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ABSTRACT

The automorphism group of a finite incidence structure acts as permutation
groups on the points and on the blocks of the structure. We view these actions as
linear representations and observe that they are intertwined by the incidence relation.
Most commonly the intertwining is of maximal linear rank, so that the representation
on points appears as a subrepresentation of the action of the blocks. The paper
investigates various consequences of this fact.

1. INTRODUCTION

An incidence structure consists of a triple & = (2, %; #), where & and
4 are disjoint sets and an incidence relation # C # X %. The elements of #
are called points, and the elements of % are called blocks. In this note we
are only concerned with finite structures, that is, both & and % are finite
sets.

We view automorphisms of & as pairs of permutations of # and %
which preserve incidence. This note is concerned with the interconnection
between these two actions of an automorphism group.

It is very useful to regard both permutation representations as linear
representations of the automorphism group. This view has also been taken by
Cameron and Liebler [5] and Ott [19]. Incidence preservation can be seen as
an intertwining relation between the linear representations of the automor-
phism group. This important observation was first used in Brauer’s paper [2];
its relevance to incidence structures, however, went largely unnoticed. See
also Wagner’s review [25].
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In Theorem 3.2 we show that the linear representation on points is a
subrepresentation of the linear representation on blocks if an incidence
matrix for & —the intertwining matrix for the two representations—has
linear rank equal to the number of points. This result has been mentioned
before by Kantor [11] and Lehrer [16] in the context of block transitive
designs and flag-transitive incidence structures related to classical groups.
There it is also shown that these structures satisfy the assumption of maximal-
ity of the incidence rank, It is worth noticing that the implication of Theorem
3.2 plays a role in the number of questions related to the representation
theory of the symmetric group. We also mention a result of O’Nan [18] about
sharply l-transitive sets in a permutation group. There it is shown that a
containment relation between linear representations prohibits the existence of
a sharply l-transitive sets of permutations on blocks unless the number of
points divides the number of blocks.

Theorems 3.1 and 3.2 are obtained in connection with certain standard
decompositions of the point and the block modules associated to &. These in
turn are due to spectral decompositions, a concept arising from graph theory.
Steps towards a combinational interpretation of these decompositions are
taken in [23].

The maximality of incidence rank holds for many general classes of
incidence structures. At the end of Section 3 we give a short survey on results
to this effect. At the same time it becomes apparent that a unified treatment
of this question is still missing.

In the fourth section we give applications concerning the number of
orbits and the rank for the actions on points and blocks. Parts of these results
have been stated before {11, 16], usually under unnecessarily restrictive
conditions. At the end of the paper we consider a generalization of these
concepts with regard to the induced actions on two subgroups of a group.

2. PRELIMINARIES

Let #,,..., £, be the points and 4,,..., 4, the blocks of an incidence -
structure ¥ = (%, %; #). The incidence relation .# can be presented as a
0-1 matrix S, with rows indexed by points and columns indexed by blocks,
such that S/, ¢=1if and only if £ is incident with £. An automorphism of &
is a pair of permutations g = (g4, g4) such that 4 is incident with ¢ if and
only if g,(£) is incident with g4(£), for all 4 in 2 and for all £ in B. We
represent automorphisms as pairs of permutation matrices (G, H), of size
v X v and w X w respectively and in correspondence to the original arrange-
ment of the elements of .. In terms of the incidence matrix a pair of
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permutation matrices represents an automorphism if and only if
GS=SH. (2.1)

We shall view this as an intertwining relation (see Section 43 in [7]) between
the point and block action of automorphisms. A fundamental observation in
this respect is Brauer’s permutation lemma [2]:

Lemma 2.1. If S is a nonsingular square matrix and if G, H are
permutation matrices with GS = SH, then G and H represent similar permu-
tations.

Let F be a field. Then an automorphism g = (G, H) of & acts linearly
on F? and on F*, the point module and the block module associated to .
The characters of these representations are

7(g) = trace(G),
(2.2)

B(g) = trace(H),

which count the number of elements fixed by g.

