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1. INTRODUCTION

The investigation of the modular homology of a shellable complex in
general was began in [12]. There we showed that modular homology does
not always behave nicely: There are shellable complexes with the same
h-vector but with different modular homology. In this paper, however, we
shall show that this pathological behaviour is not beyond control. We show
that the homology of any shellable complex can be embedded into a well-
understood module constructed purely from the shelling of the complex.
This is Theorem 3.2 and the main result of Section 3.1. It follows in par-
ticular that the modular Betti numbers for an arbitrary shellable complex
are bounded by functions of its h-vector only.

Shellable complexes which attain these bounds are of special interest and
are called saturated. In this paper we investigate conditions which guar-
antee saturation. The main result is Theorem 4.1 which gives a sufficient



condition under which gluing a simplex onto a saturated complex forces
the resulting complex to remain saturated. Applying this condition induc-
tively to shellable complexes suggests that the property of being saturated
is local, that is, completely determined by the structure of the links of the
complex.

Being Cohen–Macaulay, according to Reisner’s theorem [14, p. 60], is
also a local property. We are therefore tempted to illustrate the differences
and similarities between the two local properties by the following observa-
tion: It follows from Reisner’s theorem that a complex is Cohen–Macaulay
if all its links are triangulations of spheres of suitable dimensions or, more
generally, of manifolds whose homologies are those of bouquets of such
spheres.

In contrast, it follows from Corollary 4.2 that a complex is saturated if
all its links are 2-colourable triangulations of spheres of suitable dimen-
sions, or, more generally, 2-colourable pseudomanifolds of suitable dimen-
sions without boundary.

Here a pure complex is 2-colourable if its facets can be given two colours
such that any two facets with a common co-dimension 1 face have different
colours.

Being saturated is more restrictive than being Cohen–Macaulay, even for
shellable complexes. For example, every cyclic graph is Cohen–Macaulay
but only even cycles are saturated. Moreover, being saturated is not a
topological invariant since it is related to 2-colourability. While the precise
relationship between ordinary simplicial homology and modular simplicial
homology is not yet fully understood, a partial result appears in
Corollary 3.5: Shellable saturated complexes with the same modular
homology have the same ordinary homology.

In Section 6 we show that finite Coxeter complexes and spherical build-
ings are saturated. This has lead us to investigate group actions on shell-
able complexes and in particular the module structure of the modular
homologies of Coxeter complexes and buildings. This is the subject of a
forthcoming paper. There it will be shown that if G is a finite group of Lie
type with associated building D then the Steinberg representation of G is
realized by the ‘‘top modular homology’’ of D, here see Sections 3.2 and 6.

This paper is a continuation of [12] and throughout we shall freely use
the notation and results of that paper.

2. RECOLLECTING SOME PREREQUISITES

For all details of notation and assumed results we refer to [12]. The
following is a short resumé only to make this paper as self-contained as
possible.
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Throughout F is a field of characteristic p > 0. Let D be a finite complex
with vertex set W, that is D ı 2W and x ¥ D, y ı x implies that y ¥ D. The
dimension of the face x ¥ D is |x| − 1. If 0 [ k then MD

k is the F-vector space
with (k − 1)-dimensional faces of D as basis and we put MD := À0 [ k Mk.

The linear map “ : MD
k Q MD

k − 1 is defined by D ¦ x W ; y where the
summation runs over all co-dimension 1 faces of x. Thus attached to D is
the sequence

MD: 0 /
“ MD

0 /
“ MD

1 ... /“ MD
k − 1 /

“ MD
k /

“ ... /“ MD
n /

“ 0.

For any j and 0 < i < p we have the associated sequence

... /“
g

MD
j − p /

“
g

MD
j − i /

“
g

MD
j /

“
g

MD
j+p − i /

“
g

MD
j+p /

“
g

...

in which “
g is the appropriate power of “. This sequence is determined by

any arrow MD
l P MD

r in it and so is denoted by MD
(l, r). The unique arrow

MD
a P MD

b for which 0 [ a+b < p is the initial arrow and MD
b is the

0-position of MD
(l, r). The position of any other module in MD

(l, r) is counted
from this 0-position and (a, b) is the type of MD

(l, r).
As “

p=0 we have (“
g)2=0. The homology at MD

j − i P MD
j P MD

j+p − i is
denoted by

HD
j, i :=(Ker “

i 5 MD
j )/“

p − i(MD
j+p − i)

and bD
j, i :=dim HD

j, i is the corresponding Betti number. If MD
(l, r) has at

most one non-vanishing homology then it is almost exact and the only non-
trivial homology then is denoted by HD

(l, r). If MD
(l, r) is almost exact for

every choice of l and r then MD is almost p-exact. In general, when refer-
ring to a particular sequence MD

(l, r), the homology at position t is denoted
by HD

t and bD
t :=dim HD

t is the Betti number of MD
(l, r) at position t.

