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Abstract. The classical Hiemenz solution describes incompressible two-dimensional stagnation
point flow at a solid wall. We consider an unsteady version of this problem, examining particularly
the response close to the wall when the solution at infinity is modulated in time by a periodic factor
of specified amplitude and frequency. While this problem has already been tackled in the literature
for general frequency in cases when the amplitude of the time-periodic factor is either large or small,
we compute the flow for arbitrary values of both these parameters. For any given amplitude, we
find that there exists a threshold frequency above which the flow is regular and periodic, with the
same period as the modulation factor, and beneath which the solution terminates in a finite time
singularity. The dividing line in parameter space between these two possibilities is identified and
favorably compared with the predictions of asymptotic analyses in the small and large frequency
limits.
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1. Introduction. The classical Hiemenz solution describes the flow near a stag-
nation point on a plane wall and may be found in Batchelor [1]. When this flow
is modulated in time by a periodic multiplicative factor on the streamfunction at
infinity, the resulting solution can be used to describe the local dynamics around a
stagnation point on an oscillating body. Equally, the body may be thought of as fixed,
with the flow out in the far field varying periodically in time. The steady streaming
motion established by the Reynolds stresses associated with the oscillatory motion
(Stuart [2]) is an important feature of such time-periodic flows. This effect occurs, for
example, around a transversely oscillating circular cylinder (Schlichting [3]). When
the amplitude of the far field fluctuation is small, modified Hiemenz flow can be used
to model the local effects of disturbances such as acoustic noise impinging on the
boundary layer around a translating bluff body. More generally, such problems fall
within the purview of receptivity theory (e.g., Erturk and Corke [4], Morkovin [5]).
We are concerned with the behavior in the vicinity of the stagnation point, where
the body surface may be considered to be locally flat. In this context we allow for
fluctuations of arbitrary amplitude and frequency.

Other studies pertinent to this modified Hiemenz problem include those by Grosch
and Salwen [6] and Merchant and Davis [7]; among earlier investigations, we mention
those by Matunobu [8], Pedley [9], and Ishigaki [10]; see also Lighthill [11]. Grosch
and Salwen, while confining their attention to small free stream fluctuations, examined
the flow when the frequency of these disturbances is either small or large. Expanding
in power series in the disturbance amplitude and Fourier series in time, they showed
that to leading order the low frequency case is merely a quasi-steady version of the
classical Hiemenz solution, while the high frequency case exhibits a double boundary
layer structure similar to that first discussed by Riley [12] and Stuart [2] for oscillating
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flows. Merchant and Davis tackled the same unsteady Hiemenz problem, but also
examined the flow structure when the mean component of the free stream is very
much smaller than the oscillatory part. In this case a double boundary layer structure
is once again revealed, although the authors showed that no solutions exist when the
mean component of the free stream drops below a certain cut-off point. This is not
to say that solutions with a different asymptotic form do not exist at smaller values
of the free stream mean. We address this point in the current work.

Our interest in the problem was prompted by Hall and Papageorgiou’s [13] re-
cent study of unsteady incompressible flow induced in an infinite channel when the
walls pulsate uniformly in space and periodically in time. Assuming a stagnation
point structure for this flow, they demonstrated numerically the existence of purely
periodic, quasi-periodic, and even chaotic flow solutions, depending on the frequency
and amplitude of the wall motion. Our aim was to investigate the possibility of such
varied dynamics for a periodically forced stagnation point flow in a semi-infinite do-
main. In fact, numerical solution of the unsteady Hiemenz problem shows that for
many parameter values a singularity is encountered at a finite time. This eventuality
is perhaps unsurprising in light of previous studies of colliding boundary layers or
those in which the external flow reverses direction, where such singularities may also
be found. One example is the flow over a rotating disk in a counter-rotating fluid,
whose near-singularity structure was described by [14]. Another study of particular
relevance to the current work is that by Riley and Vasantha [15], who considered the
same problem as ours but with a purely oscillatory (zero mean) free stream. In this
case the equations break down in finite time for any value of the forcing frequency.
The breakdown was interpreted by Riley and Vasantha as the result of drifting fluid
particles in the steady streaming layer accumulating at the stagnation point and ulti-
mately causing an eruption of fluid from the boundary layer. The nature of the finite
time singularity was found to have the same form as that occurring near the equator
of an impulsively started sphere, as studied by Banks and Zaturska [16]. When the
flow in the far field has nonzero mean, as is to be discussed here, the near-singularity
structure is also described by Banks and Zaturska’s analysis. The blow-up is not
localized in space but occurs over the entire flow domain.

