
File: 582A 267001 . By:BV . Date:14:07:07 . Time:11:28 LOP8M. V8.0. Page 01:01
Codes: 3770 Signs: 1810 . Length: 50 pic 3 pts, 212 mm

Journal of Combinatorial Theory, Series A � TA2670

journal of combinatorial theory, Series A 74, 287�300 (1996)

The Modular Homology of Inclusion Maps
and Group Actions

Valery Mnukhin

Department of Mathematics, State University of Radio Engineering, Taganrog, 34� 928 Russia

and

Johannes Siemons*

School of Mathematics, University of East Anglia, Norwich NR4 �TJ, United Kingdom

Communictated by the Managing Editors

Received April 18, 1994

Let 0 be a finite set of n elements, R a ring of characteristic p>0 and denote by
Mk the R-module with k-element subsets of 0 as basis. The set inclusion map
�: Mk � Mk&1 is the homomorphism which associates to a k-element subset 2 the
sum �(2)=11+12+ } } } +1k of all its (k&1)-element subsets 1i . In this paper we
study the chain

0 � M0 � M1 � M2 } } } Mk � Mk+1 � Mk+2 } } } (*)

arising from �. We introduce the notion of p-exactness for a sequence and show that
any interval of (*) not including Mn�2 or Mn+1�2 respectively, is p-exact for any
prime p>0. This result can be extended to various submodules and quotient
modules, and we give general constructions for permutation groups on 0 of order
not divisible by p. If an interval of (*) , or an equivalent sequence arising from a
permutation group on 0, does include the middle term then proper homologies can
occur. In these cases we have determined all corresponding Betti numbers. A further
application are p-rank formulae for orbit inclusion matrices. � 1996 Academic

Press, Inc.

1. Introduction

Let 0 be a finite set and 20 the collection of subsets of 0. The inclusion
map on 20 is the linear map � given by �(2)=11+12+ } } } +1k when 2
is a k-element subset of 0 and when the 1i are the (k&1)-element subsets
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of 2. To make sense of this definition we regard the collection of 0-subsets
as basis of a module over some ring. So if R is that ring we denote
the module with 20 as basis by R20. In particular, we put Mk :=
[� r2 2 | 2�0, |2|=k, r2 # R]. In this paper we study the sequence

0 � M0 � M1 � M2 } } } Mk � Mk+1 � Mk+2 } } } (I)

arising from �. It is of course fundamental in many investigations in com-
binatorics and the subject of numerous papers.

Our interest concerns the homological properties of the sequence (I)
when the ring has prime characteristic p{0. The first main result,
Theorem 3.6, shows that all subsequences in (I) of the kind

} } } � Mk&2p � Mk&p&i � Mk&p � Mk&i � Mk (II)

are exact for every 0<i<p in the ``lower part'' of (I), that is when
2k�|0|. Any sequence (I) for which all subsequences (II) are exact will
be called p-exact. This concept is interesting for several reasons. For one,
it gives an immediate formula for the p-rank of �i : Mk � Mk&i as an alter-
nating sum of dimensions of the modules to the left of Mk . This in turn can
be viewed as an inclusion-exclusion principle and we suggest that p-exact-
ness is the natural interpretation for the p-rank formulae given in several
papers, see [1, 2, 4, 16, 17].

The ``upper part'' of the sequence fails to be p-exact. Nevertheless, we can
show that exactness holds everywhere except for some term near the
middle of the sequence. The precise result is contained in theorem 5.3 which
computes all Betti numbers.

These results are extended naturally to permutation groups on 0: If G
acts on 0 it also acts on 20 and hence on each of the Mk . In Section 4 we
consider the submodules of elements fixed by G and study their homologi-
cal properties. The results in Sections 4 and 5 show that all the results
mentioned above hold for groups of order co-prime to p. In particular, the
Betti numbers of the fixed-modules give new invariants. In Section 6 we
give explicit values for the Betti numbers for cyclic groups in the case
of characteristic p=3. Another interesting application is obtained by
considering the case p=2. Here let 0 have size 2m and suppose that the
group G has odd order with nk orbits on k-subsets. We show that nm=
2(nm&1&nm&2+nm&3&nm&4+ } } } ).

