Permutation groups on unordered sets I

By
Johannes Siemons *)

I. Introduction. Let G be a permutation group on a finite or infinite set S. Consider the system X_{k} of all k-element subsets of S and the natural action of G on X_{k}. The numbers n_{k} of G-orbits on X_{k} form a non-decreasing sequence for $k \leqq \frac{1}{2} \cdot|S|$, but little else is known apart from this fact. See [1, 3].

In this note we examine the growth of n_{k} (if these numbers are finite) in terms of the groups induced by G on subsets of S. If G is $(k-1)$-fold homogeneous on S and $l \geqq k$, a rough estimate for the growth rate is $\left(\begin{array}{l}n_{k-k+1}\end{array}\right) \leqq\binom{ l}{l-1} \cdot n_{I}$. Much sharper results are obtained if the action induced on subsets is rich.

The notation used is standard. The setwise and pointwise stabilizers of a subset Y of S are denoted by $G_{\{Y\}}$ and $G_{(Y)}$ respectively. The group $G^{Y}=G_{\{Y} / G_{(Y)}$ always is considered as a permutation group on Y. The orbits of G on X_{k} are denoted by $X_{k}(G)$ and $n_{k}=\left|X_{k}(G)\right|$.
II. Arrangements. Let H be a group acting on a set Y of finite size l and let $x(\neq Y)$ be a subset of Y. We allow x to be empty. An arrangement is a collection $\left\{x ; y_{1}, y_{2}, \ldots, y_{t}\right\}$ such that a) all y_{i} have size $k=|x|+1$ and contain $\left.x, b\right) Y=\cup y_{i}$ and c) for $i \neq j, y_{i}$ and y_{j} belong to different H-orbits. The set x is called the centre of the arrangement. Clearly $t=l-k+1$. A second arrangement $A^{\prime}=\left\{x^{\prime} ; y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{t}^{\prime}\right\}$ is isomorphic to $A=\left\{x ; y_{1}, y_{2}, \ldots, y_{t}\right\}$ if there is some h in H such that $A^{h}=A^{\prime}$. Notice that two arrangements are isomorphic if and only if their centres belong to the same H-orbit. The total number of non-isomorphic arrangements with centre size $k-1$ is denoted by $m(H, k)$. Clearly $m(H, k) \leqq\left({ }_{k-1}^{l}\right)$ and equality holds if and only if H is the identity on Y. We determine the structure of groups for which arrangements exist and determine the numbers $m(H, k)$ for some small values of k.

Theorem 2.1. Let $H \neq 1$ be a permutation group on a set Y of size l and let $k \leqq l$. Suppose that $x=\{\alpha, \beta, \ldots\}$ is the centre of an arrangement with $|x|=k-1$. Then
i) $k>1$. (In fact $m(H, 1)=0$ if $H \neq 1$ and $m(H, 1)=1$ if $H=1$.)
ii) If $k=2$, then H is an elementary abelian 2-group and $m(H, 2)$ is the number of H-orbits on the points of Y that have length $|H|$.

[^0]iii) If $k=3$, then $\left|H_{\{x\}}\right| \leqq 2$. If $\left|H_{\{x\}}\right|=2$, then $H=\operatorname{Sym}(2)$ and $m(H, 3)=l-1$ or $H=\operatorname{Sym}(3)$ and $m(H, 3)=1$
iv) If $k=3$ and $\left|H_{\{x\}}\right|=1$, then $\left|H_{\alpha}\right|$ and $\left|H_{\beta}\right|$ are at most 2 . Let O_{α} and O_{β} be the orbits of α and β respectively. Then the graph on $O_{\alpha} \cup O_{\beta}$ with edge set x^{H} has the following connected components: type 1 for $\left|H_{\alpha}\right|=\left|H_{\beta}\right|=1$ and $O_{\alpha} \neq O_{\beta}$, type 2 for $\left|H_{\alpha}\right|=\left|H_{\beta}\right|=2$ and $O_{\alpha} \neq O_{\beta}$, type 3 for $\left|H_{\alpha}\right|=1,\left|H_{\beta}\right|=2$ and $O_{\alpha} \neq O_{\beta}$, type 4 for $\left|H_{\alpha}\right|=1$ and $O_{\alpha}=O_{\beta}$, or type 5 for $\left|H_{\alpha}\right|=2$ and $O_{\alpha}=O_{\beta}$.

type 1

type 3

type 2

type 4

type 5

Proof. First we note that $H_{\{x\}}$ acts as the identity on $Y-x$ if x is a centre of an arrangement. This in particular proves the statement i). If $k=2$, let O be the orbit of α. If $h \neq 1$ is in H, then also $\beta=\alpha^{h}$ is a centre and $\beta \in\{\alpha, \beta\} \cap\{\alpha, \beta\}^{h}$ implies that these two sets are the same. Therefore $\beta^{h}=\alpha, h^{2}=1$ and H is an elementary abelian 2-group of order $|H|=|O|$. Vice versa, if H is an elementary abelian 2-group and if γ belongs to an orbit of length $|H|$, then γ is the centre of an arrangement. For if $\gamma \in\{\gamma, \delta\} \cap\{\gamma, \delta\}^{h}$ for some h in H, then either $\gamma^{h}=\gamma$ and $h=1$ or $\gamma^{h}=\delta$ and $\gamma=\delta^{h}$. In both cases $\{\gamma, \delta\}$ is fixed by h and so γ is a centre. This proves ii).

