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Abstract—The reconstruction problem for permutations on n The value (1) was studied for the Hamming and Johnson
elements from their erroneous patterns which are distorted by graphs [2]. Both graphs are distance—regular and the first
transpositions is presented in this paper. It is shown that for is a Cayley graph. The problem of finding the value (1) is

any n > 3 an unknown permutation is uniquely reconstructible h licated f h hich t dist
from 4 distinct permutations at transposition distance at most much more complicated tor graphs which are not distance—

one from the unknown permutation. The transposition distance regular. Cayley graphs of this kind arise for instance on the
between two permutations is defined as the least number of symmetric group and the signed permutation group, when

transpositions needed to transform one into the other. The the reconstruction of permutations and signed permutations
proposed approach is based on the investigation of structural g congjdered for distortions by single reversal errors [3], [4].

properties of a corresponding Cayley graph. In the case of at . . ; o .
most two transposition errors it is shown that 2 (n — 2)(n + 1) In this paper we continue these investigations and consider

distinct erroneous patterns are required in order to reconstruct the reconstruction problem for permutations on a {Setn}
an unknown permutation. Similar results are obtained for two which are distorted by single transposition errors consisting
particular cases when permutations are distorted by given of swapping 1) any two elements dfl.n}; 2) any two
trg‘sﬁs\sﬂ'}k‘]?gf'a;hzfseo rersults tc‘é”f'”l‘h.some bounds for regular neighhoring elements dfL..n}; and 3) the symbal and; for
grap presented i this paper. any1l < j < n. The corresponding graphs are tremsposition
Cayley graph,the bubble—sort Cayley graptand the star
Cayley graph.They are regular but not distance—regular. We

Efficient reconstruction of arbitrary sequences was introducllyestigate the combinatorial propertlgs of these graphs and
Lesent the values (1) when = 1,2 in each case. Some

and investigated by Levenshtein for combinatorial chann

with errors of interest in coding theory such as substitution E)un_ds onN(F_, 1) and N(I', 2) for regular graphs are also
transpositions, deletions and insertions of symbols [1], [ _on5|dered. It is shown that. the bubble-sort and star_ Cayley
Sequences are considered as elements of a verteX séta raphs are examples for which these bounds are attained.
graphT" = (V, E) where an edg€z,y} € E is viewed as

the single error transforming into y € V.. One of the metric Il. DEFINITIONS, NOTATION, GENERAL RESULTS
problems which arises here is the problem of reconstructing Eg

unknown vertexz € V from a minimum number of verticesG t Ghbfhat ft';"t?dgrci.l:p alnd l ?eGa:jset of tggnleratog of
in the metric ballB,.(x) of radiusr centered at the vertex such that the identity elemento 0€es not belong

. g and such thals = S, whereS~! = {57! : s € S}. In the
x € V. Itis reduced to finding the value Cayley graph” = Cay(G, S) — (V. E) ;{/ertices corr}(;spond o
the elements of the group, i.€.= G, and edges correspond to

N(,r) = zyeg)f%f}f vty |Br(x) N Br(y)], @) multiplication on the right by generators, i.E. = {{g, gs} :

g € G,s € S}. Denote byd(x,y) the path distancebetween

since N(I',r) + 1 is the least number of distinct verticeshe verticesz andy in T, and by d(T') = max{d(z,y)
in the ball B.(z) around the unknown vertex which are z,y € V} the diameterof I". In other words, in a Cayley
sufficient to reconstruct: subject to the condition that atgraph the diameter is the maximum, ovee G, of the length
most r single errors have happened. As one can see, tbisa shortest expression fgras a product of generators. For
problem is based on considering metric balls in a graghe vertexz let S, (z) ={y €V : d(z,y) =r} andB,(z) =
but it differs from traditional packing and covering problemgy € V' : d(z,y) < r} be thesphereand theball of radius
in various ways. It is motivated by a transmission model centered atr, respectively. The verticeg € B,.(z) arer-
where information is realized in the presence of noise withoneighborsof the vertexz.
encoding or redundancy, and where the ability to reconstructAs mentioned in the Introduction, the value (1) was in-
a message (vertex) uniquely depends on having a sufficientistigated initially for distance-regular graphs such as the
large number of erroneous patterns of this message. Hamming and Johnson graphs. Let us recall that a simple
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connected grapi’ is distance—regularf there are integers spirit of distance regularity we put;(z) = |S;(z)| and define