We have also studied group actions on infinite sets and in particular the
question of p-exactness in subsequences of the corresponding sequence (I).
The techniques are somewhat different and so these results are contained
in another paper [9].
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2. Inclusion Maps

First we introduce the notation. Throughout this section let R be an
associative ring with 1 and let 0 be a finite set of size n. Then 20 denotes
the collection of all subsets of 0 and R20 denotes the R-module with 20

as basis.
For a natural number k the collection of all k-element subsets of 0 is

denoted by 0[k] and R0[k]/R20 denotes the submodule with k-element
subsets as basis. We will always abbreviate R0[k] by Mk as the context will
be clear. We refer to R also as the coefficient ring of Mk .

For f =� r2 2 # R20 the support supp( f ) is the union of all 2 for which
r2{0 and the support size is & f & :=|supp( f )|. Two elements f and g are
disjoint if supp( f ) and supp( g) are disjoint sets.

The Boolean operations on 20 are easily extended to products on R20.
The most important is the �-product: if f =� f2 2 and g=� g1 1 we
define f _ g :=� 12 g1 (2 _ 1 ). It is not difficult to see that this definition
turns R20 into an associative ring with the empty set as identity. In dif-
ferent guises this algebra has also been considered in [6, 11, 13].

The inclusion map �: R20 � R20 is defined by �(2) :=�: # 2 (2":) and
extended to a homomorphism on R20 by �(� f2 2) :=� f2 �(2). Clearly,
this map restricts to homomorphisms �: Mk � Mk&1 . Very important is
the product rule:

If f and g are disjoint elements in R20 then

�( f _ g)=�( f ) _ g+ f _ �( g).

This can be verified easily. It shows that the inclusion map behaves very
much like differentiation and we often use the natural notation f $ :=�( f )
and f (s) :=[ f (s&1)]$.

For the remainder 0 denotes a finite set of cardinality n unless explicitly
stated otherwise.

Theorem 2.1. For any associative coefficient ring with 1 the kernel of
�: Mk � Mk&1 is generated by elements of support size at most 2k.

Proof. It is easy to see that the result holds when n :=|0|=2. So sup-
pose that the theorem is true for all sets of size less than n. Clearly, when
2k�n there is nothing to prove. So suppose that 2k<n and let f be some
element in the kernel of �: Mk � Mk&1 . If & f &�2k we include f in the gen-
erator set. So we can assume that & f &>2k. For any element : in supp( f )
we write f uniquely as f =: _ f:+ g in such a way that : does not belong
to supp( g) nor to supp( f:). By the product rule, 0= f $=: _ ( f:)$+ f:+ g$
and as only the first term involves : we have ( f:)$=0= f:+ g$. As & f:&<n
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we may assume that f: can be written as f:=h1+ } } } +hs where the hi

satisfy (hi)$=0 and &hi&�2(k&1).
For each hi we select a point ;i # supp( f ) with :{;i � supp(hi). Note

that this is possible since & f &>2k, and &hi &+2�2k. Now consider the
term G=(;1 _ h1)+ } } } +(;s _ hs). Computing G$ shows that G$= f: . As
0= f:+ g$ we see that ( g+G)$=0, and as g+G does not involve :, we
have &g+G&<& f &�n. So we can write g+G=w1+ } } } +wt where the
wi are elements in the kernel with &wi&�2k.

Therefore f =: _ f: + g = : _ (h1 + } } } + hs) & G + (w1 + } } } + wt) =
: _ (h1 + } } } + hs) & [(;1 _ h1) + } } } + (;s _ hs)] + (w1 + } } } + wt) =
(:& ;1) _ h1+ } } } +(:&;s) _ hs+(w1+ } } } +wt). As [(:&;i) _ hi]$=
(:& ;i)$ _ hi+(:&;i) _ (hi)$=0 and as each (:&;i) _ hi has support size
at most 2+2(k&1), we have expressed f by elements in the kernel with
support size at most 2k. K

Remark. When the coefficient ring is a field of characteristic zero the
minimum support size of elements in the kernel is 2k exactly, and as gener-
ators one can choose signed dual cubes of dimension k. These are expres-
sions of the form (:1&;1) _ (:2&;2) _ } } } _ (:k&;k). When k=3, for
instance, then (:1&;1) _ (:2&;2) _ (:3&;3) represents the faces of an
ordinary octahedron signed alternately +1 and &1, see [3, 14]. Further,
in [14] it is shown that these are precisely the minimum weight terms in
the kernel. Note also that signed dual cubes appear naturally in the proof
above in arbitrary characteristic.

