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Abstract

In this note we report on a project in progress, where we study
compactness of infinitary logics, including the logic of chains. The
motivation of this project is to find logical reasons for the set-theoretic
phenomenon of compactness at singular cardinals. 1 2

Dedication. This paper is dedicated to Prof. Mirjana Vuković, on the
occasion of her 70th birthday, with warmest wishes for a happy and long
continuation of a lifework of achievements in mathematics and selfless con-
tributions to the mathematical community.

1 Introduction

In the world of infinite cardinals, combinatorial properties of singular cardi-
nals are somewhat special. This is especially visible by the fact that they
often exhibit a compactness behaviour. The celebrated Shelah’s inequality
[15]

[(∀n < ω)2ℵn < ℵω] =⇒ 2ℵω < ℵω4 .

is an example of such a behaviour, because we can interpret it as saying that
if powers of cardinals smaller than the singular cardinal ℵω are bounded,
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then so is the power of ℵω. There are many compactness theorems about
singular cardinals, some of which we shall mention below. The cardinal ℵ0 is
also very special, often because of the compactness. An important example
is the compactness of the first order logic. Therefore it is natural to ask if
there is a compact logic associated to singular cardinals, a question that we
explore. This paper reports on results in progress obtained as part of a larger
project and represents an extended version of a talk given by the first author
at the conference “Modern Algebra and Analysis” organised by ANUBiH in
Sarajevo in September 2018. Full exposition of the results mentioned here
and other results will be written as a full length paper in the future.

2 Infinitary Logic

A logic that might serve the purpose of compactness at a singular cardinal
was discovered by Carol Karp. She introduced the chain logic in her Ph.D.
thesis in 1959 with Henkin [7], and continued working on it, on her own, and
with her students, throughout her career. Her motivation was to generalise
recursion theory through the use of infinitary logics. The part which is most
relevant to us concerns the work of Ellen Cunningham from her Ph.D. thesis
(1974, two years after Karp’s death) [1].

The beginning of this work is to consider logics of the form Lκ,λ. Here κ
and λ are infinite cardinals and we are allowed to make conjunctions of length
< κ and iterations of < λ-quantifiers, with other logical rules transported
from first order logic, which in this notation becomes Lω,ω. An interesting
question is to find pairs κ, λ which give the nice properties that we have for
Lω,ω, may it be completeness, compactness and so on. This was an important
research topic in the 1960s and 1970s, much about which can be found in the
books by Jerry Keisler [10] on Lω1,ω and Max Dikcmann [2] on Lκ,λ . It was
found that if we want to recover the properties of first order logic for κ, λ
regular, most often we need to work with κ = λ some large cardinal. Let
us, for example, review the case of strongly compact and the case of weakly
compact cardinals.

We say that a set of sentences is κ-satisfiable if every subset of size < κ has
a model. Tarski [17] defined a strongly compact cardinal to be an uncountable
κ such that every κ-satisfiable set of Lκ,κ-sentences is satisfiable. As we know,
strong compactness is a large cardinal notion, equivalently defined in various
other ways. Tarski [17] also defined a weakly compact cardinal to be an
uncountable κ such that every κ-satisfiable set of Lκ,κ-sentences involving
at most κ non-logical symbols, is satisfiable. This is another large cardinal
notion, of course. An important exception to the large cardinal rule is the
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case of Lω1,ω which shares some important properties of first order logic,
notably completeness (see [10]).

2.1 Completeness and compactness

We recall the relation between the completeness and the compactness prop-
erties of a logic. It is easy to obtain the compactness of the first order logic
as a consequence of its completeness. Namely, suppose that Σ is a set of
first order sentences that it is not satisfiable. By completeness, Σ proves a
contradiction. But the proof must be finite, so it only involves a finite subset
Σ0 ⊆ Σ. Hence Σ0 is not satisfiable and so Σ is not finitely satisfiable. Let
us note that this argument works because the notion of satisfaction and the
notion of deduction are so well matched. However, there are logics which are
complete but not compact, and this is the case of Lω1,ω. Karp proved that
this logic is complete in [8], yet let us observe by a simple example that this
logic is not compact. Namely, let c0, c1, . . . , cω be constant symbols and let
Σ be the following set of Lω1,ω sentences:

{(∀x)
∨
n<ω

x = cn, cω 6= c0, cω 6= c1, . . . , cω 6= cn, . . .}.

