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STRICTLY POSITIVE MEASURES ON BOOLEAN ALGEBRAS

MIRNA DŽAMONJA AND GRZEGORZ PLEBANEK

Abstract. We investigate strictly positive finitely additive measures on Boolean algebras and strictly
positive Radon measures on compact zerodimensional spaces. The motivation is to find a combinatorial
characterisation of Boolean algebras which carry a strictly positive finitely additive finite measure with
some additional properties, such as separability or nonatomicity. A possible consistent characterisation
for an algebra to carry a separable strictly positive measure was suggested by Talagrand in 1980, which
is that the Stone space K of the algebra satisfies that its space M (K) of measures is weakly separable,
equivalently that C (K) embeds into l∞. We show that there is aZFC example of a Boolean algebra (so of
a compact space) which satisfies this condition and does not support a separable strictly positive measure.
However, we use this property as a tool in a proof which shows that underMA+¬CH every atomless ccc
Boolean algebra of size < c carries a nonatomic strictly positive measure. Examples are given to show that
this result does not hold in ZFC. Finally, we obtain a characterisation of Boolean algebras that carry a
strictly positive nonatomic measure in terms of a chain condition, and we draw the conclusion that under
MA+¬CH every atomless ccc Boolean algebra satisfies this stronger chain condition.

§0. Introduction. All terms necessary to understand this paper are given in the
preliminaries. Some terms are used only in the introduction and are given without
definition.
A strictly positive measure on a Boolean algebra is a finitely or countably additive
(depending on the context) measure which assigns positive value to every nonzero
element of the algebra. Recognising by means of a combinatorial criterion which
algebras carry such a measure has been a topic of continuos interest at least since
von Neumann asked in 1937 in The Scottish Book (see [21]) whether every ccc
weakly distributive !-complete Boolean algebra is a measure algebra. A criterion
suggested byMaharamwas the existence of a strictly positive continuos submeasure
on the algebra, and the problem if these conditions are sufficient was known as the
ControlMeasure Problem. Much progress has been achieved recently in recognising
which complete ccc Boolean algebras do carry a continuous submeasure (see [3],
[29], [10]), finally enabling Todorčević in [28] to formulate the criterion that a
complete Boolean algebra carries a strictly positive continuous submeasure iff it is

Received February 15, 2008.
2000Mathematics Subject Classification. Primary 03E75, 28E15, 54G20.
Key words and phrases. strictly positive measure, chain conditions.
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weakly distributive and satisfies the !-finite chain condition. These results reduced
von Neumann’s problem to the Control Measure Problem, whose negative solution
however was recently obtained by Talagrand ([26], taking Farah’s [9] as a basis). In
particular, Talagrand’s result answers negatively the problem of von Neumann.
Talagrand’s results bring us back to square one as far as recognising combina-
torially which !-complete ccc algebras carry a countably additive strictly positive
measure. Our emphasis however will be on finitely additive strictly positive mea-
sures. Restricting our attention to this type of measures we no longer need to
concentrate only on !-complete Boolean algebras. On the other hand, finitely ad-
ditive strictly positive measures are already a wide enough class of measures. For
example, a weakly distributive Boolean algebra carries a countably additive strictly
positive measure iff it carries a finitely additive strictly positive measure (see [13])
and every Radon (so countably additive) measure supported by a zerodimensional
compact space is the natural extension to its Stone space of a strictly positive finitely
additive measure on a Boolean algebra. An important point is that there is already
a combinatorial criterion on the Boolean algebras that carry a strictly positive fi-
nitely additive measure, namely Kelley’s criterion from [19], see the preliminaries.
The purpose of our work is to investigate possible improvements of this criterion
which will enable us to recognise when the Boolean algebra supports a strictly pos-
itive finitely additive measure with additional features, such as being separable or
nonatomic. Separable measures are those for which there is a countable subset of
the algebra which approximates all elements of the algebra arbitrarily close in the
measure. Such measures are considered as the most natural ones (see e.g. [25]), in
particular because the most common examples of measures (such as the Lebesgue
measure on the unit interval) have this property. Separable compact spaces sup-
port a somewhat trivial separable Radon measure, namely a weighted sum of the
point-weight measures for the points of a countable dense set. It is more difficult
to support a measure in which all points have measure zero. Nonatomic measures
are the analogue of this notion for Boolean algebras. Of course, the existence of a
countably additive strictly positive measure on a Boolean algebra can be viewed as
a property that strengthens the property of supporting just a finitely additive strictly
positive measure, so this line of research may be viewed also in the light of trying to
add something to the conditions by von Neumann andMaharam to find the condi-
tions that actually do characterise measure algebras. Here we however concentrate
on the two properties we discussed above, separability and nonatomicity.
A condition for the existence of a strictly positive separable measure on a Boolean
algebra was suggested by Talagrand in [25]. We call this condition approximability.
Talagrand showed that under CH approximability is not sufficient for a Boolean
algebra to carry a separable strictly positive measure. We show in §1 that there
is a ZFC counterexample. The algebra showing this has size c. On the other
hand, we construct for every !-finite cc Boolean algebra a specific ccc forcing
which makes it have a strictly positive measure and have size ≤ c (§2). A forcing
notion with these properties is already known (see [14]), but our forcing has an
additional feature related to approximability, which allows us to show that under
MA+¬CH every atomless ccc Boolean algebra of size < c carries a nonatomic
separable strictly positive measure. (The !-finite cc condition mentioned above is
the notion introduced by Horn and Tarski in [17] and it is the same condition which
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appears in the above mentioned characterisation by Todorčević.) On the other
hand, we show that it is consistent to have a ccc Boolean algebra of size < c with
no strictly positive measure, or that there is a ccc Boolean algebra of size < c with
a strictly positive measure but not a separable such measure.
We were not able to characterise combinatorially which Boolean algebras carry
a strictly positive separable measure. However we did obtain a combinatorial
characterisation of those Boolean algebras that carry a nonatomic strictly positive
measure. The characterisation takes form of a chain condition (Theorem 2.9).
A corollary of this and the theorems mentioned above is the equivalence under
MA+¬CH between the ccc property of an atomless Boolean algebra of size < c
and the stronger chain condition given in Theorem 2.9.
Anexcellent article surveyingmany ccc conditions in topology isTodorčević’s [27].
0.1. Preliminaries. All spaces considered here are Hausdorff. Boolean algebras
are assumed to be fields of sets and so ∧ and ∩ are used interchangeably, as well as
∨ and ∪ and ≤ and ⊆. We shall use the usual convention that b0 = b and b1 = bc
for any element b of a Boolean algebra.