However, when the coeffcient ring has characteristic {0, then there may
be elements of shorter support. Already for p=2 or 3 ordinary triangles
and tetrahedra belong to the kernel of �: Mk � Mk&1 when k=2 or 3.

In a similar way we can determine the support size of generators of the
kernels of higher powers of �. This is the next result.

Theorem 2.2. For any associative coefficient ring with 1 the kernel of
�m : Mk � Mk&m , where 1�m�k, is generated by elements of the form
h _ 2 where h belongs to the kernel of �: Mk&m&1 � Mk&m and where 2 is
an (m&1)-element set disjoint from h. In particular, the kernel of �m : Mk �
Mk&m is generated by elements of support size at most 2k&m+1.

Proof. Evidently, (h _ 2)(m)=0 by the product rule. The result holds
when n :=|0|=2 and so suppose the same is true for all sets of size less
than n.

Let f be some element in Mk with f (m)=0 . As before, if : is in supp( f ),
we write f =: _ f:+ g. By the product rule, f (m)=: _ ( f:)(m)+
mf (m&1)

: + g(m)=0 and so ( f:)(m)=0=mf (m&1)
: + g(m). As & f: &<n we

assume that f: can be written as f:=h1 _ 11+ } } } +hs _ 1s with hi$=0 and
(m&1)-sets 1i disjoint from hi . Then ( f:)(m&1)=(m&1)! [h1+ } } } +hs].
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Now let G=h1 _ 11 _ ;1+ } } } +hs _ 1s _ ;s where ;i{: are points
disjoint from hi and 1i . Note that G (m)=m ! (h1+ } } } +hs)=m( f:)(m&1)

so that ( g+G)(m)=0. As supp( g+G)�supp( f )"[:] we employ induction
to write g+G=w1 _ 21+ } } } +wt _ 2t with (wi)$=0 and (m&1)-sets 2i

disjoint from wi . This gives f =: _ f:+ g=: _ f:&G+[w1 _ 21+ } } } +
wt _ 2t] =(: _ h1 _ 11&;1 _ h1 _ 11)+ } } } +(: _ hs _ 1s&;s _ hs _ 1s)
+[w1 _ 21+ } } } +wt _ 2t]=(:&;1) _ h1 _ 11+ } } } +(:&;s) _ hs _ 1s

+[w1 _ 21+ } } } +wt _ 2t]. Clearly, [(:&;s) _ hs _ 1s]
(m)=0 and

((:&;s) _ hs)$=0 so that the main part is proved.
By theorem 2.1 the kernel of �: Mk � Mk&1 is generated by elements of

support size at most 2k and so the kernel of �m : Mk � Mk&m is generated
by elements of support size at most 2k&m+1. K

Corollary 2.3 (The Integration Lemma). Let 2k<m�|0|. If
(m&2k) ! has an inverse in R and if f # Mk satisfies f $=0, then there is some
F in Mm&k with F (m&2k)= f.

Proof. By theorem 2.1 we write f as a combination f =w1+ } } } +wt

where wi$=0 and &wi &�2k. For each wi select a set 2i of m&2k
points disjoint from supp(wi). Now consider F=((m&2k) !)&1

[21 _ w1+ } } } +2t _ wt]. K

Lemma 2.4. Let R be an associative ring with 1 of prime characteristic
p{0 and suppose that 0�k�m�n (where n=|0| ) are integers with m<p.
Then �m&k : Mm � Mk is injective if and only if m+k�n; it is surjective if
and only if m+k�n.

Proof. See Corollary 2.5 in [13].

For convenience we abbreviate Ker �i & Mj by K i
j and �i(Mi+ j)=

Im �i & Mj by I i
i+ j where Mj as before stands for R0[ j ].

