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ABSTRACT

The following is proved: if G is a doubly homogeneous permutation group of degree
n not contained in the affine group of the same degree, then G contains a normal simple
subgroup H so that the number of H-orbits on unordered pairs of points divides d(n).
The integer function d(n) is defined in the paper and is equal to 1 for a very large
proportion of the composite integers. The theorem throws some light onto the peculiar
representation of PSL (2, 8) as smallest ‘Ree group’ on 28 points. This group has
d(28) = 3 orbits on unordered pairs. A further result is the following: let G and H be
permutation groups of degree n and let a be a permutation of order 2 or 3 on the same
set fixing exactly f points; suppose that G is doubly homogeneous normalizing H and
that }{G = a¥; then the number of H-orbits on unordered pairs of points divides both n-1
and f-1. -

1. Introduction

Let G be a doubly homogeneous group on a finite set S of n points. Suppose G is
not a subgroup of the affine group AI'L(m, q) with n= g™ We prove the following
theorem.

Theorem 1. G contains q unique simple normal subgroup H. H is doubly homogeneous
if din)=1.

Here the function d(n) is defined as the greatest common divisor of {n — 1, ¢,(n) | p
is a prime dividing n}. For a prime p#2, c,(n) is the least common multiple of
{(¢F — 1)/2 | P divides n} and for p = 2, c,(n).is the least common multiple of {20 -1} 2¢
divides n}. For composite integers (containing two or more primes) d(n) equals 1 almost
always. The lowest composite integer with d(n) #°1 is 28. In fact, the group PI'L(2, 8)
has a doubly homogeneous represéntation of degree 28 where the normal subgroup
PSL(2, 8) is not doubly homogeneous. This is the only example known where the simple
normal subgroup H is-not doubly homogeneous as well.

We note that in Theorem 1 both G and H are even doubly transitive; this is a
consequence of Kantor [2]. Since d(n) =1 if n ~ 2 mod 4, our first theorem contains
Theorem 1 of Aschbacher [1]. Note also that d(n) =1 if n = 3 mod 9. More detailed
information in the case d(n) # 1 will be given in section 2, Theorem 3. '
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Theorem 2. Let H and G be permutation groups on S of degree n. Suppase that G is
doubly homogeneous and normalizes H. Let a be a permutation on S of order 2 or 3
fixing exactly f points, such that a® = a¥. Then H is doubly homogeneous if n—1 and
f—1 are coprime.

Here a® stands for the set of all G-conjugates of a and we note that @ does not need
to be contained in G or H. If H is the simple group mentioned in Theorem 1 and
contains just one class of fixed-point-free involutions (for instance), then H and G are
both doubly transitive. _

The paper is in most parts selfcontained and the notation used is standard. I wish to
thank the referee for his suggestions (Proposmon 1) which lead to a shortening of an
earlier version of this paper.

2. Multiply homogeneous groups |

-Let S be a finite set of points s, , .., s, and let X be the family of all subsets of S.

~ The subfamilies of k-elements subsets (k < n) are denoted by X, and we will identify

X,=¢ and X, = S. Hence a group G on S is k-homogeneous if and only if G acts
transitively on X,.

Proposition 1. Let G, H and N be permutation groitps on S such that G normalizes H,
G € H-N and G is transitive on S. Suppose that S, ,.., S, are distinct subsets of S
which are permuted by N. Then the number of orbits of H on S divides £'_| S, |.

PRrROOF. Let 0, ,. ., 0, be the orbits of H on S. Since G normalizes H and is transitive on

S, G permutes the O transitively. Hence, for a given j there are elements hin H and min

N such that 0, —O""'—O"‘ Therefore i, [S,N0;] = ZL,| S M0 1| =
1SN0 and hence we obtain Xi,|S;| = 25_1(}: 115, no;.

@ [ Sin0;]) = r-i,]85,M0,|. So r divides the sum of the sizes of the S D

Let 4 be a permutation group on S and consider the orbits of 4 on X, for some:

k = < n. Let ny; be the number of all orbits of shortest length /,,, n,, the number of all

orbits of second shortest length /,;, and so on. If N is a group normalizing 4 then N

permutes all k-element subsets contained in 4-orbits of a given length. We use this fact

" together with. the previous proposmon to obtain the following d1v131b111ty conditions for
multlply homogeneous groups.

Proposition 2. Let G be a k-homogeneous group on S of degree n, k < 1/2.- n, and let
H, A be groups on S such that G normalizes H and AS = AY. Let ny, be the number of

A-orbits of length I, on X,. For any k' < k let r be the number of H-orbits on X v Thenr
divides

@) ny - by - (k'lip> : (npk)forallzandp k', and

o (6 n I-m n—Ilmy . . |
(i) (?)(nizl)(k’—p)( » )forqlll,l<lil,m<n,.landp<k'.
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Proor. Here A¢ stands for the class of all G-conjugates of A and AG=A'?’ implies
G < H-N where N is the normalizer of 4 in the symmetric group. By a theorem of
Livingstone and Wagner (a very short proof can be found in |4]), G is also k'-
homogeneous and hence is transitive on X,,. We apply Proposition 1 to the action of G,
H and N on X,. and produce subsets S; of X, for which X | S, | are the corresponding
expressions in the proposition.