Now we assume that $x=\{\alpha, \beta\}$ is a centre of size $k-1=2$. By the initial remark, $\left|H_{\{x\}}\right|$ has size at most 2. Consider the case $\left|H_{\{x\}}\right|=2$. Let O be the orbit containing α and β. If $O=x, H=\operatorname{Sym}(2)$. If $O \neq x$, then any H-image is a centre again and as there is a transposition $(\alpha, \beta)(.) \ldots($.$) , the images must intersect x$ in a point. Counting these images we obtain $\left|x^{H}\right|=\frac{1}{2} \cdot|H|=(|O|-2) \cdot 2+1$, or $|O| \cdot\left(4-\left|H_{\alpha}\right|\right)=6$. Therefore $|O|=3$, $\left|H_{\alpha}\right|=2$ and H is the symmetric group on O. As H is generated by transpositions fixing all points in $Y-x, H$ acts as the identity on $Y-x$ and the only centres are the three isomorphic pairs in O. Therefore $m(H, 3)=1$ which proves iii).

Secondly consider the case $\left|H_{\{x\}}\right|=1$. Suppose that k in H_{α} displaces β i.e. $k: \gamma \rightarrow \beta \rightarrow \delta$. As $\{\alpha, \beta, \gamma\}$ and $\{\alpha, \beta, \gamma\}^{k}$ both contain x we conclude that $\gamma=\delta$. Therefore $\left|H_{\alpha}\right| \leqq 2$ and similarly $\left|H_{\beta}\right| \leqq 2$. Consider the graph on the vertices $O_{\alpha} \cup O_{\beta}$ with edge set x^{H}. If $O_{\alpha} \neq O_{\beta}$ it is bipartite with respective degrees $d_{\alpha}=\left|H_{\alpha}\right|$ and $d_{\beta}=\left|H_{\beta}\right|$. This results in the components of type $1-3$. If $O_{\alpha}=O_{\beta}$, the degree is $d_{\alpha}=2 \cdot\left|H_{\alpha}\right|=2$ or 4. If $h=(\alpha, \beta, \gamma, \ldots, \delta) \ldots(\ldots)$ maps α onto β, then $\{\alpha, \beta, \delta\}$ and $\{\alpha . \beta, \delta\}^{h}$ both contain x. Therefore $\gamma=\delta$ and h has order 3. If $\left|H_{\alpha}\right|=1$, the edges $x,\{\alpha, \gamma\}$ and $\{\gamma, \beta\}$ form a component of the graph. This is type 4. If $\left|H_{\alpha}\right|=2$, there is some $k=(\alpha)(\beta, \xi) \ldots$ in H_{α} with $\xi \neq \gamma$ and ξ must be displaced by $h=(\alpha, \beta, \gamma)(\xi, \theta, \eta) \ldots$ From this one conludes that $k=(\alpha)(\beta, \xi)(\gamma, \theta)(\eta) \ldots$ The resulting images of x form a component of type 5. This completes the proof.

We suppose now that for any subset Y_{i} of Y some group H_{i} acting on Y_{i} is given. Denote this collection of groups by $\mathscr{H}=\left\{H_{i}\right\}$. Let x be a given set of size $k-1$ and $\mathscr{Y}=\{x ; y \mid x \subset y$ and $y \subseteq Y$ has size $k\}$. We say that \mathscr{Y} is a flag arrangement for \mathscr{H}, if the following is true: Whenever $A=\left\{x ; y_{1}, y_{2}, \ldots, y_{i}\right\} \subseteq \mathscr{Y}$, then A is an arrangement in $Y_{i}=y_{1} \cup y_{2} \cup \ldots \cup y_{i}$ for the group H_{i}. Two flag arrangements with centres x and x^{\prime} are isomorphic if $x^{h}=x^{\prime}$ for some $h \in H$, the group on Y. Let $m(\mathscr{H}, k)$ be the number non-isomorphic flag arrangements for \mathscr{H}.
III. The growth of the sequence $\boldsymbol{n}_{\boldsymbol{k}}$. Let G be a permutation group on a finite or infinite set S. If $X_{l}(G)=\left\{O_{1}, \ldots, O_{j}, \ldots\right\}$ are the orbits on l-element subsets we define $m_{j}(l, k)=m(\mathscr{H}, k)$ where \mathscr{H} is the collection of groups $G^{Y_{i}}$ induced by G on the subsets $Y_{t} \subseteq Y$ for some fixed Y in O_{J}. It is clear that the definition does not depend upon the choice of Y in O_{J}.