Lemma 2.5. Let R be an associative ring with 1 of prime characteristic
p{0 and suppose that i, j are integers with 2�i<p and 2j�n+1. Then
�(K i

j)=K i&1
j&1.

Proof. Evidently �(K i
j)�K i&1

j&1. So let f # K i&1
j&1; we must find some

F # K i
j for which F $= f. By Theorem 2.2 we can write f as

f =h1 _ 21+ } } } +ht _ 2t where hs in Mj&i+1 with h$s=0 and where 2s

is disjoint from hs and has size i&2 for 1�s�t, in terms of elements of
short support &hs&�2( j&i+1). Abbreviate 0"supp(hs) by 0s . Then
|0s |=n&&hs&�n&2( j&i+1)=(n&2j )+2(i&1)>0. Now consider
the map �: R0[i&1]

s � R0[i&2]
s ; as (i&1)+(i&2)=2i&3�2(i&1)+

(n&2j )�|0s | by lemma 2.4 the map is surjective and there is some
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gs # R0[i&1]
s for which �( gs)=2s . Hence let F :=h1 _ g1+ } } } +ht _ gt

and verify that F $= f so that also F (i )=0. K

3. Homological Sequences

Throughout this chapter R is an associative ring with 1 which has prime
characteristic p{0 . In particular, R is an algebra over GF( p). As p{0, the
crucial observation is that � p : R20 � R20 is the zero map. To see this let
2 be any set of size d� p. Then � p(2)=c � 1 where the summation runs
over all (d& p)-element subsets of 2 and where c counts the number of
chains with 1=10/11/ } } } /1p=2. So c is p !=0.

The results in Chapter 2 lead us to investigate homology. We recall the
usual definitions: if / : A � B and � : B � C are homomorphisms then the
sequence A � B � C is homological at B if Ker(�)$/(A), and exact,
if Ker(�)=/(A). A longer sequence, } } } � Ak � Ak+1 � Ak+2 �
Ak+3 � } } } is homological (exact) if it has that property at every Ai .

Our main objective is to study the sequence

0 � 0 � } } } � 0 � M0 � M1 � M2 } } } Mk � Mk+1 � Mk+2 } } } (1)

where as before Mj stands for R0[i ]. Clearly, when R has characteristic 2,
then this sequence is homological. In fact:

Theorem 3.1. Let R be a ring of characteristic 2 and 0 a set of arbitrary
cardinality. Then 0 � M0 � M1 � M2 } } } � Mm&1 � Mm is exact for all
m�|0|.

Proof. It remains to show that Ker(�) & Mm��(Mm+1). So let f be in
Ker(�) & Mm . For any point : in supp( f ) write f uniquely as f =: _ f:+ g
where f: and g are disjoint from :. Then 0= f $ so that f:+ g$=0. Now
consider F=: _ g and verify that F $=: _ f:+ g. K

For characteristic p>2 we require a more general notion.

Definition 3.2. If 2� p is some integer, then the sequence A0 � A1 �
A2 } } } Am&2 � Am&1 � Am is p-exact ( p-homological ) if Ak � Ak+i � Ak+ p

is exact (homological) for every 0�k�m& p and every i, 1�i<p. (The
arrows in Ak � Ak+i � Ak+ p are the natural compositions of arrows in the
original sequence.)

So 2-exactness is exactness in the usual meaning and A0 � A1 �
A2 } } } Ak � Ak+1 � Ak+2 } } } is 3-exact if and only if both A0 � A1 � A3 �
A4 � A6 � } } } � A3s&3 � A3s&2 � A3s � } } } and A0 � A2 � A3 � A5 �
A6 � } } } � A3s&3 � A3s&1 � A3s � } } } are exact.

292 MNUKHIN AND SIEMONS



File: 582A 267007 . By:BV . Date:14:07:07 . Time:11:29 LOP8M. V8.0. Page 01:01
Codes: 3067 Signs: 2040 . Length: 45 pic 0 pts, 190 mm

We return to the sequence (1) above. To clarify the situation consider
the first members in 0 � } } } � 0 � M0 � M1 � M2 } } } Mk � Mk+1 �
Mk+2 } } } . The module M0 consists of all R-multiples of the empty set in 0
and 0 � M0 is the zero map. Further, if 2( p&1)�n and j� p&1, then
� j&i : Mj � Mi is surjective by Lemma 2.4 and so we have

Lemma 3.3. Let R have prime characteristic p{0 and 0<2p�|0|. Then
0 � 0 � } } } � 0 � M0 � M1 � M2 � } } } � Mp&1 is p-exact.