That the flow can break down when the mean component of the free stream
is nonzero is not mentioned by either Grosch and Salwen or Merchant and Davis.
However, the former authors demonstrate that the inclusion of a nonzero mean com-
ponent in the free stream can allow the solution to be continued indefinitely without
breakdown. We have found that this is true, provided that a condition between the
fluctuation amplitude and frequency is not violated. The condition amounts to a
threshold frequency, at any given amplitude, below which blow-up will occur but
above which the solution remains regular. It is still conceivable that aperiodic or even
chaotic solutions might exist in the large frequency limit, so long as this condition
is satisfied. However, we have not been able to identify any such solutions despite
extensive numerical searches. At all candidate parameter values tested, the solutions
remain periodic with frequency equal to that of the free stream fluctuation. Never-
theless, the nature of the condition under which breakdown occurs is of interest, and
in this sense our work constitutes a worthwhile extension of the previous studies.

We begin with a problem description, followed by a brief discussion of the nu-
merical methods utilized to solve the governing equations. Results are then presented
together with asymptotic analyses in the small and large frequency limits, and com-
parison is made between the two. We conclude with a short note on the axisymmetric
version of the problem.
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2. Problem statement and numerical method. The problem under consid-
eration is that of two-dimensional unsteady Hiemenz flow approaching a flat plate.
Referring to a set of Cartesian axes (x, y), the flat plate occupies −∞ < x < ∞,
y = 0. We define velocity components U∞u(x, y, t), U∞v(x, y, t) in the x, y direc-
tions, respectively, where U∞ is the typical flow speed in the far field. In this region
the flow is potential, with u = (x/l)U(t), v = −(y/l)U(t), where

U(t) = 1 +∆cos(ωt)(2.1)

for a chosen amplitude ∆ and frequency ω. The remaining parameters are the kine-
matic viscosity ν and an arbitrarily chosen length scale l.

As in the steady case, it is reasonable to assume that the same simple velocity
dependence on the x coordinate also applies in the viscous layer close to the plate. In
this region we introduce the new coordinate η = (y/l)R1/2 and set

u =
(x
l

)
Fη(η, τ), v = −R−1/2F (η, τ)

defining the Reynolds number to be R = U∞l/ν and introducing the new time variable
τ = ωt. Note that we do not require R to be large. Finally, defining the Strouhal
number

σ =
ωl

U∞

and setting a(τ) = 1 +∆cos τ , we may express the wall layer system as

σFητ + F 2
η − FFηη = σaτ + a2 + Fηηη,(2.2)

with

F (0, τ) = Fη(0, τ) = 0, Fη → a(τ) as η → ∞,(2.3)

to satisfy the solid wall boundary conditions and to match to the outer potential
solution. When ∆ = 0, the problem reduces to that of classical steady Hiemenz
flow. The temporally periodic part of (2.1) represents a superimposed disturbance on
the steady far field solution. The response to this disturbance close to the plate is
quantified by solving (2.2) and (2.3) for different values of the fluctuation amplitude
∆ and the Strouhal number σ. We emphasize that ∆ is not restricted to being small.

At this stage we note that functions satisfying (2.2) and (2.3) represent exact
solutions of the Navier–Stokes equations since no approximations have been made.
In addition, while the Reynolds number is not required to be large in this analy-
sis, for ease of description we shall refer to the main flow governed by (2.2) as the
Hiemenz boundary layer, even though no conventional boundary layer approximation
is necessary.

Asymptotic solutions are possible in the limits of small and large frequency, and
these will be discussed in a later section. For general values of the parameters (∆, σ)
numerical methods must be used to solve the wall layer equations. To expedite the
numerical solution, we introduce the function G = Fη and write the equations in the
form

σGτ +G2 − FGη = σaτ + a2 +Gηη,(2.4a)

G = Fη,(2.4b)
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with

F (0, τ) = G(0, τ) = 0, G → a(τ) as η → ∞.(2.5)

We found that calculations should be started at τ = π/2 rather than τ = 0; oth-
erwise, when ∆ � 1, the forcing is too large when the integration is initiated and
the numerical solution blows up instantaneously. In practice, the initial profile makes
negligible difference to the computation of the singular time, and calculations were
always begun with F = G = 0. To march forwards in time we used either the second
order accurate Crank–Nicholson method or the fourth order accurate Runge–Kutta
integration, both with a second order accurate spatial discretization. Thus some in-
dependent numerical check on our results was available. Most of the results presented
in this paper were computed using the latter of the two schemes. However, at vari-
ous stages the computations were repeated using the Crank–Nicholson method, and
these always provided good agreement. For large σ, we found it useful to introduce
a stretched grid in order to insert many more points in the Stokes shear-wave layer
next to the wall, where the most significant changes in the flow are concentrated. We
present some of our results in the next section.