Definition 0.1. LetB be a Boolean algebra.
(1) B has the intersection number ≥ α if for every n < # and every n positive
elements of B, possibly with repetitions, there are at least α · n among them which
have a nonempty intersection. The intersection number of a Boolean algebraB is the
sup of all α such that the intersection number ofB is ≥ α. We denote this by int(B).

B satisfies the Kelley condition if it is a countable union of subsets with positive
intersection number.
(2) B has the !-finite cc if it is a countable union of subsets none of which has an
infinite antichain.

Note that the Kelley condition for B implies that B has the !-finite cc. The
reverse implication is not true, as shown by an example of Gaifman [15], or a later
example in Argyros in [1].
A measure on a compact K space is always assumed to be a (countably ad-
ditive) nonnegative finite Radon measure (a measure $ is Radon is $(M ) =
sup{$(F ) : F compact ⊆ M} for all measurable M ). If K is the Stone space
of a Boolean algebra B then any finitely additive measure $ on B induces in a
standard way a countably additive Radon measure $̂ on K which extends $ in the
sense that $̂([b]) = $(b) for the basic clopen set [b] determined by the element
b ∈ B. The properties of measures that will be defined both for Boolean algebras
and compact spaces all satisfy that if $ is a finitely additive measure $ on a Boolean
algebraB satisfying the named property, then the same is true of the induced mea-
sure on the Stone space ofB. In particular, by a measure on a Boolean algebra we
shall mean a finitely additive nonnegative measure. Since we deal only with finite
measures we shall for definiteness also assume that all measures in question are
probabilities.

Definition 0.2. (1) A strictly positive measure on Boolean algebra B (a com-
pact space K) is a finitely additive (Radon) measure in which every positive element
(nonempty open set) has a strictly positive measure.
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(2) A measure $ on a Boolean algebraB (compact space K) is separable if there
is a countableA contained inB (the measure algebra of $) such that for all ε > 0 and
b ∈ B (in the measure algebra of $) there is a ∈ A with $(a∆b) < ε.
(3) A measure on a Boolean algebra (compact space K) B is nonatomic if for
every ε > 0 there is a finite partition ofB (K) into elements of measure< ε. A Radon
measure on a compact space is called continuous if it vanishes at all points.
The terminology fromDefinition 0.2 is standard. The conditions of nonatomicity
and continuity are the same for Radon measures. Also note that the notion of
continuity for submeasures, as referred to in the Introduction is different than the
notion from Definition 0.2(3). We shall not deal with submeasures in this paper.
Kelley proved in [19] (see also [13], 391 J) that the Kelley condition on a Boolean
algebra is necessary and sufficient for the algebra to carry a strictly positive measure.
We are interested to find a condition which would necessitate the Boolean algebra
to carry a separable strictly positive measure. A reasonable candidate for such a
condition was proposed by Talagrand in [25], through a notion which we give below
and name approximability.
Definition 0.3. Acompact spaceK is said to be approximable if there is a sequence

〈$n : n < #〉 of probability measures on K such that for every open O ⊆ K there is
n such that $n(O) > 1/2. A Boolean algebraB is approximable if its Stone space is
approximable.
Any approximable space carries a strictly positive measure, namely the weighted
sum of the measures exemplifying approximability. Talagrand’s motivation was
from the study of the space of measures, M (K) on a compact space K . Approx-
imability of a compact space K is equivalent to the space M (K) being weakly
separable, and it can also be shown that it is equivalent to C (K) being isomorphic
to a subspace of l∞ (see [16]). Talagrand showed that under CH approximability
is not sufficient for the existence of a separable strictly positive measure. A further
motivation for the study of this question comes from C ∗-algebras, see [25] for an
explanation and further references. The class of approximable Boolean algebras
was also studied in [20].
We also recall some standard facts on measures on Boolean algebras which will
be useful in the sequel.
Fact 0.4. 1. If $ is a measure on A and B is some larger algebra then $ ad-
mits an extension to a measure & on B. Moreover, & can be defined so that
inf{&(B +A) : A ∈ A} = 0 for every B ∈ B. In particular, if $ is separable on
A then $ can be extended to a separable measure on anyB ⊇ A.

2. Let C be the measure algebra of [0, 1]κ with its product measure (κ, for some
κ > ℵ0. If $ is a separable measure on C then $ is singular with respect to (κ;
moreover, for every ε > 0 there is a ∈ C such that$(a) = 0 while (κ(a) ≥ 1−ε.
In particular, there is no strictly positive separable measure on C.

The paper is organised as follows. In the first section we show a ZFC example
of a Boolean algebra which is approximable but does not carry a strictly positive
separable measure. The second section presents a specific ccc forcing construction
which to every sigma-finite cc Boolean algebra associates a sequence of measures
witnessing that the algebra is approximable. A special feature of this sequence is that
if the Boolean algebra is atomless then each measure in the sequence is nonatomic.
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We draw the conclusion that underMA+¬CH all atomless ccc Boolean algebras of
size< c carry a nonatomic strictly positivemeasure. Wealso present a combinatorial
characterisation of those Boolean algebras that carry a nonatomic strictly positive
measure, given in terms of a chain condition. A corollary of this and the previous
theorems above is the equivalence under MA+¬CH between the ccc property of
an atomless Boolean algebra of size < c and this stronger chain condition.
In section §3 we also present two examples, showing that it is consistent that
there is a ccc Boolean algebra of size < c without any strictly positive measure,
or that there is a one which carries a strictly positive measure without carrying
any separable such measure. Already in §1 we point out examples of atomless ccc
Boolean algebras that carry no strictly positive nonatomic measure, while carrying
some strictly positive measure. We also recall some known results that might be
relevant for further research and give some questions.

