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Let F be a field of characteristic p, and if � is an n-set let Mn be the vector
space over F with basis 2�. We continue our investigation of modular homologi-
cal Sn-representations which arise from the r-step inclusion map. This is the FSn-
homomorphism ∂r � Mn →Mn which sends a k-element subset 
 ⊆ � onto the sum
of all �k− r�-element subsets of 
. Using homological methods one can give explicit
character and dimension formulae.  2001 Academic Press

1. INTRODUCTION

If F is a field, � is a set of size n, and 0 ≤ k ≤ n is an integer, let
Mn

k be the vector space over F with the k-element subsets of � as basis.
Then Mn

k is the natural FSn permutation module for the symmetric group
Sn �= Sym��� acting on the collection of all k-element subsets of �. For
the integer r > 0 define the FSn-homomorphism ∂r � Mn

k →Mn
k−r on a basis

as follows. If 
 ⊆ � then

∂r�
� �=
∑

�

where the summation runs over all � ⊂ 
 of size 


 − r. We refer to
∂r as the r-step inclusion map. A simple computation shows that if F has
characteristic p > 0 then ∂

p
r ≡ 0. For any 0 < i < p therefore the sequence

Mn
k−ir

∂i
r←−Mn

k

∂
p−i
r←−Mn

k+�p−i�r

is homological. The corresponding homology module is denoted by

Hn
k i �= �ker∂i

r ∩Mn
k�/∂p−i

r �Mn
k+�p−i�r��
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410 jones and siemons

(To avoid confusion later note that in this notation r must be determined
from the context.)

The first case to consider is r = 1 or, more generally, when r is a power
of p. In [3] and [1] it was shown that for r = pj with j arbitrary one has

�∗�� Hn
k i = 0 unless n < 2k+ �p− i�r < n+ pr�

For fixed k and 0 < i < p consider therefore the sequence

�� 0 ← · · · ←Mn
k−2pr ←Mn

k−�p+i�r ←Mn
k−pr

←Mn
k−ir ←Mn

k ← · · · ← 0

in which each arrow is the appropriate power of ∂r . As ∂
p
r is zero � is

homological, and from �∗� it follows that there is at most one position in
which � can fail to be exact. Any such sequence will be called almost exact.

For such almost exact sequences standard results from algebraic topology
can be used to express the Sn-character on the nontrivial homology mod-
ule in terms of the natural Sn-characters on the modules appearing in �.
In other words, the character on the nontrivial homology is a Lefschetz
character.

In [1] this situation has been analyzed completely when r = 1: var-
ious irreducible Sn-representations can be realized in this fashion, and
indeed whole inductive systems for symmetric groups arise in this way, for
arbitrary p. In two recent papers [12, 13] it is shown that these modules
play a fundamental role for the modular homology of simplicial complexes
in general and for shellable complexes in particular. Our interest here is
partly guided by the fact, that in the geometrical setting rank selected posets
are important, and this leads to the consideration of r-step maps for r > 1.
From the viewpoint of representation theory homological representations
are interesting because in many situations the Hopf–Lefschetz trace for-
mula provides explicit character and dimension formulae. Identifying rep-
resentation as homological therefore is of general use. This is explained in
more detail in Section 2.

The purpose of this paper is to make some progress toward determining
the homology modules when r > 1 is a power of p. In Section 3 we consider
the homology modules arising from the 2-step map in characteristic 2. It is
shown that these are either irreducible, when n is odd (see Theorem 3.4),
or otherwise have a unique factor of multiplicity two (see Theorem 3.10).
Here we also have explicit matrix representations.

In Section 4 we deal with the r-step inclusion map when r is a p-power
in general. Theorem 4.1 shows that Hn

k i is irreducible for 2k− ir + 1 = n,
generalizing Theorem 6.4 in[1].

In Section 5 we return to p = 2 with r a power of 2. In Theorem 5.1
all composition factors of Hn

k 1 with 2k− r + 2 = n are determined and in
Corollary 5.2 we make some comments about branching rules.
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We attempt to keep this paper as self-contained as possible. However,
for some details it may be necessary to consult [1] directly.

2. CHARACTER FORMULAE

We begin by recollecting some standard facts from algebraic topology
which are relevant for this paper. Such ideas can also be found in the work
of S. Sundaram, such as [18]. We feel that these homological techniques
are quite fundamental and deserve attention.

Let F be a field, let Ak for 0 ≤ k ≤ k0 <∞ be finite-dimensional vector
spaces over F , and suppose that δ� ⊕k Ak → ⊕kAk is a linear map with
δ�Ak+1� ⊆ ker δ ∩Ak for all 0 ≤ k ≤ k0. Thus

�� 0
δ←− A0

δ←− · · · δ←− Ak−1
δ←− Ak

δ←− Ak+1

δ←− · · · δ←− Ak0

δ←− 0

is a homological sequence, and we denote its homology modules by

Hk �= �ker δ ∩Ak�/δ�Ak+1��

For convenience we shall put Ak = 0 = Hk if k < 0 or k > k0.
If a group G acts linearly on each Ak and commutes with δ, then G also

acts on each Hk. Furthermore, if trace�g ∗� denotes the trace of g ∈ G on
the module indicated by ∗ then the Hopf–Lefschetz trace formula says the
following (see, for instance, [14]).