bi,c; for i > 0 such that for any two vertices and y numbersc;(z,vy), b;(x,y) and a;(z,y) for any two vertices

at distanced(z,y) = ¢ there are precisely; neighbors of z € V andy € S;(z) such that

y in S;_1(x) and b; neighbors ofy in S;;1(x). Evidently

T is regular of valency k& = by, or k-regular. A k-regular ci(z,y) = {z € Si1 d(z,y) =1},

simple graphI' is strongly regular if there exist integers bi(z,y) = |{z € Siz1(z) : d(z,y) =1},

A and p such that every adjacent pair of vertices has

common neighbors, and every nonadjacent pair of vertices has ai(z,y) = {z € Si(z) : d(z,y) = 1}].

1 common neighbors. F thi B i th b ¢ trianal
The Hamming spac&]” consists of the” vectors of length "M ™IS ai(z,y) = ai(y,z) is the number of triangles

n over the alphabef0,1,...q — 1}, ¢ > 2. It is endowed over the edg€/z,y} andca(z,y) is the number of common

with the Hamming distancé whered(z, ) is the number of neighbors ofz € V' andy € Sy(x). Let

x)

(
(

coordinate positions in which andy differ. It can be viewed . .
. ) A=AT)= max ai(z,y) 4
as a graph’,, (¢) with vertex set given by the vector spatg zEV, yES1(x)
(where F, is the field ofq elements) whergz, y} is an edge (T —
of L,(q) if and only if d(x,y) = 1. This Hamming graph is n=pl) = :EEV,Hgl/aE),(SQ(x)cz(x7y). ®)

the Cayley graph on the additive gro{f’ when we take the
generator sef = {ze; : v € (Fy)*, 1 < i < n} where the
e; = (0,...,0,1,0,...0) are the standard basis vectorsgf.

Since |B,(z) N B:(y)| > 0 for x # y, z,y € V(T), if and
only if 1 <d(x,y) < 2r, we have

It was shown in [1], [2] that for any, > 2, ¢ > 2 andr > 1, N(T,r) = max N, (T, r) (6)
r—1 o
N(Ly(q),r) = qz (n - 1) (¢ —1)'. (2) WhereN,(I',r) = max{|B,(x) N B-(y)| : d(z,y) = s}. In
s t particular, N1 (T',1) = A+ 2 and Ny(T',1) = p so that

For the particular case = 2 the Hamming graphls(q) is N(T,1) = max(\ + 2, p). @)

the lattice graphover F,. This graph is strongly regular with

parameters = ¢>, k = 2(¢—1), A =¢—2, = 2, and from One can easily check that using this formula for the lattice

(2) we getN(Ly(q),1) = g and N (L (q),2) = ¢>. graph Lo (¢q) and the triangular grapfi’(n) we obtain again
For the integer parametens> ¢ > 1 the Johnson gra_pjﬂ;I the earlier formulas (2) and (3). Indeed, sinte- n — 2 and

is defined on the subskt = J* C F} consisting of all vectors p = 4 for T'(n),n > 4, we haveN(T'(n),1) = n from (7).

of Hamming weighte. On J” the Johnson distance is definedy the same reason we had&(Ls(q), 1) = ¢ since\ = ¢ —2

as half the (even) Hamming distance, and two vertigesare andy = 2 for the lattice graphLy(q).

joined by an edge if and only if they are at Johnson distance We have no general results faf(T", ) whenT is a regular

from each other. In generd]” is not a Cayley graph althoughgraph. The numbers;(z,y) and b;(z,y) usually depend

the notion of errors being represented by edges makes seRey € Si(z) and this causes difficulties when searching

all the same. In particular, two vertices are at distanéem for general estimates oV (T',r). However, some bounds on

each other if and only if one is obtained from the other by (I',1) and N(T', 2) were obtained in [5]. Here it is assumed

the interchange of two coordinate positions. In [1], [2] it wathatl is connectedi-regular of diameted(I") > 2 with v > 4