§1. An approximable space with no separable strictly positive measure. In this
section we show thatTalagrand’s notion of approximability is provably not sufficient
for the underlying space (or a Boolean algebra) to carry a separable strictly positive
measure. Before embarking on that theoremwe shall isolate a property of a compact
space that will be used.

Definition 1.1. An uncountable separable compact space without isolated points
has the unique dense set property (UDSP) if there is a countable dense set D ⊆ K
such that wheneverH ⊆ K is an F! set disjoint fromD thenH is nowhere dense.
In [23] Simon (using a somewhat different terminology) constructed an UDSP
space. We shall refer to this space as the Simon space. (UDSP spaces were pre-
viously known to exist under various set-theoretic axioms, see [4] and [18]). For
completeness, at the end of this section we give a somewhat simplified ZFC con-
struction of such a space, still based on Simon’s ideas. UDSP spaces are a good
source of counterexamples because of the following observations.

Observation 1.2. LetK be a spacewithUDSP. If$ is a Radonprobabilitymeasure
on K and $(D) = 0 then $ is concentrated on a nowhere dense set. In particular, K
carries no strictly positive continuous Radon measure.
Proof. If $(D) = 0 then there are closed sets Fn ⊆ K \ D such that $(Fn) ≥
1 − 1/n. Then for H =

⋃
n∈# Fn we have $(H ) = 1 so $ vanishes on K \H . On

the other hand, the choice ofD guarantees thatH is nowhere dense, so K \H is a
nonempty open set.
Any continuous measure $ on K has the property that $(D) = 0, so the above
argument shows that such a $ cannot be strictly positive. !1.2
Observation 1.2 also implies that if K is a space with UDSP then K admits a
strictly positivemeasure (aweighted sumof pointmeasures on a countable dense set)
but carries no strictly positive homogenous measure, since homogeneous measures
are continuous. In the following theorem we start from an UDSP space to obtain
an example of an approximable space that admits no separable strictly positive
measure.

Theorem 1.3. There is an approximable space that admits no separable strictly
positive measure.
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Proof. LetK be anUDSP space of weight c, such as the Simon space or the space
given at the end of this section, and let A be its algebra of clopen sets. Since K has
no isolated points, we can without loss of generality assume that A is an atomless
subalgebra of P (#) and thatK is a compactification of # with D = # a dense set
exemplifying thatK has USDP.
Hence every A ∈ A is an infinite subset of #. This property will be important in
the proof and it is for this reason that we needed K not to have any isolated points.
Let ( stand for (#1 , the usual product measure on {0, 1}#1 and let S be the Stone
space of the corresponding measure algebra; we denote again by ( the induced
measure on the algebra C of the clopen subsets of S.
We need another Boolean algebra, for which we can take any atomless algebra I
on # generated by c many independent sets I) ⊆ # (one can easily find such I)
using the fact that the space {0, 1}c is separable).
We now consider all members

seq = (seq(n))n<# of #C such that lim
n→∞

((seq(n)) = 1,

and denote the collection of such sequences by S . Since |A| = |S | = c we can fix
a 1–1 enumeration {A) : ) < c} of nonempty elements of A and an enumeration
{seq) : ) < c} of S .
If seq ∈ S and A ∈ A then we write

B(A, seq) =
⋃

n∈A
[seq(n)× {n}],

soB(A, seq) is a result of distributing elements of seq alongA. LetB be the algebra
generated in S × # × # by the sets B) = B(A) , seq))× I) for ) < c.
Claim 1.4. The algebraB is approximable.
Proof of the Claim. ForB ∈ B and n, p < # letB(n,p) denote the (n, p)-section
of B, i.e.,

B(n,p) = {s ∈ S : (s, n, p) ∈ B}.

For such n, p we have a naturally defined measure ((n,p) onB defined by ((n,p)(B) =
((B(n,p)), so ((n,p) is a copy of ( put on a given projection ofB. We shall show that
the measures ((n,p) for n, p ∈ # demonstrate the approximability ofB.
Note that every nonempty B ∈ B contains a nonempty set B0 of the form

B0 =
⋂

)∈!

[B(A) , seq))× I)] \
⋃

*∈+

[B(A* , seq*)× I*],

where !, + are some finite subsets of c with ! ∩ + = ∅. Fix such B0. It follows that⋂
)∈! I) \

⋃
*∈+ I* is infinite, so we can pick an element p in this set. Since B0 1= ∅

then in particular A def=
⋂

)∈! A) 1= ∅ is in A. Now for any n ∈ A we have

((n,p)(B) ≥ ((n,p)(B0) ≥ ((
⋂

)∈!

seq)(n)),

and these values converge to 1 since A is infinite. This verifies the claim. !1.4
Claim 1.5. The algebraB admits no separable strictly positive measure.
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Proof of the Claim. Suppose that & is a separable measure on B. For conve-
nience, consider a larger algebra B̂ generated by all the sets of the formB(A, seq)×I ,
where A ∈ A, I ∈ I∪ {#} and seq ∈ S . Then by Fact 0.4 (1) & has an extension to
a separable measure &̂ on B̂.
Having defined &̂ we can consider its projection ontoA, namely define themeasure

$ on A by $(A) = &̂(S × A × #) for A ∈ A. We can find a decomposition
$ = $a + $c such that $∗

c ({n}) = 0 for every n while $a is a purely atomic part,
i.e., $a(A) =

∑
n∈A $

∗
a({n}) for every A ∈ A. Note that by the UDSP property for

every nonempty A ∈ A there is a nonempty A′ ∈ A with A′ ⊆ A and $c(A′) = 0.
We also define measures κn for n < # on C by letting

κn(C ) = &̂∗(C × {n}× #),

for any clopen subset C of S. Since &̂ is a separable measure so is each κn and
therefore each κn is singular with respect to (, i.e., we can find Cn ∈ C such that
((Cn) ≥ 1− 1/n while κn(Cn) = 0 (see Fact 0.4(2)).
We have (Cn)n∈# = seq) for some ) < c. We can also find a nonempty A* ∈ A

such that A* ⊆ A) and $c(A*) = 0 by the remark above. Consider now the set

B = [B(A) , seq))× I)] ∩ [B(A* , seq*)× I*] ∈ B,

which is easily seen to be nonempty. But

&(B) ≤ &̂(B(A* , seq))× #) ≤ $c(A*) +
∑

n

κn(seq)(n)) = 0.