Theorem 2.1.
∑

k∈��−1�ktrace�gHk� =
∑

k∈��−1�ktrace�gAk�.
Of interest to us is the situation where all but at most one of the homol-

ogy modules of � are zero. If this happens then � is said to be almost exact
and the nontrivial homology module is its Lefschetz module. Therefore,

Corollary 2.2. If � is almost exact with Lefschetz module Hk then

trace�gHk� =
∑
j∈�
�−1�k+jtrace�gAk+j�

and

dim Hk =
∑
j∈�
�−1�k+jdim Ak+j

is the Euler characteristic of �.
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Furthermore, in our case F has characteristic p > 0 and each Ak is a
permutation module. So here trace�gAk� is the number fix�gAk� of ele-
ments in the permutation set underlying Ak which are fixed by g, when
evaluated in the field F . However, it is well known that the lift of a permu-
tation character is unique, and therefore

χ�gAk� �= fix�gAk� for any p′-element g ∈ G

is the Brauer character associated to trace�gAk�.
We return more specifically to the sequences discussed in the Introduc-

tion. So we fix some n > 0, let Ak = Mn
k , G = Sn, and assume that r is

some fixed power of p. Fix also some 0 < k∗ and 0 < i∗ < p. For ease of
reading write Mk instead of Mn

k and consider the sequence

�� 0
∂∗r←−M0

∂∗r←− · · · ∂∗r←−Mk∗−i∗r
∂∗r←−Mk∗

∂∗r←−Mk∗+pr−i∗r
∂∗r←− · · · ∂∗r←− 0

where ∂∗r is ∂i∗
r or ∂

p−i∗
r as appropriate. For any

k ∈ �k∗ + zpr − i∗r k∗ + zpr� z ∈ ��
and appropriate i ∈ �i∗ p− i∗�

we may define the homology module Hn
k i as in the introduction. By

Theorem 5.3 in [1] � is almost exact. To define the character on the
Lefschetz module let

fix�gMn
k� �= 
�
 ⊆ � � g
 = 
 and 


 = k�


be the number of k-element subsets from � fixed by g and put

β�g n k i� �=∑
j∈�

{
fix�gMn

k+prj� − fix�gMn
k+prj−ir�

}
�

The main prerequisite of this paper is the following restatement of
Theorem 5.3 in [1] and Corollary 2.2.

Theorem 2.3. � is almost exact. In particular, Hn
k i = 0 unless n < 2k+

�p− i�r < n+ pr. In the latter case

χ�gHn
k i� �= β�g n k i�

is the Brauer character ofHn
k i. In particular,H

n
k i has dimensionβ�id n k i� =∑

j∈��
(

n
k+prj

)− (
n

k+prj−ir

)�, and this is the Euler characteristic of �.

We now list some elementary properties of β used later. The next propo-
sition uses only the definition and the fact that fix�gMn

k� = fix�gMn
n−k�.
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Proposition 2.4. (a) β�g n k i� = −β�g n k− ir p− i�.
(b) If k ≡ k∗ (mod pr) then β�g n k i� = β�g n k∗ i�.
(c) β�g n k i� = β�g n n− kp− i�.
(d) If 2k− ir ≡ n modpr then β�g n k i� = 0.

We note several nice inductive properties of β which help to evalu-
ate characters and often yield dimension formulae in closed form; see
Theorem 2.6 and Corollaries 4.4 and 5.3 later on.

Proposition 2.5. (a) If g is an n-cycle then β�g n k i� = a+ e, where

a =
{

1 if k ≡ 0 mod pr
−1 if k− ir ≡ 0 mod pr
0 otherwise

and

e =
{

1 if k ≡ n mod pr
−1 if k− ir ≡ n mod pr
0 otherwise.

(b) If g = g1g2, where g1 is a cycle of length b disjoint from g2, then
β�g n k i� = β�g2 n− b k i� + β�g2 n− b k− b i�.
Proof. An n-cycle fixes only � and �, and so (a) follows from the defi-

nition. For (b) observe that fix�gMn
k� = fix�g2M

n−b
k � + fix�g2M

n−b
k−b�.

To identify homology modules in terms of the standard representations
of Sn let λ be a partition of n. Then the Specht module corresponding to
λ is denoted by Sλ, and as usual Dλ �= Sλ/�Sλ ∩ Sλ⊥�. In Theorem 5.3 of
[1] we have identified certain Dλ’s as homology modules arising from the
1-step map:

Theorem 2.6. Let p > 2, r = 1, and 0 < i < p. If n < 2k + p − i <
n+ p then Hn

k i is irreducible if and only if 2k+ p− i = n+ p− 1. If 2k+
p− i = n+ p− 1 then Hn

k i
∼= Dλ with λ = �k k− i + 1� and dim Hn

k i =∑
j∈��

(
n

k+pj

)− (
n

k+pj−ir

)�.
The expression for the dimension is a linear recurrence of degree at most

�p− 1�/2, and so one may attempt to produce a nice closed expression for
it. For instance, if p = 5 this results in Fibonacci numbers, and the modules
are the ones described in Ryba’s paper [15].