3. Analytical discussion and results. Grosch and Salwen [6] show that, for
sufficiently small amplitude and in the limit of vanishing Strouhal number, the quasi-
steady Hiemenz solution describes the flow to leading order. Specifically, to O(σ), the
solution may be written as F = a(τ)1/2f(a1/2η), where f satisfies the usual steady
Hiemenz equation and boundary conditions. When σ → ∞, again for small enough
∆, the solution adopts a double boundary layer structure, similar to that analyzed
by Riley [12] and Stuart [2]. In this case the boundary layer splits into two regions.
In the lower region, the Stokes layer, the solution is periodic to leading order. The
nonlinear terms in the equations generate a small steady component, which persists to
the upper reaches of the Stokes layer and acts to drive a steady streaming flow in the
outer part of the Hiemenz boundary layer. For both small and large σ, Grosch and
Salwen expanded in Taylor series in the amplitude ∆ and Fourier series in time. While
they were not able to determine the radius of convergence of their series exactly, they
estimated that for large σ the series should converge when ∆ < σ. Later Merchant and
Davis [7] showed that if both the amplitude and the Strouhal number are large, and
if the thickness of the main boundary layer and the induced steady-streaming layer
are chosen to coincide, then no solutions exist in our notation when ∆ > 1.289σ1/2.
This derives from the fact that the leading order steady-streaming equation has no
solution when the amplitude exceeds this bound. However, this does not deny the
existence of other solutions with a different boundary layer structure in these limits.
In the Merchant and Davis flow structure the Stokes layer is linear to leading order.
If instead we hypothesize that solutions exist wherein the nonlinear terms are of the
same order of magnitude as the unsteady terms, corresponding to the scaling ∆ ∼ σ
as σ → ∞, we find that the equations for the leading order Stokes layer problem,
with the appropriate matching condition at infinity, are the same as those studied
by Riley and Vasantha [15]. These correspond to (2.2) and (2.3) with a(τ) = cos τ .
Riley and Vasantha’s results show that these slightly reduced equations terminate in a
singularity at a finite time for all values of σ. In due course we shall present numerical
evidence that no regular solutions exist above the limit laid down by Merchant and
Davis.

As a preliminary test of our codes, we computed small amplitude solutions and
obtained results in excellent agreement with those of Grosch and Salwen. For large σ,
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Fig. 3.1. ∆ = 2.0, σ = 0.5: The locus of G−1
m = 1/minη{G} in time, τ , close to the singularity

at τs = 3.39.

and for ∆ of typical size O(σ1/2), we compared our results with the first two terms in
the asymptotic expansion of Merchant and Davis and again found that our numerics
were in excellent agreement with the theory. For a fixed σ, however, we discovered
that when the value of ∆ exceeds a certain limit, the integration blows up at a finite
time singularity. We shall henceforth label the singular time τs. The flow structure
in the vicinity of τs is the same as that arising near the equator of an impulsively
started sphere, a problem analyzed by Banks and Zaturska [16]. As the singularity is
approached in that situation, the most important terms in the near-equator equations
over the main part of the flow combine to mimic those of our own equation. Close
to the singular time the flow acquires a three-tiered structure, with viscous zones at
the wall and infinity sandwiching an inviscid core region. In this sense the flow is
similar to that attained just prior to the breakdown which occurs a short time after
the direction of a rotating disk is suddenly reversed. The near-singularity structure
for this flow has been examined by Stewartson and Bodonyi [17] and corrected by
Stewartson, Simpson, and Bodonyi [14]. (See also Ockendon [18] for a discussion of
a steady rotating disk flow with a similar three-zone structure.) While Banks and
Zaturska do not give the details of the flow in the upper and lower viscous regions,
we have confirmed that the arguments of Stewartson, Simpson, and Bodonyi may be
adapted accordingly. Further discussion of the viscous zones is suppressed. Instead
we demonstrate that the flow behavior in the middle region is consistent with that
of Banks and Zaturska. By comparison with their theory, in the main part of the
flow we expect η to scale like (τs − τ)−1/2, and thus we write η̂ = η(τs − τ)1/2. From
their predictions we anticipate that F ∝ (τs − τ)−3/2φ(η̂), and thus G ∝ (τs − τ)−1

