elements f and g are said to be disjoint if supp f andD

Ž .supp g are disjoint sets.
The Boolean operations on 2 wV x can be extended to products on R2 wV x.

The most important one for our purpose is the j-product: If f s Ý f DD

Ž .and g s Ýg G, we define f j g [ Ý f g D j G . It is not difficult to seeG D G

that this definition turns R2 wV x into an associative ring with the empty set
as identity. This algebra, usually in the context of finite V, has also been

w xconsidered for instance in 7, 10, 11 .
wV x wV x Ž .The inclusion map  : R2 ª R2 is defined on a basis by  D [

Ž . wV x Ž .Ý D _ a and extended to a homomorphism on R2 by  Ý f [a g D D

Ž . �k4Ý f  D . Clearly, this map restricts to homomorphisms  : RV ªD

RV�ky14. Very important is the product rule

if f and g are disjoint elements in R2 wV x

then  f j g s  f j g q f j  gŽ . Ž . Ž .

which can be verified easily. So  behaves very much like ordinary
X Ž .differentiation. Therefore we often use the natural notation f [  f

Ž s. w Ž sy1.xXand f s f .
For the remainder V denotes an infinite set unless explicitly stated

otherwise.
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INTEGRATION LEMMA 2.1. If m ) k are integers suppose that f g Mk
X Ž .satisfies f s 0. If m y k ! is in¨ertible in R then there exists some F g Mm

for which F Žmyk . s f.

Ž .Proof. Select a set D of m y k elements which is disjoint from supp f .
y1wŽ . xPut F [ m y k ! D j f and apply the product rule.

LEMMA 2.2. If k - m and i are integers suppose that 0 - i - m y k and
Ž . Ž i.that m y k y i y 1 ! has an in¨erse in R. Then Ker  l M :kq1

my kyiŽ . Ž iq1. my kyiy1Ž . M implies that Ker  l M :  M .m kqiq1 m

Ž iq1. y1Ž Ž i. .Proof. As Ker  l M s  Ker  l M , let f be anykq iq1 kqi
Ž i.element in Ker  l M . By hypothesis, there is some F g M suchkq i m

that F Žmykyi. s f. Put h s F Žmykyiy1. and let h be any element in1 2
y1Ž . Ž . X f . So, h y h s f y f s 0, and using the integration lemma we1 2

Žmykyiy1. w xŽmykyiy1.find some H g M with H s h y h . Since F y Hm 1 2
Ž . y1Ž . my kyiy1Ž .s h y h y h , we have shown that  f belongs to  M .1 1 2 m

Taking both lemmas together, we obtain by induction the following fact:

Proposition 2.3. Let V be an infinite set. If 0 F k - m are integers for
Ž . Ž i.which m y k y 1 ! has an in¨erse in R, then Ker  l M :kq1

my kyiŽ . M for all 0 F i - m y k.m

3. HOMOLOGY

From now on we suppose that R is a ring of characteristic p / 0. In
Ž .particular, if p is a prime then R is an algebra over GF p .

The simple but crucial observation is that in this case  p: R2 wV x ª R2 wV x

pŽ .is the zero map: Let D be any set of size d G p. Then  D s cÝG where
Ž .summation runs over all d y p -element subsets G of D, and where c

counts the number of chains G s G ; G ; ??? ; G s D. So c is p!s 0.0 1 p
This leads us to investigate homology. First recall the usual definitions:

if x : A ª B and c : B ª C are homomorphisms then the sequence A ª
Ž . Ž . Ž . Ž .B ª C is homological at B if Ker c = x A , and exact if Ker c s x A .