Our aim will be to show that the lemma remains true for even longer
initial segments. For this reason we begin to consider the homology
modules. Let as before K i

j :=Ker �i & Mj and I i
i+ j :=Im �i & Mj and put

Hjk :=K j&k+p
j �I k& j

k .

Lemma 3.4. Let R have prime characteristic p{0 and 2j�|0|+1. Then
Hjk$K j&k+ p

j �(I k& j
k +K 1

j ).

Proof. It follows from Lemma 2.5 that K j&k+ p
j =�&1(K j&k+ p&1

j&1 ), so
that K j&k+ p&1

j&1 $K j&k+ p
j �K 1

j . Similarly, I k& j
k =�&1(I k& j+1

k ) and so
I k& j+1

k $I k& j
k �(K 1

j & I k& j
k )$(K 1

j +I k& j
k )�K 1

j by the isomorphism theorem.
Putting the expressions together we get Hj&1, k=K j&k+ p&1

j&1 �I k& j+1
k $

(K j&k+ p
j �K 1

j )�((K 1
j +I k& j

k )�K 1
j )$K j&k+ p

j �(I k& j
k +K 1

j ). K

Theorem 3.5. Let R be an associative ring with 1 of prime characteristic
p{0 and let k&p< j<k be integers with k+j�|0| . Then Hik=0 for all
i with k& p+1�i� j.

Proof. As 2i<|0| the condition of Lemma 3.4 holds for Hik . Further,
we have |0|&2i�k&i and so the Integration Lemma implies that
K 1

i �I k&i
k and I k&i

k +K 1
i =I k&i

k . Therefore Hjk$Hj&1, k$ } } } $Hk& p+1, k .
But Hk& p+1, k=K 1

k& p+1 �I p&1
k and since k+ j�|0| we have

|0|&2(k& p+1)� p&1, it follows from the Integration Lemma that
K 1

k& p+1=I p&1
k . So Hk& p+1, k=0. K

An immediate consequence now is

Theorem 3.6. Let R be an associative ring with 1 of prime characteristic
p{0. If 2k�|0| , then 0 � } } } � 0 � M0 � M1 � M2 } } } Mk&2 �
Mk&1 � Mk is p-exact.

At this point the only result about the ``upper part'' of the sequence (1)
is Theorem 3.1 for the case p=2. If p{2 the sequence certainly remains
p-homological but examples show that it may fail to be exact. Therefore the
question about homology modules arises. We will deal with this in the next
section.
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4. Group Actions on 0

Let g be a permutation of 0. Then g acts on 20 by 2 � 2 g :=[$ g | $ # 2]
which can be extended linearly to all of R20 by g(� r2 2)=� r2 2 g. It is
not difficult to see that g commutes with � and so

0 � 0 � } } } � 0 � M0 � M1 � M2 } } } Mk � Mk+1 � Mk+2 } } } (1)

is invariant under any set of permutations.
As before let R be an associative ring with 1 of prime characteristic p{0.

Then the orbit module in Mk is OG
k :=[ f | f # Mk and gf = f for all g # G ].

We will omit the superscript as it will be clear which group it refers to. The
natural basis for Ok are the ``orbits sums'' 2

�
=�2* # 2G 2* where 2G as

usual denotes [2g | g # G].
Now define two linear maps # : Mk � Ok through

#1(2)=2
�

and, when p does not divide |G|,

#2(2)=|G|&1 :
g # G

2 g.

Note that #1(2
�
)= |2G| #2(2

�
) and that #2 restricted to Ok�Mk is the

identity map. Consider therefore the diagram

�ww� Mk&1 �ww� Mk �ww� Mk+1 �ww�

# # # (2)

�ww Ok&1 �ww Ok �ww Ok+1 �ww

which can be completed at the bottom: As 21 , 22 # 2G implies #1(�21)=
#1(�22) we put �1(2

�
) :=#1[�(21)]. Similarly, if p does not divide |G| then

�2 is given by �2(2
�
)=#2[�(2

�
)].