shown that vertices and parametets< A < k — 2, 1 < u < k, where
2<k<wv-—2.
—/e—1\/n-—e—1\ 1
N(J},r)= nz (e ) ) < ) ) — () Theorem 1:For anyk-regular graph® we have
) 7 7 7+
1=0
1
foranyn > 2, e > 1 andr > 1. In the particular case = 2 N(T,1) < 5(” +A). (8)

andn > 4 the Johnson graplyy is the triangular graph . . . 1
T(n). As vertices it has the 2-element subsets of.eset and This theorem is proved by checking thiat 2 < 5 (v + A) and

i . . . .1 < L(v+)). The first inequality takes place singe< v — 2
— 2 =
two vertices are adjacent if and only if they are né)&(jlgjomgnd)\ < k — 2. Moreover, there is equality only i — v — 4

This graph is strongly regular with parameters= — * andk = v — 2. The second inequality is true since counting
k=2(n—2), A =n=2 u =4, and from (3) we obtain edges betweels; (x) and Sy(z) for anyz € V we have
N(T'(n),1) = n and N(T(n), 2) = 2= g ! 2 y

These Mo results were the f|rst analytl_c form_ulas_for the Z (k—1—ai(z,y) = Z eo(z, 2).
reconstruction problem we are interested in. Their uniformity
depends on the fact that these graphs are distance—regular.
What then are the general results for simple graphs, regufaom (4), (5) and the fact that:(xz) < v — k — 1 we get
graphs and Cayley graphs? We start with a few observatiang — 1 — \) < pko(x) < u(v — k — 1) with equality if and
from [5] for any connected simple graplis= (V, E). In the only if T is strongly regular. Let us note here that the equality

y€S1(x) 2€82(x)



k(k—1—X) = u(v —k — 1) is well-known for strongly S2\ (SUS°) as a product of two elements 6fand ) is the
regular graphs. From this and the fact thak p < k we maximum number of representations of an element ias a
havek —1— X <v—k—1and henceu < k < $(v+ ) product of two elements of, ie.

is valid for any regular graplh'. By taking into account these

two inequalities for\ andy we get (8) from (7). Moreover, (8) D) = nax | {(sis;) € §% s = sisj} |,

is attained on the strongly regulapartite grath,th 5 With ‘

t(k— \) vertices partitioned inte > 2 parts, where = 2:=2 (T)=  max |{(sis;) € 5% : 5s=s;5;}].

is an integer, and with edges connecting any two vertices of SESF\(SUSY)

different parts. This lemma allows us to findv(T", 1) from (7) for a general
Theorem 2:For anyk-regular graph® we have Cayley graph. The results for estimating the valiéd", r)

for small r in Cayley graphs on the symmetric grodjgm,,
No(T',2) > <k —1-2(u—1)(N(T, 1) — 2)) +2. (9) will be presented in the next section when the generatof set
4 consists of transpositions.

In proving (9) the linear programming problem arises for the

vertex subset/ = (", By(z)\ {z,y}, wherez,y € V with I1l. THE RECONSTRUCTION OF PERMUTATIONS INCAYLEY
- =1 2 9 ) )

d(z,y) =2 andz;, i = 1,..., u, are the vertices at distance 1 GRAPHS GENERATED BY TRANSPOSITIONS

from bothz andy. The task is to minimizél/| = >~} uy, for

: e . e Let be the symmetric group on symbols. We write
nonnegative numbers;, satisfying the following conditions Sy y group y

a permutationr in one-line notation ags = [y, g, ..., Ty)
I wherer; = = (i) for everyi € {1,...,n}.
Zuhh2 > u(k —1), For the transposition Cayley graptbym,(T) on Sym,,
h=1 the generator set consists of all transpositidhs= {t,, €
B ) Sym,, 1 < i< j < n}, |T| = (g) , where ti intgr-
ZUhh( ) < <ﬂ> (N(G,1) - 2), changes positions and ; when multiplied on the right, i.e.,
he1 2 2 [~'~77Ti7~~-77rj7~'~]'ti,j:[~'~77Tj7'~~77ri7~~~]~ For z, y €
Sym,, the distancel(z, y) is the least number of transpositions
wherew;, = |U(h)|/h, and U (h) is the set of vertices i/ t1, ...tr such thate - t,-...-t, =y, or ty-...-.t, =2~ 1-y. As
belonging toh setsBy(z;), i = 1, ..., pu. any k-cycle can be written as a productjof- 1 transpositions
The details of the proof of this theorem as well as th@ut no fewer), the diameter ofym,,(T) is (n — 1). The
proofs of most other results in this article can be found in [5braph is bipartite since any edge joins an even permutation
From the last theorem one can immediately get the following an odd permutation. The symmetry propertiessgfn,, (T)

corollaries. have been discussed in [6]. The graph is edge—transitive but
Corollary 1: For ak-regular graph’ not distance—regular and hence not distance—transitive. Let us