The (n − 1)-dimensional simplex on n vertices is denoted by Sn. We put
Mn

(l, r) :=MS
n

(l, r) and as the simplex is almost p-exact, see [10], the non-
trivial homology of Mn

(l, r) is denoted by Hn
(l, r).

If D is any complex of dimension n − 1 suppose that MD
(l, r) has type

(a, b). We put

dn
(l, r) :=˛# n − a − b

p
$ if n − a − b – 0 (mod p) ,

. if n − a − b — 0 (mod p)

and let the weight of MD
(l, r) be the integer 0 < w [ p with w —

l+r − n (mod p) . The notion of shellability and h-vectors is the usual one,
the definition of k-shellable complexes may be found in Section 2 of [12].
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Let M denote the F-vector space whose basis are the (finite) subsets of W.
If f=; fx x ¥ M then the support of f is supp(f) :=1 {x: fx ] 0 }.
If also g=; gy y ¥ M then the 2 -product is given by f 2 g :=
;x, y fx gy (x 2 y) ¥ M.

3. GLUING SIMPLICES: II

Here we continue our investigation into gluing simplices which was
began in the section Gluing Simplices of [12]. We refer to that section as
GS: I. The notation in [12] is the same as here and any detail not
explained here may be found in that paper.

3.1. Saturated Complexes

Let C be an (n − 1)-dimensional complex and let D=C 2k Sn be obtained
by gluing Sn onto C along some k facets of Sn. We are considering
sequences of the kind Mg

(l, r) where (l, r) is fixed and where * is an
(n − 1)-dimensional complex. As in GS: I we put d :=dn

(l, r) and u :=dn+k
(l, r)

where dn
(l, r) is the function defined at the end of the previous section. Let w

denote the weight of MD
(l, r).

When describing the modular homology of D=C 2k Sn in GS: I we dis-
tinguished six cases:

G1: 1 [ k < w < p, or equivalently, d=u < .;
G2: k — w (mod p) , or equivalently, u=.;
SC: HC

u − 1=0.

The first two are cases of ‘good gluing’ in Theorem 4.1 and SC is the
‘special case’ of Theorem 4.2 in GS: I. Here the theorems showed that
MC

(l, r) and MD
(l, r) have the same homologies except possibly in position u

where

HD
u 4 HC

u À Hn − k
(l − k, r − k).

Note for instance that Hn − k
(l − k, r − k)=0 in the case G2.

Remaining are the three ‘bad’ cases of Theorem 4.2:

B1: k – w — 0 (mod p) , when d=. and u < .,
B2: w < k < p+w < 2p, when d+1=u < .;
B3: k > p+w and k – w (mod p) , when d+1 < u < ..

Here MC
(l, r) and MD

(l, r) have the same homologies except possibly in posi-
tions u and u − 1. To describe these we have 5-term exact gluing sequences.
More specifically, for B1 and B3 the sequence is

GS1: 0 / HD
u − 1 / HC

u − 1 / Hn − k
(l − k, r − k) /

h̄ HD
u / HC

u / 0
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while B2 leads to

GS2: 0 / HD
u − 1 / HC

u − 1 À Hn
(l, r) / Hn

(l, r) À Hn − k
(l − k, r − k) /

h̄ HD
u / HC

u / 0.

The proof of Theorems 4.1 and 4.2 showed that in either case h̄(HD
u ) ı

Hn − k
(l − k, r − k). Together with exactness at HD

u this means that there exists an
embedding

HD
u + HC

u À Hn − k
(l − k, r − k).

Comparing the ‘good’ cases with the ‘bad’ ones motivates the following
definition:

Definition. (a) We say that the gluing D :=C 2k Sn is (l, r)-saturated,
or that D is (l, r)-saturated over C, if HD

u 4 HC
u À Hn − k

(l − k, r − k) in position u
while MC

(l, r) and MD
(l, r) have the same homologies in all other positions.

(b) We say that the gluing D has saturated homology relative to C, or
that D is saturated over C, if D :=C 2k Sn is (l, r)-saturated for all (l, r).

(c) The complex D is (l, r)-saturated if D has a shelling
D1, D2, ..., Dm=D in which Di is (l, r)-saturated over Di − 1 for every
1 < i [ m.

(d) The complex D has saturated homology, or for short is saturated,
if D is (l, r)-saturated for all (l, r).

The map h̄: HD
u Q Hn − k

(l − k, r − k) in the gluing sequences will be analysed in
detail later on. Important from the discussion above is a technical condi-
tion for saturation which is the basis for the main results of this paper:

Lemma 3.1. In the cases B1–B3 the gluing D=C 2k Sn is (l, r)-
saturated if and only if h̄(HD

u )=Hn − k
(l − k, r − k).