Also for r > 1 the composition factors of Hn
k i are indexed by two-part

partitions of n. In fact, we shall represent several new irreducible modules
as homology modules (see Theorems 3.4 and 4.1).

In all cases where Dλ is identified as a Lefschetz module the Theorem 2.3
gives the dimension as well as its Brauer character. It is often also possible
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to construct the representation explicitly (see Section 3), and in this respect
the homological methods turn out to be very efficient.

In Erdmann’s paper [5] dimensions of representations labeled by two-part
partitions are given in terms of generating functions and certain Chebyshev
polynomials. As these can be evaluated for all two-part partitions, her treat-
ment in this respect is more general. Another method for computing dimen-
sions for two-part partitions would be to derive these from the decomposition
numbers of James’ papers [8, 9].

To keep this paper as self-contained as possible we shall go through some
facts from [1] which are to be used here without further mention. For more
detail be advised to consult [1] directly.

Throughout let Mn �= ⊕kM
n
k , where Mn

k is as in the Introduction. If
r > 0 is an integer let ∂r � M → M be as before. If, i s > 0 are integers,
then

∂r∂s =
(
r + s

r

)
∂r+s and in particular ∂i

r =
(
ir

r

)
· · ·

(
2r
r

)(
r

r

)
∂ir �

If f =∑

 f

 and h =∑

� h��, with coefficients f
 h� in F , belong to M ,
define

f ∪ h �= ∑

�

f
h��
 ∪ ���

This turns M into an FSn-algebra with the empty set as identity element.
We say that f and h are disjoint if f
 �= 0 �= h� implies 
 ∩ � = �.
Fundamental is the formula

∂r�f ∪ h� =
r∑

j=0

∂j�f � ∪ ∂r−j�h�

which holds for disjoint f g ∈ M . Also, if f ∈ M and α ∈ � are arbitrary
then f can be written uniquely as

f = �α� ∪ f1 + f2

with f1 and f2 disjoint from α.

3. THE 2-STEP INCLUSION MAP

Throughout this section let F have characteristic p = 2 and let r = 2.
Hence i = 1 and for convenience we abbreviate Hn

k �= Hn
k 1 and Kn

k �=
ker ∂2 ∩Mn

k . Our aim is to analyze Hn
k . Some of the results that follow are

not new and are contained in [3] or may be deduced from Gow’s paper [6]
by considering the restriction to Sn of an appropriate symplectic represen-
tation. Here we follow a different approach which leads us to determine a
basis for Hn

k and hence to an explicit matrix representation.
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Theorem 3.1. For 2 < n and k ≤ n there is an FSn−2-isomorphism Hn
k
∼=

Hn−2
k−1 ⊕Hn−2

k−1 .

Proof. Let � = �α1 � � �  αn−1 αn� and take f ∈ Mn. Then there are
unique elements f0 f1 f2 f3 ∈Mn−2 disjoint from �α1 α2� with

f = �αn αn−1� ∪ f0 + �αn� ∪ f1 + �αn−1� ∪ f2 + f3

and by Lemma 2.1 of [1] we have

∂2�f �0 = ∂2�f0�
∂2�f �1 = ∂1�f0� + ∂2�f1�
∂2�f �2 = ∂1�f0� + ∂2�f2�
∂2�f �3 = f0 + ∂1�f1 + f2� + ∂2�f3��

(1)

If f ∈ Kn
k therefore,

0 = ∂1�f0 + ∂1�f1 + f2� + ∂2�f3��
= ∂1�f0� + ∂2∂1�f3�
= ∂2�f1 + ∂1�f3��
= ∂2�f2 + ∂1�f3��

and defining ϕ�f � �= ��f1 + ∂1�f3�� �f2 + ∂1�f3��� yields a map ϕ� Kn
k →

Hn−2
k−1 ⊕Hn−2

k−1. Clearly, this is an FSn−2-homomorphism. Furthermore, if h ∈
Mn

k+2 then

ϕ�∂2�h�� = ��∂2�h�1 + ∂1�∂2�h�3�� �∂2�h�2 + ∂1�∂2�h�3���
= ��∂2�h1 + ∂1�h3��� �∂2�h2 + ∂1�h3����

shows that ϕ� Hn
k → Hn−2

k−1 ⊕ Hn−2
k−1 induces an FSn−2-homomorphism

between homologies.
To show that ϕ is injective suppose that ϕ��f �� = ��0� �0��. Then there

are xi ∈Mn−2
k+1 for i = 1 2 with ∂2�xi� = fi + ∂1�f3�. If we set

x �= �αn αn−1� ∪ �f3 + ∂1�x1 + x2�� + �αn� ∪ x1 + �αn−1� ∪ x2

then x ∈Mn
k+2 and

∂2�x�0 = ∂2�f3 + ∂1�x1 + x2��
∂2�x�1 = ∂1�f3� + ∂2�x1�
∂2�x�2 = ∂1�f3� + ∂2�x2�
∂2�x�3 = f3�

Substituting for ∂2�xi� and applying (1) we have ∂2�x� = f . To show that ϕ
is surjective let j1 j2 ∈ Kn−2

k−1. Setting h �= �αn αn−1� ∪ ∂1�j1 + j2� + �αn� ∪
j1 + �αn−1� ∪ j2 we observe that h ∈ Kn

k with ϕ��h�� = ��j1� �j2��.
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By Theorem 3.2 of [1] we know that the only nontrivial homology mod-
ules are

Hn
k when n = 2k is even, and

Hn
k and Hn

k−1 when n = 2k− 1 is odd.

This may also be seen by induction directly from the preceding theorem.
The characters are given in Section 2, and we see from Proposition 2.4(c)
that the characters for Hn

k and Hn
k−1 coincide if n is odd.

An alternative description of these characters is the following. Let
�∗�� �odd integers� → �±1� be the function

�z� �=
{

1 if z ≡ 1 7 �mod 8�
−1 if z ≡ 3 5 �mod 8� �

Theorem 3.2. (a) If n = 2k − 1 let g ∈ Sn have odd order and cycle
type �b1 � � �  b2l−1�. Then

χ�gHn
k� = 2l−1 · �b1� · �b2� · · · �b2l−1��

In particular, dim Hn
k = 2k−1.

(b) If n = 2k let g ∈ Sn have odd order and cycle type �b1 � � �  b2l�.
Then

χ�gHn
k� = 2l · �b1� · �b2� · · · �b2l��

In particular, dim Hn
k = 2k.

Proof. The result holds when n = 1 2. If n > 2 write g = g1g2, where
g1 is a b-cycle disjoint from g2 ∈ Sn−b with b odd.

(a) If n = 2k − 1 then β�g n k 1� = β�g2 n − b k 1� + β�g2 n −
b k− b 1� by Proposition 2.5 with n− b = 2�k− �b+ 1�/2�. Furthermore,

b ≡ 1 �mod 8� ⇐⇒ k− b ≡ k− �b+ 1�/2 �mod 4� (2)

b ≡ 3 �mod 8� ⇐⇒ k− 2 ≡ k− �b+ 1�/2 �mod 4� (3)

b ≡ 5 �mod 8� ⇐⇒ k− b− 2 ≡ k− �b+ 1�/2 �mod 4� (4)

b ≡ 7 �mod 8� ⇐⇒ k ≡ k− �b+ 1�/2 �mod 4� (5)

and

b ≡ 1 �mod 4� ⇐⇒ 2k− 2 ≡ n− b �mod 4�
b ≡ 3 �mod 4� ⇐⇒ 2�k− b� − 2 ≡ n− b �mod 4��

By Theorem 2.3, therefore, χ�gHn
k� = �b� · χ�g2H

n−b
k−�b+1�/2�.
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(b) If n = 2k then β�g n k 1� = β�g2 n − b k 1� + β�g2 n −
b k − b 1� with n − b = 2�k − �b − 1�/2� − 1 = 2�k − �b + 1�/2� + 1. In
addition to the congruences (2)–(5) we have

b ≡ 1 �mod 8� ⇐⇒ k ≡ k− �b− 1�/2 �mod 4�
b ≡ 3 �mod 8� ⇐⇒ k− b− 2 ≡ k− �b− 1�/2 �mod 4�
b ≡ 5 �mod 8� ⇐⇒ k− 2 ≡ k− �b− 1�/2 �mod 4�
b ≡ 7 �mod 8� ⇐⇒ k− b ≡ k− �b− 1�/2 �mod 4��

By Theorem 2.3, therefore, χ�gHn
k� = �b� · �χ�g2H

n−b
k−�b+1�/2� + χ�g2,

Hn−b
k−�b−1�/2�� = �b� · 2 · χ�g2H

n−b
k−�b−1�/2�.

To examine Hn
k in detail we need to distinguish between n odd and n

even. First let n = 2k− 1 and � = �α1 α2 � � �  αn�. Set

vn
0 �= ��α1� + �α2�� ∪ ��α3� + �α4�� ∪ · · · ∪ ��αn−2� + �αn−1�� ∪ �αn�

and verify that vn
0 ∈ Kn

k. For 0 ≤ l < 2k−1 with the 2-adic expansion l =∑k−2
j=0 lj2j we define

vn
l �= �23�l0�45�l1 · · · �n− 3 n− 2�lk−3�n− 1 n�lk−2�vn

0��
Theorem 3.3. If n = 2k− 1 then ��vn

l � � 0 ≤ l < 2k−1� is a basis of Hn
k .