Denote the number of G-orbits on 0[k] by nk(G ). It is well-know [5]
that for t�k�|0|�2 we have nt(G )�nk(G ). Define the orbit inclusion
matrix Wtk(G, 0) as the matrix whose columns are indexed by G-orbits on
0[k], its rows by G-orbits on 0[t] and with (i, j )-entry, for a fixed k-set 1
in the j th orbit, counting the number of t-subset 2�1 belonging to the i th
orbit.

It is easy to see that the matrix of �1 (for the natural bases) is
Wk&1, k(G ) viewed as a matrix over R. If the matrix of �2 is W*k&1, k(G )
and n the cardinality of 0 one shows easily that for any s<t

W*s, t(G )=[Wn&t, n&s(G)]T. (3)
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In general, if Ds is the diagonal matrix ( |2G
1 |, |2G

2 |, ...) and Dt the
diagonal matrix ( |1 G

1 |, |1 G
2 |, ...) where the 2i and 1j run through systems

of s-orbits and t-orbits of G respectively, then the relation between Wst(G )
and W*st(G ) is

W*st(G )=Ds Wst(G ) D&1
t . (4)

For the remainder we will deal only with the case when p does not divide
the group order. This is an essential restriction as some examples will show
later.

In view of (4) it is not surprising that the theory for �1 and �2 essentially
is the same:

Theorem 4.1. Let R be an associative ring with 1 which has prime
characteristic p{0 . Suppose that G is a permutation group on 0 with order
co-prime to p. For p>2 and 2m�|0| the sequence

0 � 0 � } } } � 0 � O0 � O1 � } } } � Om&1 � Om (5)

is p-exact for both �1 and �2 . If p=2, then the same is true for all m�|0|.

Proof. In both cases # is surjective and so the sequence is p-homologi-
cal. First we deal with �2 . Note that �2 is just the restriction of � to the
subspace Ok+ j�Mk+ j . So, if x # Ok+ j satisfies (�2) j x=0 then x( j )=0.
Hence, by theorems 3.1 and 3.6 we find some X in Mm+ p with X ( p& j )=x
and so #2(X ) # Om+ p satisfies [#2(X )]( p& j )=#2(x)=x.

Regarding �1 we know already that Ker(� j
1) & Om+ j$�( p& j )

1 (Om+ p).
From (4) we conclude that the powers of �1 and �2 have the same rank and
the same nullity. Therefore dim(Ker(� j

1) & Om+ j)=dim(Ker(� j
2) & Om+ j)

and dim(�( p& j )
1 (Om+ p))=dim(�( p& j )

2 (Om+ p)). As �( p& j )
2 (Om+ p)=

Ker(� j
2) & Om+ j by the first part, Ker(� j

1) & Om+ j and �( p& j )
1 (Om+ p) have

the same dimension and so are equal. K

As an application we determine the p-rank of the inclusion matrices
Wst(G ). Let nk(G) as before denote the number of G-orbits on 0[k].

Theorem 4.2. Let G act on the finite set 0. If p is a prime not dividing
the order of G let s<t be be integers such that t&s< p and t+s�|0| .
Then the p-rank of Wst(G ) is �0�i<t�p ns&ip(G)&nt&(i+1) p(G ).

Proof. By theorem 4.1 the sequence 0 � } } } � OG
t&2p � OG

s& p �
OG

t& p � OG
s � Ot G is exact. K

Remarks. (1) In the special case when G is the identity group we have
a formula for the p-rank of the incidence matrix Wst of s-subsets in t-sub-
sets of 0. It agrees with the results of Linial and Rothschild [4], Frankl
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[1], Frumkin and Yakir [2] and the theorem of Wilson in [16]. The for-
mulae given there were obtained in rather different ways, and the implicit
inclusion-exclusion principle appears mostly without proper explanation.
Here this principle appears as an entirely natural consequence of p-exact-
ness. So we contend that the notion of p-homology and p-exactness is
indeed the natural way to study these phenomena.