as τ → τ−s . As time progresses we observe that, at a given τ , the G(η, τ) profile has
at most one local minimum Gm at η = ηm. Tracking the inverse of this minimum
value up to the singular time for the case ∆ = 2.0, σ = 0.5, we plot the graph shown
in Figure 3.1. The relationship between G−1

m and τ appears convincingly linear.
Assuming this to be the case, a more accurate value for τs may be predicted by
means of linear interpolation. Similarly, plotting η−2

m against τ close to the singular
time reveals an apparent linear dependence which is equally compelling. The critical
point dividing singular and periodic solutions at this frequency is ∆ ≈ 1.537. As
the amplitude approaches this value from above, we find that the singular time τs
increases without bound.
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Fig. 3.2. The barrier in (∆, σ) parameter space between regular periodic solutions (below the
line) and those which blow up in finite time (above the line). The lower graph shows the barrier
close to σ = 0. The upper graph includes the asymptotic approximation ∆ ∼ 1.289σ1/2 + 0.76 for
large σ (see section 3.1).

We now turn to the general picture in (∆, σ) parameter space. Using the numeri-
cal procedure described above, we have identified the parametric regions in which the
solutions either remain regular and periodic or else become singular in finite time. The
parameter space is divided neatly into two regions by the curve depicted in Figure 3.2.
We believe that points on this curve have been calculated accurately to within 0.1%.
Flows corresponding to points (∆, σ) lying below the curve are periodic, while those
lying above eventually reach a singularity. We have calculated solutions up to and
including σ = 1000 and, for the regular solutions, have encountered no bifurcations
leading to aperiodic flows. Rather, the solutions remain periodic with the same period
as that of the far field disturbance.

Also shown in Figure 3.2 is the asymptotic approximation valid for large values of
σ, to be discussed shortly. Magnifying the curve in the region of zero frequency shows
that it approaches unity as σ → 0, suggesting that, for temporally slowly varying
flows of this kind, only a small amount of flow reversal can be tolerated if the solution
is to remain regular. This limit is discussed in due course.

When the disturbance frequency is large, the boundary layer supports a small
steady flow component, driven by a residual slip velocity from a Stokes layer beneath.
The analysis of Merchant and Davis suggests that no regular solutions exist when
the amplitude is also large, specifically when ∆ > 1.289σ1/2, since then the system
governing the steady streaming component has no solution. In order to provide the
best agreement between our numerical calculations and the large amplitude theory,
we have found it worthwhile to compute the next term in this asymptotic expansion.



1610 M. G. BLYTH AND P. HALL

In what follows, we therefore supply a brief description of the asymptotic flow at large
frequencies.

3.1. Large amplitude and frequency. It is convenient at this stage to rescale
(2.2), (2.3) by writing η = ∆−1/2η̂, F = ∆−1/2F̂ , σ = ∆Ω and introducing the small
parameter ε = 1/∆. This leads to the equivalent system:

ΩF̂η̂τ + F̂ 2
η̂ − F̂ F̂η̂η̂ = −Ωsin τ + (ε+ cos τ)2 + F̂η̂η̂η̂,(3.1)

with

F̂ (0, τ) = F̂η̂(0, τ) = 0, F̂η̂ → ε+ cos τ as η̂ → ∞.(3.2)

Now, when ε is small and Ω is large, we look for solutions with ε = a0Ω
−1 +

a1Ω
−2 + · · · . In the Stokes layer, of thickness O(Ω−1/2), the expansion proceeds as

F̂ = Ω−1/2φ0(ξ, τ) + Ω−3/2φ1(ξ, τ) + · · · ,(3.3)

where ξ = Ω1/2η̂ is a scaled coordinate normal to the wall. The first order solution is
given by

φ0(ξ, τ) = ξ cos τ − cos
(
τ − π

4

)
+ e−ξ/

√
2 cos

(
τ − ξ√

2
− π

4

)
.(3.4)

At second order, the solution may be written as φ1(ξ, τ) = 1
2φM (ξ, τ), where

φM is a somewhat lengthy expression appearing as formula (3.20c) of Merchant and
Davis’s paper. As pointed out by Stuart [2], it is not possible to satisfy the infinity
condition at this order; rather a steady slip velocity persists at the top of the Stokes
layer, driving a steady streaming motion above. Therefore we simply note at this
stage that φ1ξ(∞, τ) = −3/4.