An important general consequence of the Theorems 4.1 and 4.2 in GS: I,
together with the analysis above, follows by induction. The next theorem
and its corollary may in fact serve as an alternative definition of saturation:

Theorem 3.2. Let D be an (n − 1)-dimensional shellable complex with
h-vector (h0,...,hn). For fixed (l, r) let HD

t denote the homology of MD
(l, r) at

position t, put d :=min{ dn
(l, r), dn+1

(l, r) } and let w be the weight of MD
(l, r). Then

HD
t =0 for t < d and for all s \ 0 there is an embedding

(f): HD
d+s + Â

w+sp

j=w+(s − 1) p+1
[Hn − j

(l − j, r − j)]
hj .
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Furthermore, D is (l, r)-saturated if and only if (f) is an isomorphism for all
s \ 0. In particular, D is saturated if and only if (f) is an isomorphism for all
s \ 0 and all (l, r).

Corollary 3.3. Let DŒ and D be shellable complexes of the same
dimension and with the same h-vector. Suppose that D is (l, r)-saturated.
Then the Betti numbers of MDŒ

(l, r) and MD
(l, r) satisfy

(f): bD
−

t [ bD
t

for all t ¥ Z. Furthermore, DŒ is (l, r)-saturated if and only if (f) is an
equality for each t ¥ Z. In particular, if D is saturated then DŒ is saturated if
and only if (f) is an equality for all (l, r) and all t ¥ Z.

Remark 1. In Theorem 3.2 we use the convention that [H]0 is the zero
module.

2. There are examples of complexes which are (l, r)-saturated for
certain values of (l, r) but not for others. For instance, when p=3 and D is
the cone over a cyclic graph with 7 vertices then D is (1, 3)-saturated but
not (1, 2)-saturated.

3. Saturation is defined with respect to a prime p and it is not clear if
there are complexes which are saturated for some primes but not for
others. See also [7, 5.1.25, p. 214].

4. For shellable D it follows from results of [12] that HD
t =0 for all

t < d . Moreover:
• All 1-shellable complexes are saturated, see Corollary 5.3 in [12].
• If D is k-shellable and if MD

(l, r) is a sequence of weight at least k
then D is (l, r)-saturated and almost exact, see Theorem 5.1 in [12]. For
instance, when p > 2 and D is the cone over a cyclic graph then D is
2-shellable and so the only parameters for which D is possibly not
(l, r)-saturated come from sequences of weight 1, just as in the example
above where the cycle has odd length. We shall see later that cones over
even cycles are always saturated.

3.2. Examples and Further Observations

We conclude with several comments which may illustrate saturation. As
we have just seen, for a saturated complex all Betti numbers are determined
entirely by the shelling vector. For instance, if D is a 5-dimensional
complex with h-vector (h0, h1, ..., h6) which is saturated for p=3 then its
Betti numbers are as shown in Table I.
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TABLE I

The 3-Modular Betti Numbers of a Saturated 5-Complex

(l, r) w

(1,2) 3 b4, 2=h1+h2; b5, 1=h4+h5

(1,3) 1 b3, 2=h0; b4, 1=h2+h3; b6, 2=h5+h6

(2,3) 2 b3, 1=h0+h1; b5, 2=h3+h4; b6, 1=h6

If D, as before with h-vector (h0, h1, ..., h6), is saturated for p=5 then
the Betti numbers are as shown in Table II below.

We have no general existence theorem or construction which produces,
for given complex with known h-vector and given prime p, any complex
with the same h-vector which is saturated for p. In particular, there may be
no saturated complex with that given h-vector at all. Such questions may
be interesting to investigate.

One further and significant observation is that b6, 1 is the same in both
tables, and equal to h6. In fact, for any (n − 1)-dimensional saturated
complex it is seen easily that the modular Betti number bn, 1 is the last
component of the shelling vector.

This is a surprising parallel to the situation of the ordinary homology
which is defined in relation to the usual boundary operator of simplicial
geometry. Here a routine application of the Mayer–Vietoris sequence
shows that shellable complexes are Cohen–Macaulay. This means that the
complex has a single non-trivial simplicial homology located at the top.
The dimension of this homology, sometimes called the Steinberg module of
the complex, is also the last component of the shelling vector. We hope to

TABLE II

The 5-Modular Betti Numbers of a Saturated 5-Complex

(l, r) w

(1,2) 2 b2, 1=8h0+3h1; b6, 4=h3+h4+h5+h6

(1,3) 3 b3, 2=13h0+8h1+3h2; b6, 3=h4+h5+h6

(1,4) 4 b4, 3=8h0+8h1+5h2+2h3; b6, 2=h5+h6

(1,5) 5 b5, 4=3h1+3h2+2h3+h4; b6, 1=h6

(2,3) 4 b3, 1=5h0+5h1+3h2+h3;
(2,4) 5 b4, 2=5h1+5h2+3h3+h4;
(2,5) 1 b2, 2=8h0; b5, 3=3h2+3h3+2h4+h5