Then Σ is finitely satisfiable but not satisfiable.
This difference between the relative behaviour of completeness and the

compactness in the cases of these two different logics comes from the fact
that when changing logic we have to use different rules of inference than
those of the first order logic. For example, we, naturally, need to use the
axiom

∧
Φ =⇒ ϕ for any countable set Φ of formulas with ϕ ∈ Φ. Yet, we

still keep the same notion of the finiteness in a proof, which is now less well-
matched with the rules of inference. In this way we obtain that for infinitary
logics compactness is harder than completeness.

Karp’s Ph.D. student Judy Green [6] considered logics Lκ,ω searching
for results analogous to those for Lω1,ω, in particular completeness. She used
different but similar techniques in two cases: κ successor of a regular cardinal
or κ singular or successor of a singular. Green defined proof systems for these
logics, with proofs of length < κ in a way Lκ,ω becomes complete and shares
many other nice properties of the first order logic.

2.2 Chains

The next new idea that Karp brought to this subject is to consider not just
the logic but also the structure of the underlying model. In this way she was
able to approach the logic Lκ,κ, where κ is a singular cardinal of countable
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cofinality. See Karp’s lecture [8]. She defined the notion of a chain model of
size κ as an ordinary model of size κ along with a decomposition of it into
an increasing union of submodels of length cf(κ). The most interesting case
is that:

• cf(κ) = ω

• the chain consists of sets of strictly increasing cardinalities.

A typical chain model A with decomposition 〈An : n < ω〉 is denoted by
(An)n. It is mostly interesting when κ is a strong limit and 2|An| < |An+1|.
In order to define the logic of chain models we need to change the definition
of |=, defining the new notion |=c, given as follows. For formulas ϕ(x̄) of Lκ,κ
(so x̄ is a sequence of length < κ):

“(An)n |=c ∃x̄ϕ(x̄)” iff there is n such that “An |= ∃x̄ϕ(x̄)”.

There is a natural way to define a logic out of this, which we denote by
Lcκ,κ. Karp and Cunnigham [1] proved that Lcκ,κ satisfies completeness, and
has other nice properties, such as the Downward (to κ) Lowenheim-Skolem
theorem. 3 The spirit here is that Lcκ,κ behaves very much like Lω1,ω.

In our joint work [4], we analysed the family of chain models coded as
the elements of the topological space κω, κ strong limit, cf(κ) = ω (as well as
other cofinalities). The orbit of a chain model coded by f ∈ κω is the set of
all g which code models chain-isomorphic to the model. The main theorem
of [4] is:

Theorem 2.1 The orbit of a chain model A is always a Σ1
1set. The orbit is

∆1
1 if and only if there is a tree T of height and size κ with no branches of

length κ such that for any chain model B, player I has a winning strategy in
EFDc,<κ

T (A,B) if and only if A ≈c B.

This theorem has since had several applications, notably as an input to
the work of Vincenzo Dimonte, Luca Moto Ross and Xianghui Shi [3] which
further develops descriptive set theory of such κω. One may say that Theorem
2.1 completed the classical analysis of the chain logic.

3 The present project

Completeness of the first order logic has many applications, yet the above
completeness theorems seem purely abstract, and so is the case of Theorem

3To understand these results properly, one has to make a distinction between weak
chain models and proper chain models, which is a bit out of the scope of this paper.
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2.1. Our present project is to obtain combinatorial theorems about singular
cardinals such as iω as consequence of the known properties of strong logics,
in particular the chain logic and its fragments. Fixing a singular strong limit
cardinal κ of cofinality ω, we may try to obtain the following known theorems
as a test of the method.

Theorem 3.1 (Erdös-Tarski [5]) If a Boolean algebra has an antichain of
any size < κ, then it has an antichain of size κ.

Shelah’s Singular Cardinal Compactness theorem, or just some conse-
quences of it, such as:

Theorem 3.2 (Shelah [14]4) If every subset of size < κ of a graph G has
the coloring number ≤ λ < κ, then so does G.

We would also like to address some open conjectures and questions, such
as:

Conjecture 3.3 If a Banach space has a (semi)-biorthogonal system of ev-
ery length < κ, then it has one of length κ.

or

Question 3.4 If a complete Lω1,ω-sentence has a model of size ℵn for every
n, does it then have a model of size ℵω?

A well known question coming from Shelah’s work is:

Question 3.5 If every subset of of size < κ of a graph G has the chromatic
number ≤ λ < κ, then does so G?