ŽA sequence ??? ¤ A ¤ A ¤ A ¤ A ¤ ??? is homological ex-k kq1 kq2 kq3
.act if it has that property at every A .i

Our objective is to study the sequence

0 ¤ M ¤ M ¤ M . . . M ¤ M ¤ M . . . , 1Ž .0 1 2 k kq1 kq2

where as before M stands for RV� j4. Clearly, when R has characteristicj
Žp s 2, the sequence is homological. Indeed, it is even exact, as we shall



ON MODULAR HOMOLOGY 195

.prove soon . However, for characteristic p ) 2 we require a more general
notion:

DEFINITION 3.1. If 2 F p is some integer, then the sequence A ¤ A0 1
Ž .¤ A . . . A ¤ A ¤ A is p-exact p-homological if A ¤ A2 my2 my1 m k kqi

Ž .¤ A is exact homological for every 0 F k F m y p and every i,kqp
Ž1 F i - p. Arrows in the second sequence are the natural compositions of

.arrows in the first sequence.

So 2-exactness is exactness in the usual meaning and A ¤ A ¤ A ¤0 1 2
??? ¤ A ¤ A ¤ A . . . is 3-exact if and only if both ??? ¤ A ¤k kq1 kq2 ky3
A ¤ A ¤ A ¤ A . . . and ??? ¤ A ¤ A ¤ A ¤ Aky2 k kq1 kq3 ky3 ky1 k kq2
¤ A . . . are exact. The connections to ordinary exactness can also bekq3
seen from the following proposition.

PROPOSITION 3.2. Let  : A ª A be homomorphisms and p G 3 ani iy1
integer. If the sequence

Ž .) A ¤ A ¤ A . . . A ¤ A ¤ A is p-exact then0 1 2 my2 my1 m

Ž . Ž . Ž . Ž . Ž . Ž . Ž .))  A ¤  A ¤  A . . .  A ¤  A ¤  A0 1 2 my2 my1 m
Ž .is p y 1 -exact.

Ž . Ž . Ž .Proof. Evidently ) is p-homological if and only if )) is p y 1 -
Ž . Ž .homological. Now suppose that ) is p-exact and consider  A ¤k

Ž . Ž . py iy1Ž Ž .. i Ž . A ¤  A . Then   A : Ker  l  A skq i kqpy1 kqpy1 kqi
� < iŽ . Ž . 4 Ž py iy1Ž ..x  x s 0 and x s  y for some y g A s   A .kq i kqpy1

py iy1Ž Ž .. i Ž . Ž . Ž .Hence   A s Ker  l  A and so )) is p y 1 -kqpy1 kqi
exact.

Ž .We now return to the sequence 1 from the beginning. To clarify the
situation consider its first members. The module M consists of all0
R-multiples of the empty set in V, and 0 ¤ M is the zero map.0

LEMMA 3.3. If the characteristic of R is a prime p / 0 then 0 ¤ ??? ¤ 0
¤ M ¤ M ¤ ??? ¤ M is p-exact.0 1 py1

Proof. Clearly, 0 ¤ M ¤ M is homological for all 0 - i - j F p y 1.i j
Exactness is equivalent to the surjectivity of M ¤ M which follows fromi j

w x w xCorollary 2.5 in 9 , see also 12 .

However, p-exactness can be extended further:

THEOREM 3.4. Let V be an infinite set and R a ring of prime characteris-
tic p / 0. Then 0 ¤ ??? ¤ 0 ¤ M ¤ M ¤ M ¤ ??? ¤ M ¤ M is0 1 2 my1 m
p-exact for any m.
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Proof. If R has characteristic p then  p s 0 by the remark at the
Ž i. py iŽ .beginning of this section and so Ker  l M =  M for all kkq i kqp

Ž i. py iŽ .and i F p. Conversely, Ker  l M =  M by Proposition 2.3.kq i kqp

It is clear that this yields results on other submodules of R2 wV x. An
obvious consequence is the following fact.

COROLLARY 3.5. The sequence R2 wV x ¤ R2 wV x ¤ ??? ¤ R2 wV x is p-ex-
act. Further, if B s [ M then 0 ¤ ??? ¤ 0 ¤ B ¤ B ¤ B ???k 0 F iF k i 0 1 2
¤ B ¤ B is p-exact for any m.my 1 m

Finally note that Proposition 3.2 applies to the sequences in Theorem
Ž .3.4 and Corollary 3.5 and so these provide p y 1 -exact sequences in

R2 wV x.