(3,4) 1 b3, 4=5h0; b4, 1=2h2+2h3+h4

(3,5) 2 b3, 3=13h0+5h1; b5, 2=2h3+2h4+h5

(4,5) 3 b4, 4=8h0+5h1+2h2; b5, 1=h4+h5
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explain this phenomenon and establish conditions which guarantee that the
Steinberg module is indeed isomorphic to the top modular homology. This
is known to be true in the case of buildings, and extensions of this result
will be the subject of a forthcoming paper.

As Corollary 3.3 shows, the saturation of a complex can be decided from
its Betti numbers. However, it is worthwhile to mention a related observa-
tion which we illustrate first by an example.

Let D be a shellable 5-dimensional simplicial complex and let

MD
(0, 2): 0 P MD

0 P MD
2 P MD

3 P MD
5 P MD

6 P 0

be its 3-modular sequence of type (0, 2). The Euler characteristic of MD
(0, 2)

is qD
(0, 2) :=f0 − f2+f3 − f5+f6 and using the well-known relation [3, 14]

(f): fj= C
n

k=0

1n − k
j − k

2 hk

we can write this characteristic in terms of the h-vector of D as

qD
(0, 2)=(h0+h1) − (h3+h4)+h6.

By the trace formula qD
(0, 2) is also the alternating sum of Betti numbers, and

so one may make a naive conjecture that b2 :=h0+h1, b1 :=h3+h4 and
b0 :=h6 could be the non-zero Betti numbers of MD

(0, 2). The preceding table
shows that this conjecture, though evidently false in general, does hold
for saturated 5-dimensional complexes. In fact, using the expression for
dim Hn

(l, r) from Theorem 2.1 in [12] it is easy to show that this observation
holds true for all saturated complexes and every p.

Moreover, a shellable complex is saturated if and only if this procedure
works. To make this statement precise let D be shellable and consider the
following algorithm for MD

(l, r):

1. Using the relation (f) express its Euler characteristic qD
(l, r) in terms

of the hi.
2. Arrange the hi in order of ascending indices. Starting from the right,

compute the sum ±b0, with b0 > 0, formed by the first group of consecutive
terms carrying the same sign. Continue with the next groups, thus defining
b1 > 0, b2 > 0,... and so on, resulting in ± qD

(l, r)=...+b2 − b1+b0.

In this procedure one observes that consecutive hi terms carry the same
sign with groups always separated by a single missing index, and that each
group, apart possibly from the first and the last, consists of p − 1 terms,
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just as in the example. It is also known that if hi0
and hi1

denote the first,
respectively last, non-zero entries of the h-vector of a shellable complex
then all intermediate components are positive, that is hi > 0 if i0 [ i [ i1,
see Theorem 5.1.15 in [7].

The following result is a straightforward consequence of Corollary 6.3
and Theorem 6.2, and its proof is left to the reader. It may serve as an
alternative definition of saturation: On the one hand it gives a ready
formula for the Betti numbers of a saturated complex with known h- or
f-vector. On the other hand, if the Betti numbers and the f- or h-vector
are known, then it provides an exact condition for saturation:

Corollary 3.4. Let D be a shellable complex. For given (l, r) consider
the sequence MD

(l, r) with Betti numbers ..., bt − 2, bt − 1, bt and define ..., b2, b1,
b0 as above. Then D is (l, r)-saturated if and only if ..., bt − 2=b2, bt − 1=b1,
bt=b0.

This observation can be taken further. Using (f) the h-vector can be
defined even for a non-shellable D, see [14, p. 58]. For given f-vector one
may therefore define formal Betti numbers bD

j, i for any prime p. To do this
consider the sequence MD

(j − i, j), compute ..., b2, b1, b0 according to the
algorithm above and select for bD

j, i the corresponding term among the b’s.
Alternatively, work out the dimension

C
w+sp

j=w+(s − 1) p+1
hjb

n − j
(l − j, r − j)

of HD
d+s in Theorem 3.2. The corollary now suggests a more general notion

of saturation for pure complexes: Namely that D is (l, r)-saturated for p if
and only if the actual Betti numbers of MD

(l, r) are equal to the correspond-
ing formal Betti numbers. As before D then is saturated for p if and only if
it is (l, r)-saturated for all (l, r).

This extension of saturation to non-shellable complexes may turn out to
be interesting. For p=3 examples of such saturated complexes include well-
known non-shellable triangulations of 3-balls, such as the ‘knotted hole ball’
described by Furch in 1924, and the ‘2-roomed house’ constructed by Bing
in 1964. Both are Cohen–Macaulay with f=(1, 380, 1929, 2722, 1172) and
f=(1, 480, 2511, 3586, 1554) respectively, see [8, 9, 15].