(2) So far the rank formula above is restricted to the case when
t&s<p. It may be possible, however, to obtain corresponding results for
general s�t by extending the arguments of p-homology.

5. The Upper Part of the Sequence: Betti Numbers

We now concern ourselves with the upper part of the orbit module
sequence (2) when

} } } � Om&1 � Om � Om+1 � } } } � O |0|&1 � O |0| (6)

is p-homological but not necessarily p-exact. For the remainder let R be a
field of characteristic p and G a permutation group on 0 of order co-prime
to p.

We define the Betti numbers of the sequence (6). When j<k and
k& j< p put

;G
jk :=dim[Ker(� p&(k& j )

2 ) & Oj]&dim �k& j
2 (Ok). (7)

By (4) the powers of �1 and �2 have the same rank and nullity, so that
the Betti numbers for �1 and �2 are the same.

We begin to evaluate these invariants. Theorems 3.1 implies directly

Lemma 5.1. If G has odd order and if p=2, then ;G
jk=0.

Further, theorems 3.6 and 4.1 give

Lemma 5.2. (The Balance Condition). Let j<k and k& j< p. If
j+k�|0| then ;G

jk=0.

If 0<r<q� p , we say that the subsequence

} } } � Oq& p � Or � Oq � Or+ p � Oq+ p � Or+2p � } } } (8)

of (6) has type (r, q) or is an (r, q)-sequence. Here for indeces j<0 we have
put Oj=0 and arrows are appropriate powers of �. As before nj (G ) is the
number of G-orbits on j-element subsets for 0� j�|0|, and for con-
venience we put nj(G )=0 for all other values of j.
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For such a sequence let r*<q* be the least indeces for which
r*+q*>|0|. So Or* � Oq* is the first arrow in (8) for which the Balance
Condition fails. The next result determines all Betti numbers.

Theorem 5.3. If the order of G is not divisible by the prime p, then the
sequence (8) of type (r, q) is exact everywhere except (possibly) at Oq*& p �
Or* � Oq* when

;r*q*= :
k # Z

nr*+kp(G)&nq*+kp(G)

= } :
k # Z

nr+kp(G)&nq+kp(G)} .
Proof. It will be useful to put Bij :=�k # Z ni+kp(G )&nj+kp(G ). Let �

and ` be the occurances of �2 in

and

Oq*& p �w Or* �ww�
Oq* (9)

On&r* w�` On&q* w� On&r*&p (10)

Clearly, the Balance Condition implies that (10) is exact. Further, (9) is
exact except (possibly) at Or*. According to (3) and (4) the maps ` and �
have the same rank. Therefore

rank �=[nr*(G )&nq*& p(G )+nr*& p(G )& } } } ]&;r*q*

=rank `=[nn&q*(G )&nn&r*& p(G )+nn&q*& p(G )& } } } ]

So ;r*q* = [nr*(G ) & nq*& p(G ) + nr*& p(G ) & } } } ] & [nn&q*(G ) &
nn&r*& p(G )+nn&q*& p(G )& } } } ] and using nj (G )=nn& j (G ) we see that
;r*q*=Brq .

Next we show that the first Betti number ``to the right'' of ;r*, q* is 0. So
consider the maps � and ` in

and

Or* �w Oq* �ww�
Or*+ p

On&q* w�` On&r*& p w� On&q*& p

As � and ` have the same rank by (3) and (4) we get

rank �=[nq*(G )&nr*(G )+nq*&p(G )& } } } ]&[;q*, r*+ p&;r*, q*]

=rank `=[nn&r*& p(G )&nn&q*& p(G)+nn&r*&2p(G )& } } } ].
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Note that in the expression for rank(`) no Betti numbers appear since
2n&(r*+q*)& p<|0| so that the Balance Condition applies again.
Therefore, ;q*, r*+ p&;r*q*=Bq, r+ p and from above we get ;q*, r*+ p=
Bq, r+ p+Brq . But a simple calculation shows that the latter expression is 0.
The same arguments apply to the remaining Betti numbers. K

Thus Betti numbers are determined entirely by the type of the relevant
subsequence of (5). There is at most one non-zero Betti number in a
sequence of type (r, q), this is denoted by ;(r, q)(G, p). So we have the

Corollary 5.4. Let G be a group acting on 0 and p�2 a prime not
dividing the order of G. If 0<r<q� p, then 0�;(r, q)(G, p)�nr*(G ).