With the current choice of scaling, the streaming layer has the same thickness as
the Hiemenz boundary layer (of order Ω1/2 in this notation). Introducing the new
coordinate ζ = Ω−1/2η̂, the relevant expansion is

Ĝ = Ω−1/2{ψ0(ζ, τ) + f0(ζ)}+Ω−3/2{ψ1(ζ, τ) + f1(ζ)}+ · · · ,(3.5)

where Ĝ = F̂ −Ω1/2ζ cos(τ)−Ω−1/2 cos(τ − π/4). The functions ψi equal zero when
averaged over a single time period. In fact ψ0 ≡ 0, and the first order streaming
problem is given by

f ′′′
0 + f0f

′′
0 − f ′

0
2 + a2

0 = 0,(3.6)

with

f0(0) = 0, f ′
0(0) =

−3
4

, f ′
0(∞) = a0.(3.7)

A numerical treatment of this problem by both Merchant and Davis and also by Riley
and Weidman [19] indicates that a unique solution exists when 0 < a0 < 3/4, two
solutions exist when 3/4 < a0 < a0c, and no solutions exist when a0 > a0c, where
a0c ≈ 0.602. Continuing, we derive the second order streaming problem:

f ′′′
1 + f0f

′′
1 − 2f ′

0f
′
1 + f ′′

0 f1 =
1

2
√
2
f ′′
0 − 2a0a1,(3.8)
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with

f1(0) =
13

4
√
2
, f ′

1(0) = 0, f ′
1(∞) = a1.(3.9)

Taking a1 = 0 should reduce the problem to the corresponding equation of Merchant
and Davis. However, we remark that this leaves a right-hand side proportional to f ′′

0 ,
which is absent in that paper and which we believe should be included.

Our concern now is to calculate a1 when a0 = a0c. Numerical trials suggest that
a solution exists for the value a1 = −0.55 and is unique. Reverting to our original
notation, the asymptotic approximation for the critical amplitude proceeds as

∆ = 1.29σ1/2 + 0.76 +O(σ−1/2) as σ → ∞.

This is plotted in Figure 3.2 along with our full numerical results. It provides strong
evidence that it is this asymptote which defines the barrier between large frequency
solutions remaining regular and periodic and those encountering a finite time singu-
larity.

3.2. Small frequency. We now focus our attention on small frequency solu-
tions. The numerical calculations suggest that the barrier between regular and singu-
lar solutions approaches ∆ = 1 as σ → 0 (see Figure 3.2). Naturally, when σ = 0 we
obtain classical Hiemenz flow and therefore expect steady solutions at any amplitude.
In this sense we expect σ → 0 to be a singular limit. While considering a similar flow
but with zero mean at infinity, Riley and Vasantha [15] showed that the singular time
grows without bound as the fluctuation frequency tends to zero. Paralleling their
analysis, we now examine the solution close to σ = 0.

When both the frequency and amplitude are small, the flow follows the quasi-
steady solution given by Grosch and Salwen [6] and mentioned above in section 3.
However, if the amplitude equals or exceeds unity, a(τ) has a zero at τ = τ0, where
τ0 = π − cos−1(1/∆). In what follows, ∆ − 1 is assumed to be nonnegative (but
not necessarily small) so that a(τ) has such a zero. The quasi-steady approximation
will break down when τ approaches τ0, as the unsteady terms, which were hitherto
small, grow to become comparable in size with the others. A consideration of the
relative magnitudes of terms in (2.2) suggests that the quasi-steady approximation
will become invalid when a(τ) = O(σ1/2).

In the vicinity of τ = τ0, a balance of the terms in (2.2) suggests the scalings

(τ0 − τ) = σ1/2T, η = σ−1/4Y, F = σ1/4F̃ (Y, T )

for new order one variables T , Y , F̃ . Neglecting terms of order o(σ4/3), the governing
system reduces to

−F̃Y T + F̃ 2
Y − F̃ F̃Y Y = −µ+ µ2T 2 + F̃Y Y Y ,(3.10a)

F̃ (0, T ) = F̃Y (0, T ) = 0, F̃Y → µT as Y → ∞,(3.10b)

where µ = (∆ − 1)1/2. As T → ∞, F̃ must match to the quasi-steady Hiemenz
solution. We initiate the calculation at T = T∞, where T∞ is sufficiently large, with
the profile