We have now checked that no separable measure onB can be strictly positive so the
claim is verified. !1.5
It follows that the Stone space ofB the properties required by the Theorem. !1.3
As promised, we now recall Simon’s construction from [23] and enclose a slightly
simplified proof of his result. For n < # let Hn be the set of all nondecreasing
functions ϕ : n → # and let H =

⋃
n∈#Hn . Given ϕ ∈ H and g ∈ ##, write

U (ϕ, g) = {- ∈ H : ϕ ⊆ - & (∀i ∈ dom(-) \ dom(ϕ))-(i) ≥ g(i)}.

Let A be the algebra in P(H ) generated by all the sets U (ϕ, g) as above.

Lemma 1.6. If ϕ ∈ A ∈ A then there is g ∈ ## such thatU (ϕ, g) ⊆ A.
Proof. It is enough to check this for A of the form

A =
⋂

i≤k

U (ϕ′
i , g

′
i ) \

⋃

j≤m
U (ϕ′′

j , g
′′
j ).

Choose g so that g ≥ g′i for i ≤ k and g(n) > ϕ′′
j (n) whenever n ∈ dom(ϕ′′

j ) \
dom(ϕ). Then one can check thatU (ϕ, g) ⊆ A. !1.6
Lemma 1.7. Let V be a cover ofH by elements fromA. For every n ∈ # there is a
function h : # → # such that

Wn(h) := {ϕ ∈ H : (∀k ∈ dom(ϕ) \ n)ϕ(k) ≥ h(k)}

is covered by finitely many sets fromV .
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Proof. The assertion holds for n = 0: indeed, by Lemma 1.6, ∅ ∈ U (∅, h) ⊆
V ∈ V for some h, andW0(h) = U (∅, h).
We proceed by induction: given n, and suppose that g is such that Wn(g) is
covered by a finite subfamily V ′ of V . Let m = g(n) and let G be the set of
ϕ ∈ Hn+1 with values < m. For every ϕ ∈ G we may find a function gϕ such that
U (ϕ, gϕ) is contained in some Vϕ ∈ V . Finally let h be the function defined as the
maximumof g and allgϕ forϕ ∈ G . ThenWn+1(h) is covered byV ′∪{Vϕ : ϕ ∈ G}.
Indeed, if - ∈ Wn+1(h) \Wn(g) then n ∈ dom(-) and -(n) < g(n) = m. Hence
ϕ = -|(n + 1) ∈ G (as - is nondecreasing) and - ∈ U (ϕ, gϕ) ⊆ Vϕ . !1.7
Theorem 1.8. The space K = ULT(A) is an UDSP space, and specifically the set
H under its natural identification as a subset of K is a countable dense set in K such
that every F! subset of K disjoint fromH is nowhere dense.
Proof. Every U (ϕ, g) is infinite so by Lemma 1.6 every nonempty A ∈ A is
infinite; it follows easily that A is atomless and hence K has no isolated points. We
identify H as a subset of K .
Clearly H is countable and dense in K . To check the remaining property ofH it
is enough to consider a sequence V̂n, where

V̂n = {V̂ : V ∈ Vn},
and every Vn is a cover of H by elements from A. Fix ϕ0 ∈ H and we shall show
that ϕ0 lies in the interior of

⋂
n∈#

⋃
V̂n.

By Lemma 1.7 there is for every n a function hn such thatWn(hn) is covered by
a finite subfamily of Vn , and we may define h : # → # as h(n) = maxi≤n hi(n) for
n < #. Let k = dom(ϕ0).
For every n ≥ k we have U (ϕ0, h) ⊆ Wn(hn), so U (ϕ0, h) is covered by a finite
number of elements fromVn . Hence

Û (∅, h) ⊆
⋃

V∈Vn

V̂ ,

for every n ≥ k and thereforeϕ0 = ∅ lies in the interior of
⋂
n≥k

⋃
V̂n.Consequently,

it lies in the interior of
⋂
n<#

⋃
V̂n. !1.8

Simon [23] shows also that there is a whole family of topologies on #<# giving
spaces with UDSP. For instance, if F is any nonprincipial P–filter in P(#) then
such a topology +(F ) can be defined by declaring that a set U ⊆ #<# open if for
every s ∈ U the set {n : t. 〈n〉 ∈ U} is in F . It was noticed by Boban Veličković
that one can prove that the Stone–Čech compactification of +(F ) gives a space with
UDSP by an argument analogous to the one presented above. For this one can
use a description of clopen sets in +(F ), see Błaszczyk & Szymański [4]. It follows
that if F is a P–point ultrafilter then we obtain a UDSP space which is in addition
extremally disconected (Corollary 13 in [4]).

§2. A ccc forcing of nonatomic strictly positive measures.
Theorem 2.1. For every !-finite cc Boolean algebraB there is a ccc forcing which
makes the algebra approximable (and forces the size of the algebra to be≤ c). More-
over, ifB is atomless, then each measure in the sequence exemplifying approximability
is nonatomic - consequently the algebra carries a nonatomic strictly positive measure.
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The point of this theorem is the conclusion in the second sentence, because
the conclusion from the first sentence already follows from the known theorems.
Namely, ifB satisfies that its every powerBn is ccc, which is clearly the case of the
!-finite cc Boolean algebras, then by forcing with B# with finite support one can
make B !-centered. This means that the Stone space of the algebra is separable,
and hence it supports a separable strictly positive measure, namely a weighted sum
of the point masses of points in the countable dense set. We include a simple proof
of the instance of this most relevant to us, (see [14], 43F (b) for more discussion
and references):
Fact 2.2. Suppose that MA+¬CH holds. Then every ccc compact space of /-
weight < c is separable.
Proof. Let K be as in the assumptions and let P be a /-base of K of cardinality
< c. Under MA+¬CH, K# is also ccc and we work in this space. Let for given
p ∈ P the family U (p) consist of basic open rectangles inK# with at least one side
equal p.
Then the union of U (p) is dense open in K# . Applying MA, there is x ∈ K#

which is in
⋃
U (p) for every p ∈ P. Let x = (xn)n. We claim that {xn : n < #}

is a dense set in K . Namely, if U is open nonempty in K then there is p ∈ P with
p ⊆ U . But x ∈