() if p=1,thenNo(I,2) >k + 1 ’ recall, that a simple connected graphs distance—transitive

(i) if 1= 2 and N(T 1; 5 then}\fg(l“ 2) > 2k; if, for any two arbitrary—chosen pairs of verticés, y) and

(iii) if 4o =3 andN(I',1) = 3, then N5(T',2) > 3k — 5. («',y') at the same distanc&(x,y) = d(a",y’), there is an

automorphismo of T' satisfyingo(z) = 2’ ando(y) = ¢/,
Corollary 2: Let I' be ak-regular graph without triangles where an automorphism is a permutation of the vertex—set
or pentagons, with: > 2 andk > 1+ 3(u — 1) Then of a graphl" provided that{z,y} is an edge of’ if and only
No(T,2) > Ny(T, 2). (10) if {q(:c),a(y)} is an edge.of. All thesg properties and other
basic facts are collected in the following statements.
Actually, sincel’ does not contain triangles or pentagons we

have Ny (T, 2) = 2k and N(I', 1) = x by (7) sinceA = 0 and _Le€MMa 2:The transposition grapBym,(T), n > 3,
1> 2. Using (9) we get (i) is a connected blpartltég)-regular graph of orden! and

diameter(n — 1);

No(T,2) =2k > (u—2)(k —1— §(u —1Dp) >0, (||) i_s not distance—regular and henc_e not disfcance—transitive;
4 (iii) it does not contain subgraphs isomorphic &, 4, and
and finally we obtain (10). each of its vertices belongs t(d;) subgraphs isomorphic to

In the remainder of this section it is assumed that= K ;.
Cay(G, S) is a Cayley graph on the group for the generator . o . .
setS. Let us putS® — {e} and setS’ — S5~ Moreover, by _HereKM is the complete_ bipartite graph withandq vertices
AT - . in the two parts, respectively.
vertex—transitivity it is sufficient to consider only the spheres
and balls with centee so thatS; = S;(e). Theorem 3:For any n > 3 we haveN (Sym,,(T),1) = 3.

Lemma 1:For any Cayley grapli' on the group’ and for This means that any unknown permutation is uniquely recon-
i > 0 we haveS; = S\ (S""1uS—2U...uSY). In particular, structible from 4 distinct permutations at transposition distance
1 is the maximum number of representations of an elementahmost one from the unknown permutation. The proof of these



statements is based on considering a permutationSym,, in - and cz(7) = 2 if ct(r) = 1"7%22. From these and (5)

cycle notation, witrcycle typect () = 171272, nf» whereh; we have u(Sym,(T)) = 3, and therefore, by (7) we get

is the number of cycles of length In particular)"" ih; = n. Theorem 3. Moreover, there are no subgraphs isomorphic to

The permutationt can be also presented as a product of A, 4 in Sym,,(T)) sinceu(Sym,,(T)) = 3. The number(;)

least number of transpositions. Each such product represesftsubgraphs isomorphic t&3 3 and havinge as one of its

a shortest path iSym,(T) from e to 7. The number of vertices is obtained from (12) for any € (1"~33)¢. By

such paths was obtained in [7]. This result is based on Oreisrtex—transitivity the same holds for any vertexSgm.,, (1)

theorem on the number of trees withlabeled vertices and (see condition (iii) in Lemma 2).

presented by the following theorem. So, any unknown permutation is uniquely reconstructible

Theorem 4:[7] Let = € Sym., have cycle typect(r) — from 4 distinct permutations.at transposition Qistance at most

1h19h2 _ph | consisting szg;l h; = n — i cycles where from the unknown permutat|or_1..As the following shows, in the
ase of at most two transposition errors the reconstruction of

1 < i < n—1. Then the number of distinct ways to exprestgh tati . its distingeneiahb
« as a product of transpositions is equal to e permutationr requires many more its distingt-neighbors.