4 Which logics are compact

Our first candidate for a logic compact at a singular cardinal is chain logic.
However, the following results we were able to prove, although not completely
conclusive, indicate that this logic is not compact. Namely, we have been
able to compare the chain logic with other logics which are known not to
have singular compactness, notably the logic Lκ,ω. For this we used the idea
of a Chu transform, defined as follows:

4A much simplified version of the proof of the Singular Compactness Theorem by Shelah
himself is to appear in Sarajevo Journal of Mathematics.
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Definition 4.1 A Chu space over a set K is a triple (A, r,X) where A is
a set of points, X is a set of states and the function r : A × X → K is a
K-valued binary relation between the elements of A and the elements of X.
When K = {0, 1} we just speak of Chu spaces and r becomes an ordinary
relation.

A Chu transform between Chu spaces (A, r,X) and (A′, r,′X ′) over the
same set K is a pair of functions (f, g) where f : A→ A′, g : X ′ → X and
which satisfies the adjointness condition r′(f(a), x′)) = r(a, g(x′)).

This is relevant for us because of the following results.
We shall consider Chu spaces (L, |=, S) where L is a set of sentences closed

under conjunctions, S a set or a class of structures of the same signature as
the sentences in L and |= a relation between the elements of S and the
elements of L, whose interpretation is a satisfaction relation which satisfies
Tarski’s definition of truth for the quantifier-free formulas.

Definition 4.2 We say that (L, |=, S) ≤ (L′, |=′, S ′) if there is a Chu trans-
form (f, g) between (L, |=, S) and (L′, |=′, S ′) where f preserves the logical
operations and such that the range of g is dense in the following sense

• for every φ ∈ L for which there is s ∈ S with s |= φ, there is s ∈ ran(g)
with s |= φ.

As an example, any g which is onto will clearly satisfy the density condi-
tion.

Theorem 4.3 Suppose that (L, |=, S) ≤ (L′, |=′, S ′) and (L′, |=′, S ′) is com-
pact. Then so is (L, |=, S).

Proof Let (f, g) be the Chu transform which witnesses (L, |=, S) ≤ (L′, |=′

, S ′). Suppose that Σ ⊆ L is finitely satisfiable and let Σ′ = {f(ϕ) : ϕ ∈ Σ}.
We now claim that Σ′ is finitely satisfiable. Namely any finite Γ′ ⊆ Σ′ is of
the form {f(ϕ) : ϕ ∈ Γ} for some finite Γ ⊆ Σ. Therefore there is M ∈ S
with M |= ϕ for all ϕ ∈ Γ. Since g is not necessarily onto, we cannot use it
to obtain from M an element of S ′.

However, we have that
∧

Γ is a sentence of L, by the closure under con-
junctions. Since |= satisfies Tarski’s definition of truth for the quantifier-free
formulas, we have that the fact that M |= ϕ for all ϕ ∈ Γ implies that
M |=

∧
Γ. By the density requirement on g, there is M ′ ∈ S ′ such that

g(M ′) |=
∧

Γ and hence M ′ |=′ f(
∧

Γ). By the preservation of the logical
operations by f , we have that f(

∧
Γ) =

∧
ϕ∈Γ f(ϕ) so that M ′ |=′ f(ϕ) for
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all ϕ ∈ Γ and M ′ |=′ Γ′. So Γ′ is finitely satisfiable in S ′, which by the as-
sumption implies that there is N ′ ∈ S ′ with N ′ |= Σ′. Therefore g(N ′) |= Σ.
F4.3

The proof of Theorem 4.3 with easy changes goes through for the higher
degrees of compactness, let us specify.

Theorem 4.4 Suppose that (L, |=, S) ≤ (L′, |=′, S ′) as witnessed by a pair
(f, g) and that the following conditions are satisfied:

1. L,L′ are closed under conjunctions of < λ sentences,

2. |= satisfies Tarski’s definition of truth for the quantifier-free formulas,
including the conjunctions and disjunctions of size < λ,

3. f preserves the conjunctions and disjunctions of size < λ.

Then, for any θ, if (L′, |=′, S ′) is (λ, θ)-compact, so is (L, |=, S).