_ In the first case let x, , .., x, be the collection of all k-element subsets contained in
A-orbits of length [,. For a given p<k' we define S,={x'|x" in X, and
| x" (“x; | =k' — p}. It is easy to see that the S; are permuted by N and are all distinct
except in the case k =n/2 and p=k’/2 when each S, occurs twice. Since each S,

. k n—k k n—k
contains ( , ) : ( )sets, obtain X |S;|=n, -1, - ( , ) : ( )
k'—p P e 50l =l k'—p p

as required.

For the remainder we consider the n;,, A-orbits on S of length /. For given values
m<n, and 1<l we select m orbits among n,; and in each one of these we choose /
points in order to obtain a set of size [-m.

This can be donein ¢ = (’:7‘11 ) ' ,(l? ) different ways.

Let x; ,. ., x, be all sets obtained in this fashion. Clearly N permutes the x; and we define
S;={x'| x' in X;, and | x! N x;| = k' — p}. Then N permutes also the S; which are all

distinct containing
( I-m ) ) (n——l-m)
k'—p p

subsets each. This proves the second statement. [J

In this proposition all weakly closed subgroups of H arescandidates for 4, in
particular all Sylow-p-subgroups of H. The orbit structure of a Sylow-subgroup
therefore yields strong restrictions for the orbit numbers of H. The following theorem is
based upon the fact that we may assume that a Sylow-p-subgroup acts semi-regularly if
p divides n.

Theorem 3. Let H (# 1) and G be permutation groups on a set S of n points. Suppose G
is doubly homogeneous and normalizes H. Then H is transitive on S and the number of

H-orbits on X, divides d(n), the function defined in the introduction.

We need the following lemma.

Lemma. A doubly homogeneous group is primitive.

PROOF. Suppose x is a block of imprimitivity containing the points s’ and s”. Let s be
any other point and g an element in the group such that {s’,s” }¢={s’,s}. So x&-
contains s’ and s, i.e. x¥=x contains all points and hence the group is primitive. []



30 Proceedings of the Royal Irish Academy

PRrOOF OF THEOREM 3 . Since the H-orbits on S are blocks of imprimitivity of G, H is
transitive by the preceding lemma. This implies that {G,|sin S} is a class of H-
conjugate groups. The set of points fixed by G, forms a block of imprimitivity
containing s, thus G, fixes s only. We apply Proposition 2(ii) to 4 = G;and 4 = 1 and
find that r, the number of H-orbits on X,, divides

("5 ) ma(3).

hence r divides n—1. Let p be a prime dividing n, A a Sylow-p-subgroup of H and s a
point in S.

Step 1. Assume that p does not divide the order of H,. In this case A4 is semi-regular on
S and has n/p orbits of length p’ on S where | 4 | = p' is the highest power of p dividing
n. By Sylow’s theorem A¥ = A¢ and by Proposition 2(ii) r divides

(1;) nlpi=n- (i — 1)/2.

Since r and n are coprime, r divides (p' — 1)/2 or p' — 1 if p = 2 and therefore r divides
c,(n).

In general, however, the order of H, may well be divisible by p so that much less is
known about the orbit structure of A. For the remainder we may assume that H is a
normal subgroup of G and that G is doubly transitive (using Kantor {2]).

Step 2. LetU (+ 1) be a Sylow-p-subgroup of H, and x the subset of all points fixed by .
U. If H' and G' are the groups induced on x, then G’ is doubly transitive on x with
normal transitive subgroup H’. For reference about these facts see Theorem 3.5 of |3].
The degree n' = | x| is divisible by p and if p/ is the highest power of p dividing n’, then
p divides | H: H;| = n. Finally observe that H, has order not divisible by p, by
construction. In addition, as a consequence of 3.1 and 3.5 in {3], we have r = r/, the
number of H'-orbits on the 2-element subsets of x. Therefore, Step 1 applied to the
groups on x implies that r divides (% — 1)/2 or p/ — 1 for some power p/ dividing n.
Hence r divides ¢,(n) for every prime dividing n and therefore r divides d(n). O

3. Proofs of Theorems 1 and 2

Let G be the group in Theorem 1 and let H be a minimal normal subgroup. By

Kantor’s result [2] G is doubly transitive on S. By a classical result of Burnside, H is
-either elementary Abelian or non-Abelian simple. (It is less well known that Burnside’s

original proof is inconclusive!). In the first case G is an affine group on the vector space
H, this possibility has been excluded.' Therefore H is simple and the only minimal
normal subgroup. The remainder is a direct consequence of Theorem 3. This concludes
the proof of Theorem 1. [J -

The group PI'L(2, 8) is doubly transitive in its representation as smallest ‘Ree group’
on 33 + 1 points. The normal simple subgroup PSL(2, 8) is transitive and has exactly
d(28) = 3 orbits on the 2-element subsets of 28 points and has also 3 orbits on the
ordered pairs. This is the only known example of a doubly transitive permutation group
whose simple normal subgroup is not doubly transitive as well. With the completion of
the classification of all finite simple groups this will turn out to be the only example.
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In order to prove Theorem 2, let G and H be the groups in the theorem and let r be
the number of H-orbits on X,. As in the proof of Theorem 3 one shows that r divides n
— 1. Let A = (a) where a has order p =2 or 3 and fixes exactly f points. Applying
Proposition 2(ii) we obtain that r divides ’ '

(5) A =flp = =) =12

Sincen—1=o0modrwehaveo=n—f=n—-DN—-(f-1)=/—1 mod r and hence r
is a common divisor of n — 1 and f— 1. Therefore H is doubly homogeneous on S. O
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