Proof. As the result holds for n = k = 1 we suppose n > 1 and that

�ϕ−1��vn−2
l � �0�� � 0 ≤ l < 2k−2� ∪ �ϕ−1��0� �vn−2

l �� � 0 ≤ l < 2k−2�
is a basis for Hn

k . Here ϕ is the isomorphism of Theorem 3.1. Then we have

ϕ−1��vn−2
0 � �0�� = ��αn αn−1� ∪ ∂1�vn−2

0 � + �αn� ∪ vn−2
0 �

= �∂1�vn−2
0 � ∪ ��αn−2� + �αn−1�� ∪ �αn��

= �vn
0 �

and

ϕ−1��0� �vn−2
0 �� = ��αn αn−1� ∪ ∂1�vn−2

0 � + �αn−1� ∪ vn−2
0 �

= �∂1�vn−2
0 � ∪ ��αn−2� + �αn�� ∪ �αn−1��

= �n− 1 n��vn
0 ��

Therefore

�vn
l � =

{
ϕ−1��vn−2

l � �0�� for 0 ≤ l < 2k−2

ϕ−1��0� �vn−2
l �� for 2k−2 ≤ l < 2k−1,

and this completes the proof.
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We recall that the characters for Hn
k and Hn

k−1 coincide for n = 2k− 1.
The next result therefore shows that for odd n both homology modules are
irreducible.

Theorem 3.4. If n = 2k− 1 then Hn
k is irreducible and Hn

k
∼= D�kk−1�.

Proof. The result holds when n = 1, and for n > 1 let U �= 0 be a
submodule of Hn

k . Let 0 �= ��f � �h�� be in ϕ�U�. Then we may assume
�f � = �h�, for otherwise

��f � �h�� + ϕ��n− 1 n�ϕ−1��f � �h��� = ��f � �h�� + ��h� �f ��
= ��f + h� �f + h��

is a nonzero element of ϕ�U�. Thus ��f � �f �� �= 0 implies that #�f �$ is
a nonzero FSn−2-submodule of Hn−2

k−1, and by induction we may assume
#�f �$ = Hn−2

k−1. In particular, ��vn−2
0 � �vn−2

0 �� ∈ #��f � �f ��$, and so

ϕ−1��vn−2
0 � �vn−2

0 �� = �vn
0 � + �n− 1 n��vn

0 �
= �n− 2 n��vn

0 �
belongs to U . By Theorem 3.3 the FSn-span of this coset is Hn

k , and hence
U = Hk

n .
To identify this module in terms of the standard representations of Sn

note that the FSn-span of vn
0 is the Specht module S�kk−1�. By Theorem 3.3

Hn
k = �#vn

0$ + ∂2�Mn
k+2��/∂2�Mn

k+2� ∼= #vn
0$/�#vn

0$ ∩ ∂2�Mn
k+2��

and as D�kk−1� is the unique top composition factor of S�kk−1� we see that
Hn

k must be isomorphic to this module.

From this identification and Theorems 3.2 and 3.1 we obtain the following
two corollaries.

Corollary 3.5. If g ∈ S2k−1 has odd order and cycle type �b1 � � �  b2l−1�
then

χ�gD�k k−1�� = 2l−1 · �b1� · �b2� · · · �b2l−1�
and in particular dim D�kk−1� = 2k−1.

Remark. In Theorem 5.1 of [2] it is shown that the restriction (mod 2)
of the basic spin module for the double cover of Sn is D�kk−1�. Hence it
is also possible (yet much less direct) to obtain these character formulae
using results from [17] together with Theorem 2 of [11].

Corollary 3.6. For all integers k there exists an FS2k−1-isomorphism

D�k+1 k� ∼= D�k k−1� ⊕D�k k−1��
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Let ρn now denote the matrix representation of Sn corresponding to the
basis of Hn

k given in Theorem 3.3. To provide an explicit description of ρn

it suffices to compute the images of all transpositions of the form �j j + 1�
since these generate Sn.

Example. Let � = �α1 α2 α3�. Then H3
2 has (ordered) basis ���α1� +

�α2�� ∪ �α3�� and ���α1� + �α3�� ∪ �α2��� Therefore

ρ3�12� =
(

1 0
1 1

)
and ρ3�23� =

(
0 1
1 0

)
�

More generally, we prove

Lemma 3.7. If n = 2k− 1 and 0 < j < n− 2 then

ρn�j j + 1� =
(

ρn−2�j j + 1� 0
0 ρn−2�j j + 1�

)
�

Proof. In the proof of Theorem 3.3 we showed that

�vn
l � =

{
ϕ−1��vn−2

l � �0�� for 0 ≤ l < 2k−2

ϕ−1��0� �vn−2
l �� for 2k−2 ≤ l < 2k−1,

which implies this result.

Lemma 3.8. If n = 2k− 1 then

ρn�n− 1 n� =
(

0 1
1 0

)


where 1 and 0 denote the 2k−2 × 2k−2 identity and zero matrices, respectively.

Proof. For 0 ≤ l < 2k−2 we have vn
l+2k−2 = �n− 1 n��vn

l �.
Lemma 3.9. If n = 2k− 1 ≥ 5 then

ρn�n− 2 n− 1� =




1 0 0 0
1 1 0 0
1 0 1 0
0 1 1 1


 

where 1 and 0 denote the 2k−3 × 2k−3 identity and zero matrices, respectively.