⋃
U (p) implies xn ∈ p, for some n, hence xn ∈ U . !2.2

Using this fact and the point mass measures we obtain that ifMA+¬CH holds
then any ccc Boolean algebra of size< c carries a separable strictly positive measure
(and is hence certainly approximable). However, since this measure is induced
by a weighted sum of point masses on the Stone space, the measure is clearly not
nonatomic. Thequestion is if we can also obtain such ameasurewhich is nonatomic.
The conclusion of our theorem is that this is indeed the case if the Boolean algebra
we start is atomless. Approximability is simply used as a tool.
After giving the proof of the theorem we shall spell out its corollary under
MA+¬CH and further discuss spaces of weight < c. Let us now carry on to the
proof of Theorem 2.1.
Proof of Theorem 2.1.. Let B satisfy the assumptions of the theorem and let

B =
⋃
n<#Bn be such that no Bn has an infinite antichain. We shall define a

forcing notion P as required. P is defined naturally, so its conditions are of the form

p = (Ap, F p, 〈$pn : n ∈ F p〉)

whereAp is a finite subalgebra ofB, F p is a finite subset of#, and for every n ∈ F p
we have $pn which is a finitely additive probability measure on Ap taking rational
values. The extension is also defined in a natural way, so p ≤ q (q is stronger) if
Ap ⊆ Aq , F p ⊆ F q and for every n ∈ F p we have that $qn " Ap = $pn .
It will be easily checked that the forcing makes B approximable, and the main
point will be to verify that the forcing is in fact ccc. For this we shall use the
following amalgamation theorem due to Strassen [24] (see also [14] 453A, 453C,
453D), which also can be used to verify the various statements of the following
Claim 2.4.
Amalgamation Theorem 2.3 (Strassen). Suppose that we have two Boolean sub-
algebras A0 and A1 of a Boolean algebra A with measures $0 and $1 respectively,
satisfying that $0 " (A0 ∩A1) = $1 " (A0 ∩A1). A necessary and sufficient condition
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for there to exist a measure $ on 〈A0∪A1〉A extending both $0 and $1 is that for every
l ∈ {0, 1}, a ∈ Al and b ∈ A1−l , if a ⊆ b then $l (a) ≤ $1−l (b).
Claim 2.4. P forcesB to be approximable.
Proof of the Claim. LetG be P-generic and for each n let $n =

⋃
{$pn : p ∈ G}.

ApplyingTheorem2.3, it easily follows by genericity that each$n is a finitely additive
probability measure onB. If b ∈ B+ then the set

Db = {p ∈ P : b ∈ Ap & $pn (b) > 1/2 for some n ∈ F p}

is dense, because if b ∈ B+ is given, we can let Aq be 〈Ap ∪ {b}〉B and choose
n /∈ F p to define $qn onBq so that $qn(b) > 1/2. !2.4
Main Claim 2.5. P is ccc.
Proof of the Claim. Suppose that we are given ℵ1 many distinct conditions

{pα : α < #1} in P. We shall denote Apα by Aα , F pα by Fα and $pαi by $α
i . By

passing to a subset if necessary we can assume that all Fα are the same set F and
that Aα’s form a ∆-system with root A∗. We may also assume that for every o ∈ F
the restriction $α

o " A∗ is fixed, since the measures only assume rational values.
By further trimming if necessary, we may assume that there is a fixed num-
ber m∗ ≥ 1 such that each Aα is generated over A∗ by m∗ many additional
elements Aα = {aα0 , . . . , aαm∗−1}. Since the Boolean algebras in question are fi-
nite and the measures take rational values, we may assume that for every o ∈ F
and Boolean formula ϕ(x0, . . . , xm∗−1;A∗) with parameters in A∗, denoting bϕα =
ϕ[aα0 , . . . , a

α
m∗−1;A

∗] for α < #1, the measure $α
o (b

ϕ
α ) does not depend on α. We

may also assume that for each such ϕ there is a fixed n = nϕ such that all bϕα belong
to Bn. Using Ramsey theorem we can assume that for the first # many α, the
sequences 〈aα0 , . . . aαm∗−1〉 are 2-indiscernible over A∗, so for any 0 < 1 < # and any
Boolean formula ϕ(x0, . . . , x2m∗−1;A∗) with parameters in A∗, the truth value of
ϕ(a00 , . . . , a

0
m∗−1, a

1
0 , . . . , a

1
m∗−1;A

∗) does not depend on the actual values of 0 < 1.
We now show that for every α,2 < # the conditions pα and p2 are compatible.
Let us fix such α,2 . We need to show that for every o ∈ F there is a measure $o on
〈Aα ∪ A2〉B which extends $α

o ∪ $2
o . It suffices to show this for one o at a time, so

we can fix such o and for simplicity in notation we shall write $α for $α
o . We need

to verify the amalgamation condition from the Amalgamation Theorem. It will be
more convenient to use the set theoretic notation, and we shall use the fact that the
measures are finitely additive.
Let {f0, . . . f2m∗−1} enumerate m

∗
2. It is well known (see [22]) that every el-

ement of Aα is obtained as the disjoint union
⋃
f∈m∗2[

⋂
i<m∗(aiα)

f(i) ∩ xf ] for
some {xf0 , . . . , xf2m∗−1

} in A∗, and similarly for A2 . Suppose that for some
{xf, yf : f ∈ m∗

2} in A∗ we have
⋃

f∈m∗2

[
⋂

i<m∗

(aiα)
f(i) ∩ xf ] ⊆

⋃

f∈m∗2

[
⋂

i<m∗

(ai2)
f(i) ∩ yf ].