Chain logic comes in several different versions, which we shall not define
right now, but one of them is the logic of weak chain models, denoted by
Lc,wκ,κ. Using Chu transforms, we were able to prove

Theorem 4.5 (Lκ,ω, |=,M) ≤ Lc,wκ,κ.

and then conclude thanks to Theorem 4.3 that

Corollary 4.6 The logic Lc,wκ,κ is not κ-compact.

We are still studying the question of the transformation of this proof
which would allow us to conclude:

Conjecture 4.7 Chain logic is not κ-compact.

Some other logics are known to be κ-compact, notably two logics consid-
ered by Keisler in [9]: the ordered logic and the logic with an extra quantifier
’exists at least κ’. We are considering other candidates, such as certain frag-
ments of the chain logic and Shelah’s logic L1

κ [16].
Once we have a supply of compact logics, we still need to see how we can

get any combinatorial theorems as a consequence. A question that we are
considering at the moment is if Theorem 5.4 is a consequence of Keisler’s
ordered logic.
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5 Model Existence Theorems

Proofs of Completeness from Lω1,ω are based on a version of Henkin’s ar-
gument involving the so called Consistency Properties. They prove Model
Existence Theorem (MET). As Keisler states in his book [10], the Model Ex-
istence Theorem based on Consistency Properties is frequently used in Lω1,ω

where Compactness is used in Lω,ω. Consistency Properties were invented
by Michael Makkai [12], also using ideas from earlier work by R. Smullyan.

A consistency property is a judiciously chosen set of sentences of a logic.
The precise definition depends on the logic, but the point is to be able to
prove the following type of theorem:

Theorem 5.1 (Makkai [12]) A sentence of Lω1,ω has a model iff it belongs
to a consistency property.

We call such theorems MET. As an example of an application, in Keisler’s
book [10] there is a proof based on MET of the following theorem, known as
the undefinability of Well Order):

Theorem 5.2 (Morley [13], Lopez-Escobar [11]) Let T be a countable set
of sentences of Lω1,ω and let U,< be a unary and binary relation symbol
of Lω,ω. Suppose that for all α < ω1, T has a model Aα = (Aα, Uα, <, ...)
such that < linearly orders U and (α,<) ⊆ (Uα, <). Then T has a model
B = (B,U,<, ...) such that < linearly orders B and (U,<) contains a copy
of Q.

Consistency properties were found by Green for logics of the form Lλ,ω
and by Cunnigham for Lcκ,κ, both working with or under the influence of
Karp, as explained above. The definition of a consistency property depends
on the logic and is somewhat lengthy, so we are not going into the details of
such a definition here. The point is that it is a non-trivial matter to develop
the right kind of consistency property and for a logic to have it, and the
proofs are very long.

In our work in progress we are interested in the second order or restricted
second order versions of Lcκ,κ since the application in questions, as seen above;
are sometimes expressed in that way. In this context, set variables are
bounded by an element of the chain. We are in the process of verifying
the following theorem, which at this stage we still address as a conjecture:

Conjecture 5.3 L2,c
κ,κ has a consistency property, so that a sentence of L2,c

κ,κ

has a model iff it belongs to a consistency property.
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Recall that the full logic Lκ,κ does not have the consistency property or
MET but Lcκ,κ does. This is because it is easier for a sentence to have a chain
model than a full model, as the following example shows.

Example 5.4 Consider the sentence “< is a well order”. We can construct
a chain model of this sentence which is not a real model by taking increasing
disjoint blocks of size i1,i2 etc. and putting them below each other in the
order <. The chain model so obtained satisfies that < is a well order because
no bounded piece of it contains an infinite <-decreasing sequence, yet the
actual model contains such a sequence.

Let us finish by proving that even the chain models are not going to help
us to obtain a compact, or even countably compact second order logic.

Theorem 5.5 Second order logic is not countably compact even in chain
models.

Proof Let θ be a second order sentence which says that < is a well-order
on some predicate P . In chain models of θ we have no guarantee that < is
really a well-order because a descending sequence may cross over all the sets
Ai.

Let φ be the second order sentence ∃X∀y(P (y) → X(y)). The chain
models of φ are the chain models in which P is contained in one level of the
chain. In models of φ we have full second order quantification over subsets
of P .

In models of θ ∧ φ we know by the above that < is really a well-order
because any potential descending chain is a subset of P and hence a sub-
set of some Ai. We can now form a finitely consistent theory {θ, φ}} ∪⋃
n<ω{P (cn)} ∪ {c0 > c1 > c2 > . . .}, which has no chain models. F5.5
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