Other interesting examples are the non-shellable triangulation of the
projective plane (with f=(1, 6, 15, 10), not Cohen–Macaulay) and of the
dunce hat (with f=(1, 8, 24, 17), Cohen–Macaulay). These are both
(1, 2)- and (2, 3)-saturated for p=3 but not (1, 3)-saturated. In contrast,
the 16-vertex triangulation of the Poincaré 3-sphere due to Björner and
Lutz (non-shellable, Cohen–Macaulay, see [8]) is not (l, r)-saturated for
p=3 and any (l, r). Note that the upper bounds for Betti numbers in
Corollary 3.3 hold true in each of these three complexes.
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We return to shellable complexes and the relationship between the ordi-
nary homology and the modular homology. Suppose that D is shellable and
saturated with respect to some prime p, and that all modular Betti numbers
bD

j, i are known. Thus bD
j, i=bD

j, i for all j, i and we may invert the relation
between the bD

j, i and the h-vector to compute the h- and hence the f-vector
of D. Therefore the ordinary Euler characteristic ± q(D) :=f0 − f1+
f2 − ... is known.

Let b̄D
i denote the ordinary Betti numbers of D, defined in relation to the

usual boundary operator of simplicial geometry. As D is shellable it is
Cohen–Macaulay and hence b̄D

0 =...=b̄D
n − 1=0 while b̄D

n = ± q(D) if
(n − 1) denotes the dimension of D. Hence we have the following:

Corollary 3.5. Let D and Dg be (shellable) complexes of the same
dimension which are saturated for some prime p. If D and Dg have the same
modular Betti numbers then D and Dg have the same f- and h-vectors and
have the same ordinary Betti numbers.

4. A CONDITION FOR SATURATION: THE MAIN THEOREM

As we have seen, saturation is automatic in any of the good cases and in
the bad cases it is equivalent to the conditions h̄(HD

u )=Hn − k
(l − k, r − k) in the

gluing sequence. To investigate this condition further we need some addi-
tional notation.

Let s denote the vertex set of Sn and let D=C 2k Sn. Then the restriction
res(s) is the set of all vertices b ¥ s such that s0{b} is contained in C, see
Björner [4]. So res(s) is a (k − 1)-face of Sn and one may regard it as the
‘outer face’ under gluing. Its complement t(s) :=s0 res(s) is the ‘inner
face’ under gluing. If x is a face of D then the subcomplex starD(x) is gen-
erated by all facets that contain x and linkD(x) is the subcomplex of all
faces of starD(x) that do not contain x. So the dimension of linkD(x) is
n − |x| − 1. The situation is best illustrated by Fig. 1.

Here A is the intersection complex C 5 [s] which we shall need later.
The restriction is res(s)={b1, b2} and the inner face is t(s)={b}. It is
useful to view arrows as embeddings and so we regard A, Sn and C as
subcomplexes of D. Also, linkD(t(s)) is the boundary (d1, d2, d3, d4).

FIG. 1 Gluing S3 onto C
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The main theorem of this section now follows. When saying that res(s)
is a 1-cycle of D relative to linkC(t(s)) we mean that there is some f ¥ MC

k

… MD such that supp(f) 5 t(s)=”, f 2 t(s) ¥ MC and “(res(s)+f)=0.

Theorem 4.1. Let C be a complex and let D=C 2k Sn. Suppose that
res(s) is a 1-cycle of D relative to linkC(t(s)). Then D is saturated relative
to C.

The proof is quite technical and is relegated to the next section.

Definition. Let D be a pure (n − 1)-dimensional complex with facets
s1, ..., sm. Then D is null over F with respect to “, or just null for short, if
there are non-zero c1, ..., cm ¥ F such that “(c1s1+...+cmsm)=0.

Note, nullness with respect to “ is in no obvious relationship to nullness
with respect to the ordinary boundary map of simplicial geometry.
However, occasionally complexes are null in both senses. We say that a
complex is 2-colourable if its facets can be 2-coloured in such a way that
facets with a common co-dimension 1 face have different colours. Further,
in a pseudomanifold without boundary, see Definition 3.15 in [14], each co-
dimension 1 face is contained in exactly 2 facets. Therefore a 2-colourable
pseudomanifold without boundary is null with respect to the boundary
map and with respect to “: Choose all ci=1 for the first case and ci= ± 1,
suitably according to the 2-colouring, in the second case. In particular,
even cyclic graphs are null over every field, and odd cyclic graphs are null
only over fields of characteristic 2.