4. AMPLE RINGS AND GROUP ACTIONS ON SUBSETS

Our aim now is to describe a general procedure which yields p-exact
sequences in R2 wV x in a uniform way.

As before, R is a ring of prime characteristic p / 0. Permutations on V
act naturally on 2 wV x by D ª D g and this action is easily extended to R2 wV x

Ž . gby putting g Ýr D [ Ýr D . The full symmetric group on V is denotedD D

by SV.
Let RSV denote the group ring of SV over R. This then also acts on
wV x g Ž .R2 : for a s Ý r g we put aD [ Ý r D and af [ Ýr aD forgg G g gg G g D

wV x w Ž .x w Ž .xf s Ýr D in R2 . Further, note that  a Ýr D s a  Ýr D so that D D D

commutes with this action.
V ² < :Let A be a subring of RS and denote AM s af a g A and f g Mk k

by A . Note that the inclusion map naturally restricts to  : A ª A . Sok k ky1
we have a sequence of submodules

0 ¤ A ¤ A ¤ A . . . A ¤ A ¤ A . . . 2Ž .0 1 2 k kq1 kq2

Ž .and naturally the question arises: When is 2 p-exact?

DEFINITION 4.1. Let R be a ring of prime characteristic p / 0. Then
the subring A of RSV is said to be ample if f g A and f X s 0 for some kk
implies that f s F Ž py1. for a suitable F in A .kqpy1

In other words, A is ample precisely when the integration lemma holds
in 0 ¤ ??? ¤ 0 ¤ A ¤ A ¤ A . . . A ¤ A ¤ A . . . .0 1 2 my2 my1 m

PROPOSITION 4.2. A is ample if and only if 0 ¤ ??? ¤ 0 ¤ A ¤ A ¤0 1
A . . . A ¤ A ¤ A is p-exact for all m.2 my2 my1 m

Proof. One implication is obvious, and the sequence is p-homological
in any case. So if A is ample we know that for any f g A with f X s 0,k
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there is some F in A for which f s F Ž py1.. As the integrationkqpy1
lemma holds in 0 ¤ ??? ¤ 0 ¤ A ¤ A ¤ A . . . A ¤ A ¤ A0 1 2 my2 my1 m
we find that p-exactness follows verbatim as in Lemma 2.2 and Proposition
2.3.

We give some examples of ample rings. If a s Ý a g is an elementggG g
V Ž . � < g 4of RS call Fix a s v v g V, a / 0 implies that v s v the fixedg

point set of a.

² <PROPOSITION 4.3. A is ample pro¨ided that A s af a g A, f g Mk k
< Ž . Ž . < :for which Fix a R supp af G p y 1 for all k.

Proof. Let h be in A with hX s 0 and suppose that h s af wherek
< Ž . Ž . < Ž .Fix a R supp h G p y 1. So we are able to select a p y 1 -set G in

Ž . w xŽ py1. Ž . <Fix a disjoint from h. Then h j G s p y 1 h by the product
rule. It remains to show that h j G belongs to A . So if a s Ýa gkqpy1 g

g Ž .and f s Ý f D then, as G s G if a / 0, we have af j G sD g
Ž g . g Ž Ž .. g Ž Ž .. Ž .Ý a f D j G s Ý a Ý f D j G s a Ý f D j G s a f j Gg , D g D g g D D D D

in A . So A is ample.kqpy1

While these two observations are far from a complete description of
ampleness}for instance, which subrings of ample rings are ample ?}they
are nevertheless general enough to investigate groups with a finitary
section. By this we simply mean a permutation group G on V with an
infinite subset VU , such that each element of G moves at most finitely
many points from VU.

THEOREM 4.4. Let G : SV ha¨e a finitary section on V and let R be a
ring of prime characteristic p / 0. If A is a left ideal in the group ring RG,
then 0 ¤ ??? 0 ¤ A ¤ A ??? ¤ A ¤ A and 0 ¤ ??? 0 ¤ M rA0 1 my1 m 0 0
¤ M rA ??? ¤ M rA ¤ M rA are p-exact and G-in¨ariant se-1 1 my1 my1 m r
quences for e¨ery m.