Suppose for a contradiction that

$α(
⋃

f∈m∗2

[
⋂

i<m∗

(aiα)
f(i) ∩ xf ]) > $2(

⋃

h∈m∗2

[
⋂

i<m∗

(ai2 )
h(i) ∩ yh ]).
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By one of our assumptions we have

$α(
⋃

f∈m∗2

[
⋂

i<m∗

(aiα)
f(i) ∩ xf ]) = $2 (

⋃

f∈m∗2

[
⋂

i<m∗

(ai2)
f(i) ∩ xf]).

Substituting and simplifying we obtain that it must be the case that

$2 (
⋃

f∈m∗2

[
⋂

i<m∗

(ai2)
f(i) ∩ xf ∩

⋂

h∈m∗2

ych ]) > 0,

so there must be f ∈ m∗
2 such that
⋂

i<m∗

(ai2)
f(i) ∩ xf ∩

⋂

h∈m∗2

ych 1= ∅.

This implies that for every 0 < #1 we have
⋂
i<m∗(ai0)

f(i) ∩xf ∩
⋂
h∈m∗2 y

c
h 1= ∅, and

applying the fact that all these elements of B come from the same subset of B in
which there are no infinite antichains we obtain that there are 0 < 1 < # such that⋂
i<m∗ [(ai0)

f(i) ∩ (ai1)f(i)] ∩ xf ∩
⋂
h∈m∗2 y

c
h 1= ∅. By indiscernibility we have that

⋂

i<m∗

[(aiα)
f(i) ∩ (ai2)f(i)] ∩ xf ∩

⋂

h∈m∗2

ych 1= ∅.

However,
⋂

i<m∗

[(aiα)
f(i) ∩ xf ∩ (ai2)f(i)] ⊆

⋃

h∈m∗2

[
⋂

j<m∗

(aj2 )
h(j) ∩ yh ] ∩

⋂

i<m∗

(ai2)
f(i).

Noticing that forf 1= h we have
⋂
i<m∗(ai2)

f(i) ∩
⋂
j<m∗(aj2)

h(j) = ∅, we obtain that
the right-hand side is simply

⋂
j<m∗(aj2 )

f(j) ∩ yf , which is disjoint from
⋂
j<m∗ ych ,

a contradiction. !2.5
Finally we shall note that all the measures on the sequence exemplifying ap-
proximability are nonatomic, hence certainly their weighted sum is nonatomic as
well.
Claim 2.6. Let P, B be as in above and further suppose that B is atomless. Let

〈$n : n < #〉 in V P be the sequence of measures obtained by forcing with P. Then for
each n the measure is nonatomic.
Proof. Let m, n < #. We shall show that the set of conditions in P which force
that there is a partition of unity inB in which each element has$n-measure< 1/m,
is dense in P.
Given p ∈ P. By defining $pn trivially if necessary we can assume n ∈ F p. Let

{c0, c1, . . . , ck−1} be the atoms of Ap, which exist as Ap is finite. Note that these
atoms form a partition of unity in Ap. It suffices to define by induction on i ≤ k a
sequence q0 = p ≤ q1 ≤ . . . qk of extensions of p such that in each Aqi+1 there is a
partition of ci into pieces of $n-measure < 1/m. Given qi , let {d ij : j < ji} be the
atoms of Aqi which are contained in ci . SinceB is atomless we can for each j find a
partition of d ij into at leastm+1 disjoint pieces e

i,j
0 , . . . e

i,j
m+1. Let A

i be the algebra
with the largest element ci and generated by all e

i,j
0 , . . . e

i,j
m+1 for j < ji . We can

define a measure $i on Ai with $i(d ij) = $qin (d ij) and $(ei,jl ) < 1/m for every l, j.
By the Amalgamation Lemma and the fact that Ai ∩ Aqi is the algebra generated
by all d ij for j < ji , we can find a measure $

i
n ⊇ $qin ∪ $i defined on 〈A ∪ Aqi 〉, and
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hence we can extend qi to a condition in qi+1 as required. The conclusion follows
by considering qk !2.6

!2.1
Note 2.7. If B is approximable then C (K) embeds into l∞ (see [25]), where K
is the Stone space of B. Hence we would expect B to have the size of at most the
continuum in V P. This is exactly what happens because one can easily see that P adds
|B| many reals,

〈$n(b) : n < #〉 for b ∈ B.

With the notation of Theorem 2.1 we note thatB has the Kelley property in V P

(as it is approximable), and hence it carries a strictly positive measure. In V P the
size of the algebra is ≤ c, so the Radon measure induced on the Stone space ofB
has Maharam dimension at most c. By a result of Dow and Steprans in [7] this
means that in V P the algebraB must be ! − n-linked for every n (see section 3 for
a discussion).
We can spell out the meaning of Theorem 2.1 in the context ofMA+¬CH:
Corollary 2.8. If MA+¬CH holds then every ccc topological 0-dimensional
space of weight < c and no isolated points supports a strictly positive continuous
measure. Similarly, every ccc atomless Boolean algebra of size < c carries a strictly
positive nonatomic measure.
Proof. For the first statement, let K be such a space, so it is the Stone space
of a ccc Boolean algebra B of size c which is atomless. Since by Fact 2.2 K is
separable it certainly supports some strictly positive measure, namely a weighted
sum of point measures. In particular B satisfies Kelley’s condition and hence by
Theorem 2.1 has a sequence 〈$n : n < #〉 exemplifying its approximability, and
obtained by forcing with P. By Claim 2.6 a weighted sum of these measures will be
a measure as required.
The second statement is proved similarly and even more directly. !2.8
A theorembyMägerl andNamioka (seeTheorem3.4) shows that approximability
of a Boolean algebra is a chain condition. It remains unclear if there is an analogous
chain condition characterising algebras with strictly positive separable measures.
We note, however, that algebras with strictly positive nonatomic measures can be
characterised as follows.
Theorem 2.9. A Boolean algebraB carries a strictly positive nonatomic measure
iff there is a decompositionB \ {0} =