In general, when @ and y are characters of a group ¥, we denote their
inner product by (@,{)y=(1/|%)X,c49(g) Y(g™1). The numbers of
@-orbits on points and blocks are n(¥, #) = (m,1)y and n(9, Z) = (B, 1)g.
The permutation ranks for the two actions of ¢ are the numbers r(¥4, #)
and (%, %) of %orbits on #X P and % X B, respectively. Thus
G, P)= (w2 1)y =(m,7)y and 1(%, B)=(B%1)g= (B, B)y- Note that
in the transitive case this agrees with the usual definition of the permutation
rank in [26]. Finally, if A is a matrix over a field F, then rank ;(A) denotes
the linear rank of A over F.

3. THE INTERTWINING AND DECOMPOSITION OF THE POINT
AND BLOCK MODULES

Let S be the incidence matrix of ., and F some field. Hence we have
two incidence maps S: F* —» F® and ST: F° —» F* between the point and
the block module of % over F. We are concerned with the following
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hypothesis:

H1: The characteristic polynomial of SST splits into linear factors over
F. Furthermore, the algebraic multiplicity of every eigenvalue is the same as
its geometric multiplicity.

Under this assumption the collection of eigenvalues of SS” is the spec-
trum of % over F, denoted by the spec(#). Note that the field of real
numbers certainly satisfies H1, as SS7 is self-adjoint. Here spectral values are
nonnegative, as SS7 is positive semidefinite.

In the case of graphs our definition of a spectrum differs slightly from the
usual one where a spectrum is formed by the eigenvalues of the adjacency
matrix. The book of Chetcovi¢, Doob, and Sachs [6] is an excellent reference
on graph spectra.

For an eigenvalue A in spec(%), let E, be the corresponding eigenspace
of SST: F® — F°®, Similarly, let E{ denote the eigenspace of S'S: F** - F*
for the same A.

THEOREM 3.1. Let & =(P,&: F#) be a finite incidence structure, and
suppose that F is a field for which H1 holds. Let ¥ be a group of
automorphisms of &. Then E, and E} are -invariant modules for every A in
spec(¥) with a %isomorphism ST:E, & E{ when X #0. Furthermore,
F =@ E, and & E{ C F* are %invariant decomposi-
tions.

A € spec(¥) A € spec(S°)

Proof. Let x be in E,, and let (G, H) be an automorphism. Then
SSTGx = SHS™x = GSS™x = A-Gx by (2.1), so that E, is G-invariant. The
same argument applies to E. Since ST(SST)x = AS™x, the map S” takes E,
to E{, even injectively if A #0. For the same reason S: E;— E, is an
injection when A # 0, so that E, = E{. Since both maps are ¥maps, by (2.1),
this is a %isomorphism. H1 implies that F*= @ ,E,. This decomposition is
invariant under ¢ by the first part of the proof. The same applies to & ,Ej
in F*. |

TueoreMm 3.2.  Under the assumption of Theorem 3.1, let 7 and B be the
permutation characters of 9 on the elements of &. Then

A € spec(&)
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where m, is the character of 9 acting on E,. If F is the real field then

B= ) 7\ + Bos

0 + A € spec(&)

where B, is the character of ¥ in its action on the kernel of S: F* — F®. If in
addition all values in spec(¥) are distinct, then & acts on the points of &
as an elementary abelian 2-group.

We note that the last part of this theorem and variations of it in the case
of graphs are the theorems of Babai, Chao, Doob, Mowshowitz, and Sachs;
see Theorems 5.1, 5.8-5.11 in [6].

Proof. The first part follows directly from Theorem 3.1. So suppose that
F=R. Then F*= GBFE:, where p is an eigenvalue of STS and Erx the
corresponding eigenspace, since STS is self-adjoint. But S7Sx = pu-x implies
that SS7(Sx) = u-(Sx), so that p belongs to spec(&) unless p = 0. Therefore
F*=@®,  E{+E} where Ef =kernel(S'S). The result then follows from
Theorem 3.1 once we have shown that E} = kernel(S). Clearly kernel(S) C
Eg. Thus suppose $7Sx = 0. This implies that (x"ST)(Sx) =0, so that Sx =0
and hence E& C kernel(S). Finally suppose that every eigenvalue of SST has
multiplicity one. In this case dim E,=1 for A € spec(¥). Let y be in E,
and (G, H) € 9. Then Gy belongs to E,, so that Gy = c-y, where c is a unit
in F. Thus ¢ = +1 and hence Z acts on the points of & as an elementary
abelian 2-group. |

In the next theorem no assumption about the field is made.