Theorem 3.1. Suppose that G acts $(k-1)$-fold homogeneously on a set S with a finite number of orbits on X_{k} for some k. If $l \geqq k$ let $t=l-k+1$. Then

$$
\binom{n_{k}}{t} \leqq \sum_{i=1, \ldots, n_{l}} m_{i}(l, k)
$$

Proof. Let $Q_{1}, \ldots, Q_{n_{k}}$ be all orbits of G on X_{k} and select some set x of size $k-1$. For any t distinct orbits Q_{1}, \ldots, Q_{t}, we select y_{i} in Q_{i} for $i=1, \ldots, t$ such that $x \subset y_{i}$. This is possible because G is $k-1$ homogeneous. Then $\mathscr{Y}=\left\{x ; y_{1}, \ldots, y_{t}\right\}$ is a flag arrangement for $\mathscr{H}=\left\{G^{Y_{i}} \mid Y_{i} \subseteq Y\right\}$ where $Y=y_{1} \cup y_{2} \cup \ldots \cup y_{t}$. This is a consequence of the fact that the y_{i} belong to distinct G-orbits on X_{k}. We label the collection Q_{1}, \ldots, Q_{t} by j if Y belongs to O_{J}. (Of course the label is not necessarily uniquely determined). In all we require $\left(\begin{array}{l}n_{k}\end{array}\right)$ labels where a label may be used several times.

Suppose therefore that also the sequence $Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots, Q_{t}^{\prime}$ obtains the label j. Then there are $y_{i}^{\prime} \supset x, y_{t}^{\prime} \in Q_{i}^{\prime}$ for $i=1, \ldots, t$ such that $Y^{\prime}=y_{1}^{\prime} \cup y_{2}^{\prime} \cup \ldots \cup y_{t}^{\prime}$ belongs to the same orbit as Y. Let therefore g in G be such that $Y^{\prime g}=Y$. Then $\left\{x ; y_{1}, \ldots, y_{t}\right\}$ and $\left\{x^{\prime g} ; y_{1}^{\prime g}, \ldots, y_{t}^{\prime g}\right\}$ are flag arrangements for \mathscr{H}. However, they are not isomorphic as $\left\{Q_{1}, \ldots, Q_{t}\right\} \neq\left\{Q_{1}^{\prime}, \ldots, Q_{t}^{\prime}\right\}$. Therefore a label j may be used at most $m_{j}(l, k)$ times. This gives the required inequality.

We note several consequences of the theorem:
Corollary 3.2. Let G be a transitive permutation group on a set S with a finite number n_{2} of orbits on X_{2}. For a given $l \geqq 3$ let $n_{l, 1}$ be the number of orbits O for which $G^{Y}=1$, $Y \in O$ and let $n_{l, 2}$ be the number of orbits O^{\prime} for which G^{Y} is an elementary abelian 2-group, $Y \in O^{\prime}$. Then $\binom{n_{2}}{-1} \leqq l \cdot n_{l, 1}+l / 2 \cdot n_{l, 2}$.

Corollary 3.3. Suppose that G acts doubly homogeneously on a set S with a finite number n_{3} of orbits on X_{3}. Let $n_{4, j}$ be the number of orbits O for which $\left|G^{Y}\right|=j, Y \in O$ and $j=1,2,3$, or 6 . Then $n_{3}\left(n_{3}-1\right) \leqq 12 \cdot n_{4,1}+6 \cdot n_{4,2}+2 \cdot\left(n_{4,3}+n_{4,6}\right)$.

We also note the following theorem which gives a bound for n_{2} if the action induced on subsets is sufficiently rich:

Corollary 3.4. Let G be transitive on a finite or infinite set S. Suppose there is a value l such that the following holds: Whenever $Y \subseteq S$ has size l and $s \in Y$ then there is a subset $Y^{\prime}, s \in Y^{\prime} \cong Y$ with the following properties a) $G^{Y^{\prime}} \neq 1$ and b) if $G^{Y^{\prime}}$ is an elementary abelian 2-group, then the orbit of s under $G^{Y^{\prime}}$ has length different from $\left|G^{Y^{\prime}}\right|$. Then $n_{2}<l-1$.