⋃
n<# Bn , where for each n we have

(i) Bn ⊆ Bn+1;
(ii) int(Bn) ≥ 2−n;
(iii) if a ∈ Bn then there are disjoint b, c ∈ Bn+1 with b ∪ c ≤ a.
We shall take for granted the following fact, appearing as part of Kelley’s proof
in [19] and taken in this form from [13], Proposition 391 I.
Fact 2.10. Let A be a Boolean algebra and A ⊆ A \ {0} nonempty. Then

int(A) = max
&
inf
a∈A

&(A),

where max is taken over all probability (finitely additive) measures on A.
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Proof of Theorem 2.9.. If $ is a strictly positive nonatomic measure onB then
we takeBn = {b ∈ B : $(b) > 2−n}. Then (i) is obvious and (ii) is easily seen to
hold.
Condition (iii) follows from nonatomicity. It is well–known that if & is a
nonatomic Radon measure (on a compact space K) then & has the following Dar-
boux property: for every Borel set B ⊆ K and 0 < r < &(B) there is a compact set
F ⊆ B with &(F ) = r. We can apply this remark to & = $̂, the Radon measure
corresponding to $ on the Stone space K of B. Since $ is nonatomic, so is &.
Suppose that a ∈ Bn, so â is a nonempty clopen set in K with &(â) > 2−n and
therefore there are disjoint compact sets F1, F2 ⊆ â of measure> 2−n−1. Now there
are disjoint b, c ∈ B such that b, c ≤ a and F1 ⊆ b̂, F2 ⊆ ĉ, and this verifies (iii).
If there is a decomposition of B satisfying (i)–(iii) then by Fact 2.10 for each
n we can define a probability measure $n on B such that for all b ∈ Bn we have
$n(b) ≥ 2−n. We let $ be any cluster point of the sequence ($n)n. It is easily seen
that $ is a probability measure onB.
Note that if a ∈ Bn then $(a) ≥ 2−n. Indeed, by induction on k it easily
follows that for all k ≥ n there are 2k−n pairwise disjoint elements inBk contained
in a. Hence for such n, k we have $k(a) ≥ 2k−n · 2−k = 2−n. Consequently,
$(a) ≥ 2−n > 0.
Hence $ is strictly positive. We can wlog assume that 1 ∈ B0, and apply the
previous remark to a = 1: for every n there are pairwise disjoint bi ∈ Bn,
0 ≤ i ≤ 2n − 1. Then $(bi) ≥ 2−n so necesarily $(Bi ) = 2−n and this shows
that $ is nonatomic. !2.9
Theorem 2.9 allows us to state the following
Corollary 2.11. AssumeMA+¬CH. Then for atomless Boolean algebrasB of
size < c, the following are equivalent
(i) B is ccc, and
(ii) B satisfies the chain condition from Theorem 2.9.
Finally we remark that the method of the proof of Theorem 2.1 can be seen
as a template for obtaining various measures on a Boolean algebra with different
properties. For the Corollary 2.8 we could have used a subcase of the method in
which we would have only forced one measure and required it to be strictly positive
and nonatomic.

§3. Boolean algebras of small size and some combinatorial conditions. Corol-
lary 2.8 suggests a few more questions about Boolean algebras of size < c, which
we shall consider in this section. We shall first show that Corollary 2.8 cannot be
proved in ZFC. In the original version of the paper we noticed that by a modifica-
tion of a classical Gaifman space, se e.g. [6] Theorem 6.23 or [2], one can define a
Boolean algebra of size non(M ), which is ccc (in fact satisfies Knaster’s condition)
but carries no strictly positive measure. The referee remarked that a construction
due to Todorcevic [27], Theorem 8.4, gives an analogous algebra of cardinality the
smaller cardinal invariant add(N ), the additivity of the Lebesgue measure. We give
a sketch of the argument.
Theorem 3.1 (Todorčević). There is a Boolean algebra A such that
(i) |A| = add(N ),
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(ii) A is ccc but not !–centred,
(iii) A is generated by a subfamily G with the property that if a, b ∈ G then a ≤ b,

b ≤ a or a · b = 0.
Consequently, there is no strictly positive measure onA.
Proof. In [27] Theorem 8.4 there is a construction of a Boolean algebra B
given by two sets of generators. Taking only the first kind of generators Ta from
that construction we obtain a subalgebra A of B satisfying the properties (i)–(iii)
above. We shall only check that (ii) and (iii) imply thatA carries no strictly positive
measure, because this fact is not mentioned explicitely in [27].
Lemma 3.2. Suppose that an algebra A is generated by a subfamily G such that if
a, b ∈ G then a ≤ b, b ≤ a or a · b = 0, and that A is not !-centred. Then A carries
no strictly positive measure.
Proof. Assume that $ is a strictly positive measure onA. Fix r > 0 and consider
Gr = {g ∈ G : $(g) > r}. Let L0 be a maximal linearly ordered part of Gr ; denote
r0 = inf{$(a) : a ∈ L0} and take a0 ∈ L0 such that $(a0) < r0 + r/2.
Then L1 be a maximal linearly ordered part ofG \L0; define r1 and a1 as above,
etc.
The point is that for k 1= l the elements ak and al are disjoint. Let us show this
on the example of a0 and a1: indeed, by maximality of L0 there are x0 ∈ L0 and
x1 ∈ L1 such that x0x1 = 0. Suppose that a0 and a1 are not disjoint. We have
$(a0 − x0) < r/2, $(x1) ≥ r, so x1 cannot be below a0. If x1 ≤ a1 this gives that
a1 is not below a0. If a1 ≤ x1 and a1 ≤ a0 then a1 ≤ x1 · a0 ≤ a0 \ x0, which is
a contradiction. Therefore since x1 and a1 are both from L1 we conclude that a1
cannot be below a0.
If a0 ≤ a1 and a1 ≤ x1 we get a contradiction wth x0 · x1 = 0. If a0 ≤ a1 and
x1 ≤ a1, since $(a1) < r1 + r/2 we have $(a1 \ x1) < r/2, yet a0 · x0 ≤ a1 \ x1, a
contradiction.
It is now clear that the process of defining Ln’s will stop after at most 1/r steps.
Therefore Gr is finitely centred and thus G (and consequently A) is !–centred, a
contradiction. !3.2