TueoreM 3.3. Let & be a finite incidence structure, F some field and
& a group of automorphisms of &. Let further m and B be the permutation
characters of ¥ on the points and blocks of &. We assume either that (i)
rank -(S) = v and |%|#0 in F, or (ii) rank (SST)=v. Then 7 =B ifv=w
or B=m+ ¢ if v<w, where y is the character of 4 on the kernel of
S:F*—> F®.

Proof. The first hypothesis implies that there is some w X v matrix S’
over F for which $$’=1. Let §:=|¢|"'LHS'G™", where the sum extends
over all automorphisms (G, H) in 4. The intertwining relation (2.1) implies
that SS=1 and SG = HS for all (G, H) in 4.

_ The second hypothesis implies that SST is invertible, so that we may put
§ = S7(SST)~L. Thus S§ = 1. Transposing (2.1), we have SG = S(S87)7'G =
ST(GTSST) =1 =ST(SSTGT) 1 =STG(SST) ' = HS"(SST)~!= HS. Therefore
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SS=1 and SG = HS in both cases. If v = w, then also SS=1, so that G is
conjugate to H and hence 7 = . Let therefore v < w and put ¢(G, H) =
(1 —SS)H. It is easy to see that ¢(G, H) leaves the kernel of S invariant.
Also, ¢ is a linear representation of ¥ since ¢(G'G, H'H)— ¢(G’, H')-
¢(G, H) = — SSH'SSH + H'SSH = (H'SS — H'SSSS)H = H'(SS — SS)H = 0.
Its character is (G, H) = trace((1 — SS)H) = trace(H) — trace(SHS) =
trace( H) — trace(G) = B(G, H) — #(G, H). In particular ¢(1) = w — v is the
dimension of kernel(S), so that ¢ is the representation of ¢ on this subspace.
|

ReEMARK (The linear rank of incidence). In Theorem 3.3 we have as-
sumed that rank -(S)=1v or rank(SST)=v. We note first that the two
conditions are equivalent in characteristic zero; see the proof of Theorem 3.2.
The assumption rank (S)= v holds for many general classes of incidence
structures. Ideally one would hope to have configurational conditions which
guarantee this property. Presently only case by case analysis is available. We
give a list (not complete) of structures for which rank(S) = v in characteristic
zero: designs (by standard argument); linear spaces [3]; subspace incidence,
classical groups [12, 16, 23]; subset incidence, lattices [12, 14, 21, 23];
matroids [14]; nonbipartite graphs [22]. For a discussion of the rank of
designs in prime characteristic see [9, 10, 13, 24]. There are instances where
rank(S) < v. These include bipartite graphs (rank(S) = v —1; see [22]) and
generalized 2n-gons (see Section 1.9 in [20]).

4. ORBITS AND RANK

In this section let ¥ be an incidence structure for which

H2: The linear rank of % in characteristic zero is v.

This is the condition of Theorem 3.2, so that the permutation characters of an
automorphism group ¥ are of the form 7 and 8 =7 + . Let (%) be the
number of %orbits on flags (i.e. incident point-block pairs), and let a(%) be
the number of orbits on anti-flags (i.e. nonincident point-block pairs). We
first state an explicit version of a rather well-known result [1]:

THEOREM 4.1. Let & be a finite incidence structure for which H2 holds
with an automorphism group 9. Then n(9, B)— n(9, P)={(Y,1)¢ >0,
where Y is as in Theorem 3.3.
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The proof is immediate. One may wonder about an equivalent theorem in
the case of infinite structures. Many examples show that n(¥, ) < n(¥9, %)
may not hold, even if the incidence map F# — FZ is injective; see also
Miurer’s paper [17).

Tueorem 4.2. Let & be a finite incidence structure for which H2 holds
with an automorphism group 9. Then 1(9, P)< fl9)+ a(9)< (9, %)
Furthermore, the following are equivalent:

(i) v=w,
(i) A9)+a(9)=1r(9,%#), and
(iii) 7Y, P)=r(9,%B).

Finally, (%)+ a(9)=1(9,P) if and only if (7, B — 7)4=0.