n ji-2 h; Theorem 5:For n > 3 we have
i ( ‘ ) ;
T:[ G =1 N(Sym(T),2) = 5(n = 2)(n +1). (13)

The following simple fact about multiplication by a transpoThe details of the proof can be found in [5]. One important
sition ¢;; is essential: if a single cycle containingand j ingredient in the proof is the following observation which
is multiplied by t; ; then the resulting product consists Otglies on the fact that conjugation @ = Sym, on itself

vice versa when two cycles each containing one ioénd j

are multiplied by, ; then the product consists of a single Lemma 45Forhan}3/7r Ghsiél < i < n—1 the number
cycle. It follows from this thatS; := S;(e), wheree is Of vertices in(1"12%..n")™ at a given distance fromr
the identity permutation, consists of all permutations havirfigPends only on the conjugacy class to whichelongs.

exactly (n—1) disjoint cycles when thé-cycles are included.  To prove Theorem 5 it is therefore sufficient to consider the
Furthermore, the number of edges from a permutatianS;  numbers of vertices in all subsetsB§(e) at minimal distance
leading to a vertex inf;_; corresponds to the distinct waysat most 2 from a given vertex € S;, 1 < i < 4. By (11) we
of splitting one of the cycles inr into two. In addition, as hayves, = (1"~221)%, 8§, = (1"331)¢ U (1"122)C, 55 =
the elements inS; have determinan{—1)" we must have (1n—441)G (1n=52131)Gy (1n-62%)C g, = (175 51)FU
that a;(m) := ai(m,e) = 0. We collect these facts in the (1n-69141)G j (176 32)C | (1n-T2231)Gy (1n—824)C,
following lemma where we abbreviatg(r) := c;(7,e) and By direct analysis and counting it can be shown easily that
bi(m) == bi(m, e). Ny(Sym,(T),2) = 20 for n > 5, N3(Sym,(T),2) = 12
Lemma 3:In the transposition graptSym.(T) the sets for n > 4, Na(Sym,(T),2) = 3(n — 2)(n + 1) and
S;, 1 <i<n—1,are the permutations consisting @f — i) N1(Symn(T),2) =n(n—1) for all n > 3. From these values
disjoint cycles, counting also-cycles. For anyr € S; with ~We conclude (13) by using (6).

cycle typect(r) = 1M2h2 _nhn we havea;(r) = 0 and _ Th_e statement_s of Thgorem 5 and Corollary 2 are general-
ized in the following conjecture.
ci(m) = 1 ijhj —n |, bi(r) = Ll thj ) Conjecture 1:For anyr € (1334 for anyr > 1 and
2\ 2 ; > 2
j=1 j=1 n > 2r +1 we have

In particular, sincez;(m) =0 forall 1 <i<n—1, we have  N(Sym,(T),r) = No(Symn(T),2) = |B.(I) N B.(x)|.

from this lemma and (4) thak(Sym,(T)) = 0. Moreover, _ )
it is well-known that two permutations are conjugate by alOW €t us consider théubble-sort graphSym,,(t). This

element ofG := Sym,, if and only if they have the same!S the Cayley graph on the symmetric grosgm, for the
cycle type. If(1712"2...n»)% denotes the conjugacy class oenerator set = {t;;y, € Symm_ 1 << n}, |t| =
an element of cycle typ#"12>...n then it is shown in [5] " — 1: Thesebubble-sort transpositionare 2-cycles #; ;41
thatS;, 1 <i <n — 1, is the disjoint union interchanging’ andi + 1 and determine the graph distance in
v ’ . G Sym,(t) in the usual way. It is known that the diameter of
Si = U (172" nf)S (1) Sym(t) is ().

hit+hot +hp=n—i
Fhatt Lemma 5: The bubble—sort grap8ym,,(t), n > 3,

(i) is a connected bipartitén — 1)-regular graph of orden!
) (12) and diameter(?) ;
10 hy 1202 ol -l by (ii) it does not contain subgraphs isomorphick@ s;
Hence, from (11) we havé, = (1"~334)¢ U (1"~*2%)¢  (iii) each of its vertices belongs t0",%),n > 4, subgraphs
and then by Lemma 3 we get(n) = 3 if ct(r) = 1"33', isomorphic toKj ».