Proof. (1) For 0 ≤ l < 2k−3 we have vn
l = ∂1�vn−2

l � ∪ ��αn−2� +
�αn−1�� ∪ �αn�, and such vectors are clearly fixed by the transposition
�n− 2 n− 1�.
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(2) For 2k−3 ≤ l < 2k−2 we have

vn
l−2k−3 = ∂1�vn−4

l−2k−3� ∪ ��α� + �αn−3�� ∪ ��αn−2� + �αn−1�� ∪ �αn�
vn
l = ∂1�vn−4

l−2k−3� ∪ ��α� + �αn−2�� ∪ ��αn−3� + �αn−1�� ∪ �αn�
where α is given by vn−4

l−2k−3 = ∂1�vn−4
l−2k−3� ∪ �α�. Therefore

�n− 2 n− 1��vn
l � = vn

l−2k−3 + vn
l �

(3) For 2k−2 ≤ l < 3 · 2k−3 we have

vn
l−2k−2 = ∂1�vn−2

l−2k−2� ∪ ��αn−2� + �αn−1�� ∪ �αn�
vn
l = ∂1�vn−2

l−2k−2� ∪ ��αn−2� + �αn�� ∪ �αn−1��
Therefore

�n− 2 n− 1��vn
l � = vn

l−2k−2 + vn
l �

(4) For 3 · 2k−3 ≤ l < 2k−1 we have

vn
l−2k−2 = ∂1�vn−4

l−3·2k−3� ∪ ��α� + �αn−2�� ∪ ��αn−3� + �αn−1�� ∪ �αn�
vn
l−2k−3 = ∂1�vn−4

l−3·2k−3� ∪ ��α� + �αn−3�� ∪ ��αn−2� + �αn�� ∪ �αn−1�
vn
l = ∂1�vn−4

l−3·2k−3� ∪ ��α� + �αn−2�� ∪ ��αn−3� + �αn�� ∪ �αn−1�
where α is given by vn−4

l−3·2k−3 = ∂1�vn−4
l−3·2k−3� ∪ �α�. Therefore

�n− 2 n− 1��vn
l � = vn

l−2k−2 + vn
l−2k−3 + vn

l

+ ∂2�vn−4
l−3·2k−3 ∪ �αn−3 αn−2 αn−1 αn���

This completes the proof.

We shall now analyze Hn
k when n is even.

Theorem 3.10. If n = 2k then Hn
k has a unique composition factor of

multiplicity two, and this factor is D�k+1 k−1�.

Proof. By Theorem 3.2 the restriction to FSn of Hn+1
k+1 has composition

factors coinciding with those of Hn
k . By Lemma 3.7 and Lemma 3.9 this

restriction has matrix representation ρn+1 given as follows. For 0 < j <
n− 1 we have

ρn+1�j j + 1� =
(

ρn−1�j j + 1� 0
0 ρn−1�j j + 1�

)
and

ρn+1�n− 1 n� =




1 0 0 0
1 1 0 0
1 0 1 0
0 1 1 1
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where 1 and 0 are the 2k−1 × 2k−1 identity and zero matrices, respectively.
Observe that the vectors whose first 2k−1 entries are zero form an FSn-
submodule U ⊆ Hn+1

k+1 for which Hn+1
k+1/U

∼= U� By Theorems 3.1 and 3.4 the
restriction to FSn−1 of Hn+1

k+1 has a unique composition factor of multiplicity
two. So U is irreducible.

To identify the composition factors of Hn
k in terms of standard represen-

tations note that the span of

un �= ��α1� + �α2�� ∪ ��α3� + �α4�� ∪ · · · ∪ ��αn−3�
+�αn−2�� ∪ �αn−1 αn�

is the Specht module S�k+1 k−1�. Observe that ∂1�un� ∈ Kn
k satisfies

�∂1�un�� = ϕ−1��∂1�un−2�� �∂1�un−2���

and by induction this coset is nonzero in Hn
k . Therefore Hn

k contains a
submodule isomorphic to a quotient of S�k+1 k−1�. Since D�k+1 k−1� is the
unique top composition factor of this Specht module it must also be the
repeated factor of Hn

k .

Corollary 3.11. If g ∈ S2k has odd order and cycle type �b1 b2 � � �  b2l�
then

χ�gD�k+1 k−1�� = 2l−1 · �b1� · �b2� · · · �b2l�

and in particular dim D�k+1 k−1� = 2l−1.

Remark. This character formula can also be obtained from [17] together
with Theorem 2 of [11].

Corollary 3.12. The matrix representation of S2k on D�k+1 k−1� is
given by

ρ2k�j j + 1� = ρ2k−1�j j + 1�

for 0 < j < 2k− 1 and

ρ2k�2k− 1 2k� =
(

1 0
0 1

)
�

(Here 1 and 0 are 2k−2 × 2k−2 identity and zero matrices, respectively.)