F̃ =

(
µT

T∞

)1/2

f(x), with x =

(
µT

T∞

)1/2

Y,
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Fig. 3.3. Variation of τs with σ when ∆ = 2.0. Top: τs in the singular window σ ∈ (0, 1.12),
plotted with the approximation τs/σ = 2π/3σ+1.51/σ1/2 valid as σ → 0 (shown as circles). Bottom:
Magnification of the curve close to σ = 1.12.

where f(x) satisfies a scaled version of the steady Hiemenz equations. The system
(3.10) is then integrated backwards in time T , using a Crank–Nicholson method. For
all cases considered, the integration terminates at a singularity after a finite time.
The singular time Ts is computed using an interpolation procedure similar to that
mentioned above for the full numerics.

For the particular case ∆ = 2.0, we have computed Ts = −1.51. Thus we predict
that

τs
σ

=
2π

3σ
+

1.51

σ1/2
+ · · · as σ → 0.(3.11)

In Figure 3.3 we show how this estimate compares with the calculated values of τs at
small frequency obtained by solving the full system (2.2), (2.3). The agreement is very
satisfactory. The flow becomes singular for all frequencies in the window σ ∈ (0, 1.12),
beyond which we cross the barrier in Figure 3.2 and the solutions become periodic.
It is interesting to note that as σ → 1.12−, the curve begins to wiggle, a behavior
reminiscent of that seen in Riley and Vasantha’s problem.

In summary of this short section, we remark that low frequency solutions can
become singular as long as ∆ ≥ 1. When ∆ < 1, this is not possible, and the flow
is quasi-steady and periodic. These conclusions are in agreement with the picture
presented in Figure 3.2, where the barrier between regular and irregular solutions
approaches unit fluctuation amplitude as the frequency tends to zero.

4. Axisymmetric stagnation point. As a final note, we remark that behavior
similar to that described in the previous sections is encountered at an axisymmetric
stagnation point. In this case we envisage flow hitting a flat surface and spreading
out radially from the stagnation point in the middle. An exact similarity solution
with linear dependence in the radial coordinate may then be sought. If we confine
our attention to the case in which there is no azimuthal variation, we find that the
governing equation and boundary conditions for this flow are almost exactly the same
as those for the two-dimensional case, the only difference arising in the nonlinear term,
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where −2FFηη appears instead of −FFηη. By analogy with our preceding work, an
amplitude ∆ and Strouhal number σ may be defined. Riley [20] has studied this flow
in detail when the infinity condition has zero mean, and his results suggest that, in
common with the two-dimensional stagnation point looked at by Riley and Vasantha,
finite time breakdown occurs for all values of the frequency parameter σ. The flow
with nonzero mean at infinity may also be studied and, as in the two-dimensional
case, we find that the flow breaks down at a fixed σ as soon as a critical value of ∆
is exceeded. A steady-streaming analysis analogous to that performed above again
agrees well with the numerically computed results. Unfortunately we once more find
no evidence of aperiodic solutions as σ is increased (with ∆ remaining below the
critical curve for regular solutions).

5. Concluding remarks. We have investigated unsteady stagnation point flow
of a modified Hiemenz type. Previously Grosch and Salwen [6] investigated this prob-
lem for small fluctuation amplitudes in the low and high frequency limits. Merchant
and Davis [7] also considered the large amplitude, high frequency limits, establish-
ing an asymptotic structure in which the streaming region above the Stokes layer is
the same thickness as the Hiemenz boundary layer. We have studied the same flow
and, for general parameter values, provided numerical evidence that for all frequen-
cies there exists a threshold value of the amplitude beyond which the flow will break
down in finite time. The flow structure in the vicinity of the singularity is the same as
that arising near the equator of an impulsively started sphere, reported by Banks and
Zaturska [16]. Below the threshold value, the solutions are regular and periodic, with
period equal to that of the free stream disturbance; in the limit of small frequency,
they correspond to the solutions presented by Grosch and Salwen. We have also con-
ducted asymptotic analyses at small and large frequency to predict the dividing line
between singular and periodic solutions in these limits. Both have been successfully
compared with the results of numerical simulations.

In an earlier study, Riley and Vasantha [15] showed that the same problem with
zero mean flow in the free stream breaks down for all possible frequencies. However,
when there exists a small mean flow in the free stream, corresponding to the limit
of large disturbance amplitude in our problem, our work shows that the solution
becomes singular in finite time only when the frequency is smaller than a given value
proportional to the square of the amplitude. All frequencies exceeding this value lead
to regular, periodic solutions.
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