Corollary 4.2. Let C be a complex and let D=C 2k [s] for some
k \ 1. Suppose that linkD(t(s)) is null. (In particular, suppose that
linkD(t(s)) is a 2-colourable triangulation of a sphere, or a 2-colourable
pseudomanifold without boundary.) Then D is saturated relative to C.

Proof. It follows from the definition of links that res(s) ¥ linkD(t). So
let s1 :=res(s), ..., sm be the facets of linkD(t) and let c1, ..., cm ¥ F all be
non-zero such that “(c1s1+...+cmsm)=0. Now put f :=c−1

1 [c2s2+...+
cmsm]. The result follows from Theorem 4.1. L

Example. The (n − 1)-dimensional hyperoctahedron or cross-polytope
has vertex set W :={ ai, bi : 1 [ i [ n } and faces formed by all W-subsets
which contain at most one of ai, bi for each 1 [ i [ n. (Thus it is obtained
by performing successive suspensions over vertex pairs ai, bi, or alterna-
tively, as the dual of the (n − 1)-dimensional cube.) It is easy to see that this
complex is shellable and that all links in a shelling are null. So the
hyperoctahedron is saturated for all primes.
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5. THE PROOF OF THEOREM 4.1

On first reading this section may be omitted, the proof of Theorem 4.1 is its
only purpose. From the discussion in Section 3.1 and Lemma 3.1 it is clear
that it suffices to prove the following more technical version of Theorem 4.1:

Theorem 5.1. If D=C 2k Sn fix some (l, r) in one of the cases B1–B3.
If rs :=res(s) is the restriction and t :=s0rs its complement suppose
there exists some f ¥ MC

k … MD with supp f 5 t=”, f 2 t ¥ MC and
“(rs+f)=0. Then h̄(HD

u )=Hn − k
(l − k, r − k).

The proof is arranged in three parts: First, we analyse the map h̄. Then
we examine the module Hn − k

(l − k, r − k) in more detail to find its generators, and
finally we show that h̄(HD

u )=Hn − k
(l − k, r − k). We shall see that it is irrelevant

for the proof which of the bad cases occurs.
1. The definition of the connecting map h̄. For D=C 2k [s] let A :=

C 5 [s] be a part of the boundary of [s] consisting of k faces of dimen-
sion (n − 2), see again Fig. 1. Associated to C 2k [s] is the Mayer–
Vietoris sequence

0 /D/
k

C À B/
f

A/ 0

where A, B, C and D denote MA
(l, r), M

S
n

(l, r), M
C
(l, r) and MD

(l, r) respectively.
Written as a diagramme this sequence is shown in Fig. 2, where “

g, as
before, stands for whatever power of “ is needed in the context. There are
the natural embeddings shown in Fig. 3, and for a ¥ A we indicate its
images in B and C by aB and aC respectively. The same convention applies
to b ¥ B and c ¥ C.

FIG. 2. The Mayer–Vietoris Sequence.
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FIG. 3. The Natural Embeddings.

The homomorphisms f and k are now given by f(a) :=(aB, −aC) and
k(b, c) :=bD+cD, see also [13, p. 143].

Now the gluing sequence is just an interval of the long homological
sequence

· · · / HD
u − 1 / HC

u − 1 À Hn
u − 1 / HA

u − 1 /
h̄ HD

u / HC
u À Hn

u / · · ·

associated with Fig. 2 and h̄ is the usual connecting map. Its definition is
standard and may be found in any textbook of homological algebra or
algebraic topology, see for example [13]. We include it only for the sake of
completeness.

The map h̄: HD
u Q HA

u − 1 is induced naturally by the map h : Du Q Au − 1

which can be defined as follows: Let [d] ¥ HD
u be a class of homologies

with representative d ¥ Du, thus “
g(d)=0. To define h(d) note that

since k: Bu À Cu Q Du is a surjection, there is (b, c) ¥ Bu À Cu such that
k(b, c)=d (evidently, (b, c) is not necessarily unique). So let (bŒ, cŒ) ¥

Bu − 1 À Cu − 1 be given by (bŒ, cŒ)=“
g(b, c)=(“

g(b), “
g(c)). It follows from

the commutativity of the diagram that (bŒ, cŒ) is in the image of the
monomorphism f: Au − 1 Q Bu − 1 À Cu − 1. So there is a unique a ¥ Au − 1 such
that f(a)=(bŒ, cŒ). Now define h via h(d)=a. Again from the commuta-
tivity of the diagram it follows that “

g(a)=0. So let h̄[h]=[a] ¥ HA
u − 1. It

is a trivial matter to show by ‘diagram chasing’ that the last definition is
independent of the choices in the definition of h.

For short one can say that h̄ is induced by h=f−1
“

gk−1 where k−1(d) is
any pre-image of d.