Proof. These matrices represent the action of S2k on the module U
defined in the proof of Theorem 3.10.
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4. THE r-STEP INCLUSION MAP

In this section let F be a field of characteristic p > 0. The first result
generalizes Theorem 6.4 of [1] and Theorem 3.4 of Section 3.

Theorem 4.1. If r is a power of p, 0 < i < p, and 0 ≤ k ≤ n satisfies
2k− ir + 1 = n then Hn

k i
∼= D�k k−ir+1�.

Proof. In this proof we abbreviate S�k� �= S�k n−k� and D�k� �= D�k n−k�

for convenience. The result holds when n = k = ir − 1. For n > k we use
Theorem 2.3 to write

χ�gHn
k i� =

∑
z∈Z

{
χ�gMn

k+pzr� − χ�gMn
k+�pz−i�r�

}
= ∑

z≥0

{
χ�gMn

k+pzr� − χ�gMn
k−�pz+i�r�

}
− ∑

z>0

{
χ�gMn

k+�pz−i�r� − χ�gMn
k−pzr�

}
�

As Mn
k−�pz+i�r ∼=Mn

k+pzr+1 for all z ≥ 0 Example 17.17 of [7] shows that

χ�gMn
k+pzr� − χ�gMn

k−�pz+i�r� = χ�g S�k+pzr��
and similarly

χ�gMn
k+�pz−i�r� − χ�gMn

k−pzr� = χ�g S�k+�pz−i�r��
for all z > 0. Therefore

χ�gHn
k i� =

∑
z≥0

{
χ�g S�k+pzr�� − χ�g S�k+�p�z+1�−i�r��}� (6)

In Corollary 5.4 and Lemma 5.5 of [1] we have shown that Hn
k i is isomor-

phic to a quotient of S�k�. Suppose for a contradiction that D�n� is a factor
of Hn

k i. Then by Theorem 24.15 of [7]

fp�2k− ir + 1 k− ir + 1� = 1

where fp is the function defined in Chapter 24 of James’ book. More gen-
erally, suppose that D�n� is a factor of some S�k+pzr�. Then consider the two
p-adic expansions

2k− ir + 2 = a0 + a1p+ · · · + asp
s + · · · + atp

t

k− �pz + i�r + 1 = b0 + b1p+ · · · + bsp
s

from which, setting cj �= aj − bj , we obtain

k+ pzr + 1 = c0 + c1p+ · · · + csp
s + · · · + ctp

t�
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If fp�2k− ir + 1 k− pzr − ir + 1� = 1 one can check easily that fp�2k−
ir + 1 k − �atp

t − pzr� + 1� = 1, and from Theorem 24.15 of [7] we see
that D�n� is a composition factor of S�k+�atp

t−pzr�−ir�. However, since pzr ≤
k − ir + 1 < atp

t , the latter appears as a summand of χ�gHn
k i� with

negative coefficient, unless z = 0 and pt ≤ r. In that case we compare the
p-adic expansions of k + 1 and k − ir + 1 and see that bj = cj = 0 for
0 ≤ j < t with atp

t = ir. This forces n = ir − 1, a contradiction.
To complete the proof, let j be some positive integer. By Theorem 24.15

of [7] and (6) the multiplicity of D�j n−j� as a factor of Hn
k i is that of

D�j−1 �n−2�−�j−1�� as a factor of Hn−2
k−1i. By induction this multiplicity is given

by 1 if �j − 1� = �k− 1� and by 0 otherwise.

Corollary 4.2. If r is a power of p, 0 < i < p, and if 0 ≤ k ≤ n satisfies
2k− ir + 1 = n then

χ�gD�k k−ir+1�� = ∑
z∈Z

{
fix�gMn

k+pzr� − fix�gMn
k+�pz−i�r�

}
for all p′-elements g in Sn. In particular,

dim D�k k−ir+1�� = ∑
z∈Z

{(
n

k+ pzr

)
−

(
n

k+ �pz − i�r
)}

�

Proof. The result follows from Theorem 2.3 and Theorem 4.1.

The character of an n-cycle is particularly simple to evaluate, as can be
seen from Proposition 2.5.

Corollary 4.3. Let r be a power of p and let 0 < i < p. If 0 ≤ k ≤ n
satisfies 2k− ir + 1 = n and if n is coprime to p then

χ��12 · · ·n�D�k k−ir+1�� =
{

1 if n ≡ ±�ir − 1� �mod pr�
−1 if n ≡ ±�ir + 1� �mod pr�
0 otherwise�

We also have the following closed-dimension formula:

Corollary 4.4. For p = 2 and arbitrary k we have

dim D�k k−3� = 1

2
√

2

{(
2 +

√
2
)k−2 − (

2 −
√

2
)k−2}

�

Proof. Let f �k� �= dim D�k k−3�. From Proposition 2.5 and Corollary 4.2
we see that

f �k� − 4f �k− 1� + 2f �k− 2� = 0�
The result follows by solving this difference equation, subject to the bound-
ary conditions f �2� = 0 and f �3� = 1.