The inequality 7(¥, #) < (9, #) in the case of block transitive designs is
given in [11).

Proof. By Theorem 3.3 we can assume that 8 = 7 + ¢, where ¢ is some
character of 4. The number of Zorbits on # X & is (7-8,1)g = (7, B)g =
A%)+ a(%). The theorem then follows from the equation (¥, #)=

(B% 1)y = (B, B)y = (m, .3>9+<4’ BYg = (7, )y +2{¢¥, T)g + (¥, \P>g
and the fact that (%, )= (72, 1)y = (7, 7)g.

As an illustration of this theorem we derive a generalization of a result
due to Dembowski, Theorem 2.3.4 in [8].

Tueorem 4.3. Let & = (P, &; F) be an incidence structure with v < w
such that an incidence matrix for & is not the identity or the matrix of all
ones. If & admits an automorphism group ¥ acting doubly transitively on
B, then 9 acts doubly transitively on @, and & is a symmetric (v =w)
2-design. Furthermore ¥ is transitive on both flags and antiflags.

Proof. Since % acts doubly transitively on %, the character 8 has the
form 1+ y, where v is an irreducible character of ¥. We regard the blocks
of & for the moment as “points” in the structure dual to % and apply the
first part of Theorem 3.2. It follows that STS has two eigenvalues i, and p,
of respective multiplicities 1 and w — 1. The Frobenius-Perron theorem and
the nondegeneracy condition in the theorem then imply that po >p,; >0, so
that rank(S7S) = w. Since v < w, it follows that in fact v = w = rank(SS").

2=1(9,%)=f(9)+a(9)=1r(9,#) by Theorem 4.2, ? acts doubly
transitively on the points of &%, so that & is a 2-design and ¥ acts
transitively on both flags and antiflags. u
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We conclude with an application of Theorem 4.2 to the relationship
between the orbits of a subgroup in a permutation group and the rank of the

group.

TuEOREM 4.4. Let (9,Q) be a finite permutation group with a sub-
group . If Q,,...,Q, are the orbits of # on Q, let ¢ be some union of the
Qs and put B ={£8 g€ G ). Assume that H2 holds for (2, #; € ). Then
& is transitive and 1(9,Q) < s. H2 holds in particular for |£|=2 <|Q| and
(9, Q) primitive.

Proof. As 9 is transitive on 4%, it follows from Theorem 4.1 that ¢ is
transitive on . This at the same time implies that a(¥)+ f(¥) is the
number of orbits on © of the stabilizer of £. This group contains J#, and so
the required inequality follows from Theorem 4.2. If |£|=2, we regard
(R, #; €) as an undirected graph. The connected components of this graph
would form blocks of imprimitivity, so that it must be connected. For the
same reason this graph is not bipartite. In [22] it is shown that (2, Z; €)
then satisfies H2. |

The assumption of primitivity is essential: elementary abelian 2-groups
and certain dihedral groups violate the theorem. We conjecture, however,
that for primitive groups the condition |£| < 2 can be relaxed considerably.

5. A GENERALIZATION

Let ¢ be a finite group with subgroups 5# and ¢ such that |¥9: 5| <
| : | Let 2 be the collection of cosets of # in 4, and # the collection of
cosets of ) in 4. We suppose that ¢ acts faithfully on & and # with
induced characters 7 =1,° and 8=1,7 as before. Once # and & are
ordered in some fashion, every %orbit on £ X #Z in an obvious way can be
represented as a 0-1 matrix S; with i=1,...,{m, B)y. These matrices are
disjoint and hence in particular linearly independent. It follows therefore (see
Section 43.11 in [7]) that every intertwining matrix for the actions of 4 on &
and Z can be written as a linear combination of the S,. In particular:

ProrosiTioN 5.1.  Let 9 be a group of automorphisms of some incidence
structure & = (P, B; F) with P and B given as above. Then an incidence
matrix for & is the sum of some of the S,.



FINITE INCIDENCE STRUCTURES 33

Let ¢ be the largest common constituent character of 7 and B, ie.
(m—y, B—Y)g=0. It follows from Theorem 3.2 that the rank of any
incidence matrix is bounded by the degree of . It is an open problem to
decide whether this bound can always be attained. In particular, if 7 =1,
does there always exist an incidence matrix of rank m(1)?
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