where

|(172h2 ol )€ = "




The symmetry properties of the bubble—sort graph were dis-Theorem 7:For anyn > 4 we have
cussed in [6] where it was shown that this graph is no
distance-regular. As it is bipartite there are no triangles an%f(sym"(sw’ 1)=2 and N(Syma(st),2) =2(n—1).
hence A\(Sym,,(t)) = 0. If an elementr € S(e) has at  Thus, in the bubble-sort and star Cayley graphs any un-
least two neighborg; ;11 # t;,;4+1 in Si(e) then neces- known permutationr is uniquely reconstructible from 3 dis-
sarily t;it1tj 41 = ® = t;j+1tii+1 With {j,7 + 1} and tinct 1-neighbors ofr. Similarly, for the unique reconstruction
{i,7 + 1} disjoint. It suffices to verify this for permutationsof = from neighbors at distance at mo8t we see that
on 4 letters. Hence there are at most two such neighbors amay 2n — 1 distinct 2-neighbors ofr are sufficient. These
so u(Symy(t)) = 2. It can be also verified that we havetwo graphs are examples for which the inequalfty) in
Ny(Symy(t),2) = 4 for n > 5, N3(Symy(t),2) = 2 for Corollary 1 is attained.

n > 4, No(Symny(t),2) = N1(Symn,(t),2) = 2(n — 1) for

n > 3. From all these and by (6) and (7) we get the following
theorem.

ACKNOWLEDGMENT

The research was partially supported by the RFBR grant 06—

Theorem 6:For anyn > 3 we have 01-00694.

N(Sym,(t),1) =2 and N(Sym,(t),2) =2(n—1).

Almost the same results appear for tear Cayley graph REFERENCES

Sym,(st) generated by therefix—transpositiondrom the [1] V. I. Levenshtein, “Reconstructing objects from a minimal number of

set st = {(171') € Sym,, 1 < i < n}, |st| = n—1. distorted patter_ns,Dok!a_dy Mathematic_sVoI. 55, pp. 417-420, 1997.

It is one of the most investiaated araphs in the theor é%] V. I. Levenshtein, “Efficient reconstruction of sequencdEEE Trans.

\ _ stig grapns € theory OF inform. Theory Vol. 47, pp. 2-22, 2001.

interconnection networks since many parallel algorithms ag E. V. Konstantinova, “Reconstruction of permutatior&dyreuther Math-

efficiently mapped on the star Cayley graph. ematische Schriftewol. 73, pp. 213-227, 2005. _ _
[4] E. V. Konstantinova, “Reconstruction of singed permutations from their

Lemma 6:[8] The star Cayley graplym.,,(st),n > 3, is distorted patterns,” In:Proceedings of the 2005 IEEE International
y Symposium on Information Theordelaide, Australia, 4-9 September

a connected bipartitén — 1)-regular graph of orden! with 2005, pp. 474-477.
diameterL@J. [5] E. V. Konstantinova, V. I. Levenshtein, J. Siemons, “Reconstructing

) . elements of groups,” to appear.
The star Cayley graptbym,(st) is not distance—regular [6] S. Lakshmivarahan, J.S. Jwo, S.K. Dhall, “Symmetry in interconnection

for n > 4 [6] and has no cycles of lengths of 3, 4, 5 or 7. networks based on Cayley graphs of permutation groups: a survey,”

HenceA(Symy,(st)) = 0 and u(Sym.,(st)) = 1. Moreover,
it is easy to verify thatN,(Sym,(st),2) = 4 for n > 5,
N3 (Symy,(st),2) =4 for n > 4, No(Symy,(st),2) = 2(n —
1) for n > 5 and Ny (Symy,(st),2) = 2(n — 1) for n > 4.

From these properties and by (6) and (7) we get the following

theorem.

Parallel Comput.Vol. 19 pp. 361-407, 1993.

[7] J. Denes, “Representation of a permutation as the product of a minimal

number of transpositions, and its connection with the theory of graphs,”
Publ. Math. Institute Hung. Acad. Séiol. 4 pp. 63-70, 1959.

S. B. Akers, B. Krishnamurthy, “A group—theoretic model for symmetric
interconnection networks'lEEE Trans. ComputVol. 38 pp. 555-566,
1989.