Proof. A being a left ideal means that the two sequences are G-in-
variant. As G has a finitary section the condition of Proposition 4.3 holds
in A. So 0 ¤ ??? 0 ¤ A ¤ A ??? ¤ A ¤ A is p-exact by Proposi-0 1 my1 m
tion 4.2. As in the case of ordinary exact sequences, the p-exactness of
0 ¤ ??? 0 ¤ A ¤ A ??? ¤ A ¤ A and of 0 ¤ ??? 0 ¤ M ¤0 1 my1 m 0
M . . . M ¤ M }see Theorem 3.4}implies that the quotient se-1 my1 m
quence is also p-exact.

An important kind of ideal in the group algebra is the augmentation
Ž . � < 4ideal Aug G s a a s Ýa g in RG, Ýa s 0 . When we apply Theoremg g

4.4 to this ideal one observes without difficulty that the corresponding
Ž .submodules A s Aug G M satisfy the following: Two cosets G q Ak k k

and GU q A for k-element sets G and GU coincide if and only if G and GU
k

belong to the same G-orbit. Furthermore, the distinct cosets of this form
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w xare a basis of the quotient module}see also the lemma in 2 . Therefore
we call M G [ M rA the orbit module of G on V�k4.k k k

THEOREM 4.5. Let G : SV ha¨e a finitary section on V and let R be a
ring of prime characteristic p / 0. Then 0 ¤ ??? ¤ 0 ¤ M G ¤ M G ??? ¤0 1
M G ¤ M G is p-exact for all m.my 1 m

As an application of this result consider the case when the group
happens to have finitely many orbits on V�k4. Denote their number by
Ž . Ž . Ž .n G . It is well known that n G F n G when t F k. Define the orbitk t k

Ž .inclusion matrix W G, V as the matrix whose columns are indexed bytk
�k4 �t4 Ž .G-orbits on V , its rows by G-orbits on V , and with i, j -entry, for a

fixed k-set G in the j th orbit, counting the number of t-subsets D : G
belonging to the i th orbit.

Ž .Clearly, we can view W G, V as a matrix over any field and intk
Ž .particular over GF p . As a corollary to the last theorem we obtain a

formula for its rank.

THEOREM 4.6. Let G : SV ha¨e a finitary section on V and finitely
many orbits on V�k4. If p is a prime and k y p - t - k, then the rank of

Ž . Ž . Ž . Ž . Ž . Ž .W G, V o¨er GF p is n G y n G q n G y n G qtk t kyp typ ky2 p
Ž .n G y ??? .ty2 p

Ž . GProof. Let R be GF p . From the description of M above it followsk
Žkyt . G G Ž . Ž .that  : M ª M has matrix k y t !W G, V when entries arek t tk

interpreted over R. Therefore consider the sequence 0 ¤ ??? ¤ M G
ky2 p

G G G G G Ž .¤ M ¤ M ¤ M ¤ M . The dimension of M is n G and sotyp kyp t k i i
Ž . Ž Žkyt . G. Ž Ž tqpyk . G. Ž .rank W G, V s dim  M s dim Ker  l M s n G yp tk k t t

Ž Ž tykqp. G.dim  M as the sequence is exact. The remainder follows byt
induction.

Ž .Remarks. 1 This result can be viewed as a generalisation of the rank
w x w xformulae 4, 5, 13, 14 for finite V and G s 1. In 8 we obtain similar

results for finite V and groups whose order is not divisible by p. For finite
V and large p the equivalent of Theorem 4.6 then includes the first

w xtheorem in 6 . It should also be possible to avoid the restriction k y p - t
- k by considering more general sequences in a similar way.

Ž . w x2 The submodule structure of M has recently 1 been worked outk
for the symmetric groups and various characteristics. We thank Alan
Camina and David Evans for useful comments.
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