2. The structure of HA
u − 1. We recall a decomposition of HA

u − 1 from
Theorem 3.1 of [12]. First, note that the natural inclusion A ı B implies
the exact sequence

(ff): 0 /B/A/
J

B/
i
A/ 0

where the terms in B/A are quotients of the form Mn
j /MA

j . One notes
easily that Mn

j /MA
j 4 Mn − k

j − k and so B/A is a sequence with parameters
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(l − k, r − k). Moreover, the surjection J: Mn
j Q Mn − k

j − k is defined as follows,
see also the proof of Lemma 3.2 in [12]: Let rs be the restriction associated
with D=C 2k Sn (so that |rs|=k). Evidently, every element x ¥ Mn

j can be
written uniquely as x=rs 2 y+z where y ¥ Mn − k

j − k . Define J by J(x) :=y.
To find HA

u − 1 it remains to note that B/A is almost exact with non-
trivial homology Hn − k

(l − k, r − k). Therefore, in the bad cases the long homology
sequence arising from (ff) is

0 / Hn
u − 1 / HA

u − 1 /
J̄ Hn − k

(l − k, r − k) / 0

so that HA
u − 1 4 Hn

u − 1 À Hn − k
(l − k, r − k). The standard construction for a con-

necting map may be applied to the inclusion J̄ and repeating the arguments
above, we obtain the following which will be crucial for the last part of our
proof:

Lemma 5.2. In the decomposition HA
u−1 4 Hn

u−1 À Hn−k
(l −k, r−k) the component

Hn − k
(l − k, r − k) is spanned by elements of the form [“

g(rs 2 e)] ¥ HA
u − 1 where

e ¥ Mn − k
j − k and “

g(e)=0.

3. Completing the proof. Let rs ı s be as before and put t :=s0rs.
We identify rs with an element of Mn :=MB and the inclusion B ı D

induces the identification MB ¦ b W bD ¥ MD.
Let h=f−1

“
gk−1 be defined as before. It follows from Lemma 5.2 that it

is enough to prove that for every e ¥ Mn − k
j − k with supp(e) ı t and “

g(e)=0
one can find some [h] ¥ HD

u such that h(h)=“
g(rs 2 e).

For this let f ¥ MC
k … MD be as in Theorem 5.1. Now take

h :=(rs+f)D 2 eD ¥ MD. Since “
g(e)=0, and eD and (rs+f)D have non-

intersecting supports, also “
g(h)=0 and so the corresponding class [h] is

in HD
u .

From Theorem 2.2 in [10] we derive the fundamental fact that any e
with “

g(e)=0 can be written as a linear combination of elements of the
form s 2 v where s is a set, “

gs=0 and “v=0. This means that we can
suppose that e=s 2 v and so

h(h)=f−1
“

gk−1 [(rs+f) 2 e]D

=f−1
“

g([rs 2 s 2 v]B, [f 2 s 2 v]C)

=f−1(“
g(rs 2 s) 2 vB, “

g(f 2 s) 2 vC)

=f−1(“
g(rs 2 s) 2 vB, −“

g(rs 2 s) 2 vC)

=“
g(rs 2 s) 2 vA

=“
g(rs 2 s 2 v)

=“
g(rs 2 e).
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The equality “
g(f 2 s)=−“

g(rs 2 s) follows from the fact that “
gs=0 and

so “
g((rs+f) 2 s)=(rs+f) 2 “

gs=0. This completes the proof of
Theorems 5.1 and 4.1. L

6. COXETER COMPLEXES AND BUILDINGS

In this section we show that Coxeter complexes and buildings are satu-
rated in any characteristic. Without going into further details we shall
assume the following facts:

• Buildings and Coxeter complexes are shellable [4];
• Finite Coxeter complexes are triangulations of spheres [6, p. 62];
• Every link of a Coxeter complex or a building is again a Coxeter

complex or, respectively, a building [6, pp. 60,79];
• The ordinary Euler characteristic of an (n − 1)-dimensional shellable

complex D (with regards to the simplicial boundary map, thus the alternat-
ing sum of the face numbers) is equal to hn(D), up to sign.

In addition, for a Coxeter complex we have the following:

Lemma 6.1. Coxeter complexes are 2-colourable and so are null with
respect to “ for any field of characteristic p > 0.

Proof. If D is a Coxeter complex let x0 be the facet corresponding to
the identity in its reflection group. It is well-known that one may use the
involutory generators of this group to define a distance function d on the
facets of D such that d(x0, x) − d(x0, y)= ± 1 if and only if x and y meet in
a co-dimension 1 face. For i=0, 1 now put Ci :={y : d(x0, y) — i mod 2 }.
Then C0 and C1 are the classes of a 2-colouring of D. Since D is a trian-
gulation of a sphere it has no boundary and hence is null according to the
remarks following the definition of nullness earlier. L

Let now D be a Coxeter complex with shelling D1=[s1] % Sn, D2,..., Dm

=D where Di=Di − 1 2ki [si] for 0 < i [ m and with [si] % Sn.