Remark. If p>|0| then ;(r, q)(G, p)=nr*(G )&nq*(G ) and so for
p>|G | the inequality 0� ;(r, q)(G, p) implies the theorem of Livingstone 6
Wagner [5].

6. Some Examples for Small Characteristic

Theorem 5.3 yields already interesting consequences for small primes.
Here we investigate only the case when p=2 or 3.

6.1. When p=2 and G Has Odd Order

The only type for a sequence is r=1, q=2, and instead of ;(1, 2)(G, 2)
we simply write ;(G, 2). From the formula in Theorem 5.4 we see
that ;(G, 2)=|�k # Z n1+2k(G )&n2+2k(G )|=|&n0(G )+n1(G )&n2(G )+
n3(G )& } } } |. When |0|=n is odd, using the fact that nk(G )=nn&k(G), we
see of course that ;(G, 2)=0.

However, by Lemma 5.1, we known that ;(G, 2) is zero in any case.
So, when n=2m, then ;(G, 2)=|&n0(G )+n1(G )&n2(G)+n3(G )& } } } |
can be arranged as 0=;(G, 2)=nm(G )&2[(nm&1(G)&nm&2(G ))+
(nm&3(G )&nm&4(G ))+ } } } ]. Therefore we have

Theorem 6.1. If G is a group of odd order acting on a set of size 2m,
then nm(G )=2[(nm&1(G )&nm&2(G))+(nm&3(G )&nm&4(G ))+ } } } ].

The condition that G has odd order is indeed indispensable: Already
G=C6 acting naturally has n3(G )=4{2[(n2(G )&n1(G ))+n0(G )]=6.

6.2. The Case p=3 and G has order prime to 3

Here the only types for sequences are (r, q)=(1, 2), (1, 3) and (2,3).
Writing down the various values of n modulo 6 we first work out the
possibilities for r* and q*. Then, using the formula in Theorem 5.3 we
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observe that in each case two of the Betti numbers are equal, while the
other is zero. So we denote the only relevant Betti number by ;(G, 3). For
n=2m theorem 5.3 yields

;(G, 3)=nm(G )&nm&1(G)&nm&2(G)+2nm&3(G )

&nm&4(G)&nm&5(G)+2nm&6(G )

&nm&7(G)&nm&8(G)+2nm&9(G ) } } } . (11)

And when n=2m+1 we get

;(G, 3)=nm(G )&2nm&1(G )+nm&2(G )+nm+3(G )

&2nm&4(G )+nm&5(G )+nm&6(G )

&2nm&7(G )+nm&8(G )+nm&9(G ) } } } . (12)

In contrast to the case of characteristic p=2, we have no independent
information about ;(G, 3) apart from the inequalities of Corollary 5.4.
Evaluating these give

Theorem 6.2. Let G be a group of order co-prime to 3 acting on the set
0 of size n and let N :=�0�k nk(G).

(i) If n=2m then (N&3nm(G))�6��1�k nm&3k(G )�(N&nm(G))�6,
and

(ii) if n=2m+1 then (N&2nm(G ))�6��1�k nm&1&3k(G)�N�6.

Remark. Returning to the formulae (11) and (12): It would of course
be quite interesting to determine those groups for which ;(G, 3) vanishes.
We have done further computations and would like to mention some of
our observations. If G is either the identity group or the cyclic group Cq of
prime order q{3 then one of the Betti numbers is 0 while the other two
are ;(G, 3)=1. (To do this, first write down the number of G-orbits on
k-element subset and then make use of Problem 8, page 161 in [12]). We
are led to conjecture that ;(C2m , 3)=0 for m not divisible by 3. In support
of this we have verified that ;(C10 , 3)=;(C14 , 3)=;(C16 , 3)=;(C20 , 3)=
;(C22 , 3)=0. More generally: Characterize the groups with ;(G, p)=0.
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