!3.1
Next we show an example of small (i.e., of size < c) Boolean algebra admitting
a strictly positive measure but no separable strictly positive measure. Let (κ be the
usual product measure on {0, 1}κ and letNκ be the corresponding ideal of null sets.
We consider the measure algebraA of (#1 and its Stone space S = ULT(A); let & be
the Radon measure on S induced by (#1 . Recall that cof(N#) = cof(N#1 ) agrees
with the cofinality of the ideal of &–null sets, see [12]. Also recall that it is consistent
that cof(N#) = #1 < c; this is so in the Sacks model, see e.g. [5].
Theorem 3.3. Assuming cof(N#) = #1 there is a Boolean algebraB of cardinality

#1 such thatB has a strictly positive measure but carries no strictly positive separable
measure.
Proof. By our assumption and the remarks preceding the Theorem we can find
a family {Z) : ) < #1} of closed subsets of S with ((Z)) = 0, which is cofinal for
the ideal of &–null sets. We can moreover assume that every Z) is a G1 so we can
for every ) <# 1 fix a decreasing sequence (a)n )n∈# in A such that Z) =

⋂
n∈# â

)
n .
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Note that for every * < #1 there is 0 1= b* ∈ A such that whenever ) < * then
b* · a)n = 0 for n large enough (indeed we have only countably many sequences on
which the measure tends to 0).
LetB be the algebra generated by all b*, * < #1. ThenB is a subalgebra of A of
size #1 and clearlyB has a strictly positive measure.
Consider any separable measure$0 onB. Then $0 can be extended to a separable
measure $ on A (see Fact 0.4). The measure $, as a measure on S, is concentrated
on some set

⋃
n∈# Zn where Zn are closed and ((Zn) = 0 for every n. We have

Zn ⊆ Z)n for some )n; take any * with #1 > * > )n for every n. We have

b̂* ∩
⋃

n∈#

Zn = ∅,

which gives $(b*) = 0 and hence $0(b*) = 0, i.e., $0 is not strictly positive
onB. !3.3
For completeness, we mention now a couple of known results about decompo-
sitions of Boolean algebras. Theorem 2.3 of [20] gives a combinatorial characteri-
sation of approximable Boolean algebras. The proof uses the equivalence between
approximability of a Boolean algebra B and the weak∗ separability of the space
M+1 (K), where K is the Stone space of B, and is phrased in terms of /-bases of
compact Hausdorff spaces. As the direct argument in the language used here is very
simple we include it for convenience. It is conceivable that adding some properties
to this characterisation would indeed give a characterisation of Boolean algebras
that carry a separable strictly positive measure- we clearly have not been able to do
this.
Theorem 3.4 (Mägerl–Namioka). A Boolean algebra B is approximable iff for
every ε > 0 (equivalently: for some ε ∈ (0, 1)) there is a decomposition B \ {0} =⋃
n<# Bε

n , where for each n we have int(Bε
n) ≥ 1− ε.

Proof. In the forward direction, suppose that 〈$n : n < #〉 is a sequence of
measures exemplifying the approximability of a Boolean algebraB. Given ε > 0.
Let Bε

n = {b ∈ B : $n(b) > 1 − ε}. Since $n is a measure on B such that
$n(b) > 1− ε for all b ∈ Bε

n we have by Fact 2.10 that int(B
ε
n) ≥ 1− ε. It follows

from the choice of $n’s thatB \ {0} =
⋃
n<# Bε

n.
In the other direction let us consider for eachm ≥ 1 the decompositionB\{0} =⋃
n<# B

1/m
n . Using the choice of these sets and Fact 2.10 we can define a measure

$mn on B such that for all b ∈ Bmn we have $
m
n (b) ≥ 1 − 1/m. Reenumerating

〈$mn : n < #, 1 ≤ m〉 as 〈$n : n < #〉 we obtain the measures that exemplify thatB
is approximable. !3.4
We note that Dow and Steprans in [7] obtain a combinatorial criterion that
distinguishes measure algebras of type≤ c for larger ones. Namely, they prove that
the measure algebra on 2κ for κ ≤ c is ! − n linked for each n < #, and it is not
! − n linked for κ > c.
We finish by mentioning a question of a different nature. It is clear that every
approximable Boolean algebra carries a strictly positive measure, as such a measure
can be obtained as a weighted sum of the measures on the sequence exemplifying
approximability. The notion of approximability can be easily generalised to higher
dimensions:
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Definition 3.5. A compact space K is said to be κ-approximable if there is a
sequence 〈$α : α < κ〉 of probability measures on K such that for every open O ⊆ K
there is α such that $α(O) > 1/2. A Boolean algebra B is κ-approximable if its
Stone space is κ-approximable.

ClearlyK is κ-approximable iffC (K) embeds into l∞(κ). There does not seem to
be anything in κ-approximability that guarantees the existence of a strictly positive
measure. Also note that κ = ℵ0 is rather special in that every separable compact
space is the support of a separable measure, but this fact need not generalise to
κ > ℵ0. Hence we can ask:

Question 3.6. Suppose that a Boolean algebra satisfies the Kelley property and
is κ-approximable. Is there necessarily a strictly positive measure on B of measure
density κ?
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[29] B. Veličković, CCC forcings and splitting reals, Israel Journal of Mathematics, vol. 147 (2005),

pp. 209–220.

SCHOOL OFMATHEMATICS
UNIVERSITY OF EAST ANGLIA
NORWICH NR47TJ, UK

E-mail: h020@uea.ac.uk

INSTITUTE OFMATHEMATICS
WROCłAWUNIVERSITY
2/4 PL. GRUNWALDZKI
50–384 WROCłAW, POLAND

E-mail: grzes@math.uni.wroc.pl