Remark. As mentioned in Section 2, this result can also be derived
from Erdmann’s paper [5] or from the decomposition numbers of James’
papers [8, 9]. The same applies for Corollary 5.3.
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5. SOME BRANCHING RULES

In this section F has characteristic 2; the notation is the same as in
Section 3.

Theorem 5.1. If 0 ≤ k ≤ n and r = 2d > 2 satisfy 2k− r + 2 = n then
Hn

k has composition factors

D�k k−r+2� with multiplicity one and

D�k+2l k−r+2−2l� � 0 ≤ l < d each with multiplicity two.

Proof. As in the proof of Theorem 4.1 we put S�k� �= S�k n−k� and
D�k� �= D�k n−k�. By Theorem 2.3 we have

χ�gHn
k� =

∑
z∈Z

{
χ�gMn

k+2zr� − χ�gMn
k+�2z−1�r�

}
= ∑

z≥0

{
χ�gMn

k+2zr� − χ�gMn
k−�2z+1�r�

}
− ∑

z>0

{
χ�gMn

k+�2z−1�r� − χ�gMn
k+2zr�

}
�

By arguments similar to those in the proof of Theorem 4.1 we therefore
obtain

χ�gHn
k� =

∑
z≥0

�−1�z{χ�g S�k+zr�� + χ�g S�k+zr+1��}�
It is easy to see that all composition factors of Hn

k are of the form D�k+j�

with j ≥ 0, and by Theorem 24.15 of [7] the multiplicity of this module is∑
z≥0

�−1�z{f2�2j + r − 2 j − zr� + f2�2j + r − 2 j − �zr + 1��}�
In particular, D�k� has multiplicity one.

First suppose that j ≥ r. Then we have the 2-adic expansion

2j + r − 1 = 1+ a12 + a24+ · · · + 2N

with N > d, and since 2j + r − 1 = �j − l� + �j + r + l− 1� we have f2�2j +
r − 2 j − l� = 1 if and only if f2�2j + r − 2 j − ��2N−d − 1�r − l + 1�� = 1.
However, we have

l = 2zr ⇐⇒ �2N−d − 1�r − l + 1 = �2N−d − 2z − 1�r + 1

l = �2z + 1�r ⇐⇒ �2N−d − 1�r − l + 1 = �2N−d − 2�z + 1��r + 1

l = 2zr + 1 ⇐⇒ �2N−d − 1�r − l + 1 = �2N−d − 2z − 1�r
l = �2z + 1�r + 1 ⇐⇒ �2N−d − 1�r − l + 1 = �2N−d − 2�z + 1��r

and so D�k+j� is not a factor of Hn
k .
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Next suppose that 0 < j < r is not a power of 2 and write

j = 2l1 + 2l2 + · · ·
with 0 < li < li+1 < d. Here we have the 2-adic expansion

2j + r − 1 = 1+ 2 + · · · + 2l1 + 2l2+1 + · · ·
with l1 < l2, and in particular f2�2j + r − 2 j� = f2�2j + r − 2 j − 1� = 0.
So D�k+j� again is not a factor of Hn

k .
Finally, if j = 2l with 0 ≤ l < d then

2j + r − 1 = 1+ 2 + · · · + 2l + 2d

and so

f2�2j + r − 2 j� = f2�2j + r − 2 j − 1� = 1�

This completes the proof.

Corollary 5.2. If 0 ≤ k ≤ n and 2 < r = 2d satisfy 2k− r + 1 = n then
the restriction to FSn−1 of D�k k−r+1� has composition factors{

D�k−1 k−r+1� with multiplicity one, and
D�k−1+2lk−r+1−2l� � 0 ≤ l < d each with multiplicity two.

Proof. If g ∈ Sn−1 has odd order then χ�gHn
k� = β�g n k 1� =

β�g n − 1 k 1� + β�g n − 1 k − 1 1� = χ�gHn−1
k−1� by Theorem 2.3 and

Proposition 2.5. Since 2�k − 1� − r + 2 = n − 1 the result follows from
Theorem 4.1 and Theorem 5.1.

Remarks. (1) While we have assumed here that F has characteristic 2
it appears that the proof of Theorem 5.1 could be adapted to any nonzero
characteristic and more general conditions on k and r. This would provide
branching rules for Hn

k and arbitrary prime power r in general, similar to
Theorem 6.1 in [1], where the same was done for r = 1.

(2) More general results on branching rules for representations
labeled by two-part partitions in arbitrary characteristic are contained in
Sheth’s paper [16].

Corollary 5.3. For all k we have

dim D�k k−5� = 1
4

{(
2 +

√
2
)k−3 + (

2 −
√

2
)k−3}− 2k−4�

Proof. We see from Corollary 5.2 and Conjecture 1 of Benson (proved
in [10]) that

dim D�k k−3� = dim D�k−1 k−3� + 2dim D�k k−4� + 2dim D�k+1 k−5�

= dim D�k−2 k−3� + 2dim D�k−1 k−4� + 2dim D�k k−5��

The result follows by evaluating the first three dimensions, using Corollary 4.4
and Theorem 3.5 as appropriate.
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