Lemma 6.2. Let res(si) be the restriction and let ti=si 0 res(si) be its
complement. Then linkDi (ti)=linkD(ti).

Proof. Let Di=Di − 1 2 si be a k-gluing. As Di is shellable also linkDi
(ti)

is shellable and hence Cohen–Macaulay. Therefore linkDi
(ti) is homotopic

to a bouquet of m spheres, all of dimension k − 1. In the shelling of
linkDi

(ti) induced by the shelling of D, note that the face res(si) is a
homology face (that is, it is its own restriction) and so hk(linkDi

(ti)) \ 1. As
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hk(linkDi
(ti)) is the Euler characteristic of linkDi

(ti), up to sign, it follows
that m \ 1.

On the other hand, linkDi
(ti) is a subcomplex of the (k − 1)-dimensional

complex linkD (ti). The latter is again a Coxeter complex, by the general
assumption from the beginning of this section, and hence a triangulation of
a sphere. But then m [ 1 and so linkDi

(ti) is homotopic to a sphere. Since
linkD (ti) triangulates the sphere, every facet in that link is in the support of
any nontrivial homology representative, which implies linkDi

(ti)=linkD (ti).
L

Theorem 6.3. Coxeter complexes are saturated over any field of charac-
teristic p > 0.

Proof. Let D be a Coxeter complex with shelling s1, ..., sm. As above,
let res(si) be the restriction of si in Di and ti be its complement. According
to Corollary 4.2 it is enough to show that linkDi

(ti) is null for every i. But
according to Lemma 6.2, linkDi

(ti)=linkD (ti) is a Coxeter complex itself
and so is null by Lemma 6.1. L

Theorem 6.4. Buildings are saturated over any field of characteristic
p > 0.

Proof. Let now D be a building with shelling s1, ..., sm. We shall keep
the notation of the previous proof. Let Li :=linkDi

(ti). According to
Theorem 4.1, it is enough to construct for every i a null-subcomplex of Li

coming through res(si). We shall show that an apartment of linkD(ti) can
be used for this.

For this note that in contrast to Coxeter complexes we know only that
Li is a subcomplex of linkD(ti) and that linkD(ti) has the homotopy type
of a bouquet of (ki − 1)-dimensional spheres. Furthermore, there is an
apartment coming through res(si) for each sphere in the bouquet and these
apartments are Coxeter complexes, see Theorem 2 in [6, p. 93]. So the
number of such apartments in Li is the Euler characteristic of Li, up to
sign, or equivalently, the last component of the h-vector of Li.

Now compare the complexes Li and Lg
i :=linkDi − 1

(ti). Note that Li is
obtained from Lg

i by adding res(si). This increases the last component of
the h-vector by 1 and so this increases the number of apartments by 1.
Consequently there is an apartment of linkD(ti) through res(si) in Li. L

To find the Betti numbers of a building for given prime p one may
proceed as follows. It is well-known [5] that the h-vector of a building
associated to a finite Chevalley group over GF(q) with Weyl group (W, S)
is given by

hk(q)= C
w ¥ (W, S): d(w)=k

q l(w)
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TABLE III

The h-Vector for the Building A(6, q)

h0(q) = 1;
h1(q) = 6q+10q2+12q3+16q4+16q5+18q6+12q7+12q8+8q9+

6q10+2q11+2q12;
h2(q) = 10q2+33q3+58q4+94q5+120q6+156q7+159q8+155q9+

135q10+110q11+74q12+48q13+27q14+9q15+3q16;
h3(q) = 4q3+24q4+56q5+112q6+164q7+236q8+292q9+320q10+

320q11+292q12+236q13+164q14+112q15+56q16+24q17+4q18;
h4(q) = 3q5+9q6+27q7+48q8+74q9+110q10+135q11+155q12+

159q13+156q14+120q15+94q16+58q17+33q18+10q19;
h5(q) = 2q9+2q10+6q11+8q12+12q13+12q14+18q15+16q16+16q17+

12q18+10q19+6q20;
h6(q) = q21

where l(w) is the length of w ¥ W and d(w)=|{ s ¥ S : l(sw) < l(w) }| is the
number of descents of w. Now use Theorem 3.2 and the dimensions of
Hn − j

(l − j, r − j) given in [10] or [1]. To determine the isomorphism types of the
homologies is a more difficult task. There is some progress on this question
and these results will be the subject of a forthcoming paper.

We conclude with the example of the building A(6, q) of dimension 5. Its
h-vector is given in Table III. Its Betti numbers for p=3 and p=5 can be
read off from the tables in Section 3.2, for other primes they are just as
easy to construct.
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