Proof of 3.2. If $G^{Y}=1$ on Y then $m_{i}(l, 2) \leqq l$ for the orbit containing Y and if G^{Y} is an elementary abelian 2-group on Y, then $m_{i}(l, k) \leqq l / 2$ for the orbit containing Y by theorem 2.1. The conclusion now follows from theorem 3.1.

Proof of 3.3. Using theorem 2.1 we get the bounds $m_{i}(4,3) \leqq 6$ if $G^{Y}=1$, $m_{i}(4,3) \leqq 3$ if $\left|G^{Y}\right|=2$ and $m_{i}(4,3) \leqq 1$ if $\left|G^{Y}\right|=3$ or 6 . In all other cases $m_{i}(4,3)=0$. The conclusion now follows from theorem 3.1.

Proof of 3.4. The hypothesis together with theorem 2.1 implies that no element of Y is the center of a flag arrangement. Therefore $m_{i}(l, 2)=0$ for all orbits and so $n_{2}<l-1$ by theorem 3.1.

A simple but useful fact on orbits on X_{k} and X_{l} in general is
Theorem 3.5. Let G be a permutation group on a finite or infinite set with finite numbers n_{k} and n_{l} of orbits on X_{k} and X_{l} for some $k<l$. Let $E=O_{1} \cup O_{2} \cup \ldots \cup O_{s}$ be a union of distinct orbits of G on X_{l} and let r_{i} denote the number of orbits of $G^{Y_{1}}$ on the k-element subsets of $Y_{i} \in O_{i}$. Suppose the following holds about E : If Q_{1} and Q_{2} are any given G-orbits on X_{k}, then there exist $x_{1}, y_{1}, \ldots, y_{t}, x_{2}$ such that $x_{1} \subset y_{1},\left|y_{i} \cap y_{t+1}\right| \geqq k$ for $i=1, \ldots, t-1, y_{t} \supset x_{2}$ with $x_{1} \in O_{1}, x_{2} \in O_{2}$ and $y_{i} \in E$. Then

$$
n_{k} \leqq \sum_{i=1 . . s}\binom{r_{i}}{2}+1 .
$$

Proof. We consider the graph whose vertices are the orbits $X_{k}(G)$. Two distinct orbits Q and Q^{\prime} are linked by an edge e if there are $x \in Q$ and $x^{\prime} \in Q^{\prime}$ such that $x \cup x^{\prime} \subseteq y \in E$. We label this edge by j if y belongs to O_{j}. The condition on E implies that this graph is connected. Therefore the total number of edges is at least $n_{k}-1$. On the other hand, a label j may be used at most $\left(\begin{array}{l}\binom{r}{2}\end{array}\right)$ times. This yields the inequality.

We conclude with the following inequalities obtained from a theorem on orbits in graphs [4].

Theorem 3.6. Let G be a permutation group on a finite set S. Suppose that X_{2} is a disjoint union $E_{1} \cup E_{2} \cup \ldots \cup E_{r}$ where each E_{i} is a union of G-orbits on X_{2}.
a) If each graph $\left(S, E_{i}\right),(i=1, \ldots, r)$, is connected then $n_{1} \leqq r^{-1} \cdot n_{2}+1$.
b) If every connected component of (S, E_{i}) contains a circular path of odd length for all $i=1, \ldots, r$, then $n_{1} \leqq r^{-1} \cdot n_{2}$.

Proof. Let Γ_{i} be the graph with vertices S and edge set E_{i}. Then G is a group of automorphisms of Γ_{i} and we denote the number of orbits of G on E_{i} by $\left|E_{i}(G)\right|$. By theorems 3.1 and 3.2 in [4] we have $n_{1} \leqq\left|E_{i}(G)\right|+1$ and as $n_{2}=\sum\left|E_{l}(G)\right|$ the assertion a) follows. If all connected components of Γ_{i} contain a cycle of odd length, then
$n_{1} \leqq\left|E_{i}(G)\right|$ as a consequence of theorem 2.1 and the proof of theorem 3.1 in [4]. This yields b).

References

[1] P. J. Cameron, Colour schemes. Ann. Discrete Math. 15, 81-95 (1982).
[2] J. SAxL, Permuting pairs and triples. Manuscript.
[3] J. Siemons, On partitions and permutation groups on unordered sets. Arch. Math. 38, 391-403 (1982).
[4] J. Siemons, Automorphism groups of graphs. Arch. Math. 41, 379-384 (1983).
Eingegangen am 30.1. 1984
Anschrift des Autors:
Johannes Siemons
Universita di Milano
Dipartimento di Matematica
"Federigo Enriques"
Via Saldini 50
20133 Milano, Italia
and
Rittnertstrasse 53
D-7500 Karlsruhe 41

[^0]: *) Questo lavoro è stato fatto mentre ero all'Università di Milano per un anno. Vorrei ringrazıare tutti per l'eccellente ospitalita.

