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ABSTRACT. We use methods from mathematical logic to give new
examples of paragraded structures, showing that at certain car-
dinals all first order structures are paragraded. We introduce the
notion of bi-embeddability to measure when two paragraded struc-
tures are basically the same. We prove that the bi-embeddability
of the paragraduating system gives rise to the bi-embeddability of
the limiting structures. Under certain circumstances the converse
is also true, as we show here. Finally, we show that one paragraded
structure can have many graded substructures, to the extent that
the number of the same is not always decidable by the axioms of
set theory.
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1. Introduction

In abstract algebra, a graded structure, may it be a ring a module or an
algebra, is defined using a gradation, which is a sequence of substruc-
tures indexed using a monoid, most commonly N or Z. For example, a
graded ring is a ring R which is a direct sum of abelian groups R; (i € Z)
satisfying that ;- R; C R;;;. Examples of graded structures are com-
mon in mathematics, and include polynomial rings and tensor algebras.
These structures are classic and were introduced first by Bourbaki [1],
in the case of groups and rings, but with the requirement that the
graduated ring is based on an abelian graduated group. Although this
requirement is fulfilled in the case of interest in [1], the requirement that
the group is abelian is not necessary. This was shown in the definition
given by Krasner in [5], which can also be found in Krasner [6] and in
Krasner-Vukovié¢ [9]. A generalisation of graded scructures is provided
by the notion of paragraduation, which was introduced by Krasner and
Vukovié¢ in a series of papers, starting with [7], further work in [8], [10]
and others. The advantage of this generalisation is that the category
of paragraded structures is closed under direct and Cartesian prod-
ucts preserving the homogeneous parts, which is not the case with the
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classical graded structures. In further work Vukovi¢ and her collabo-
rators, including Ili¢-Georgijevié, (for example [3]) found many other
nice algebraic properties of the category of paragraded structures. It is
natural then to ask what kinds of new examples this category provides
compared with the classical case of the graded structures, apart from
the ones coming from the products of graded structures. In this pa-
per we use methods of mathematical logic to give some new examples
of paragraded structures and show the surprising result that at certain
cardinals all first order structures are paragraded. We also ask the nat-
ural question of when two paragraded structures are basically the same,
introducing the notion of bi-embeddability to measure this. Finally, to
stress the difference between the graded and the paragraded context,
we show that many graded substructures can exists as substructures of
a given paragraded one.

We also investigate a question of the similarity of the limiting struc-
tures of two paragraded systems, proving that the bi-embeddability of
the system gives rise to the bi-embeddability of the limiting structures.
We consider the question of when the converse is true and provide sev-
eral answers. This is done in §3. In §4 we show that any first order
structure whose size is an uncountable regular cardinal is paragraded,
using elementary chains, hence showing that the main interest of para-
graded structures rests in the context of the countable. In §5 we inves-
tigate the question of the graded substructures of a given paragraded
structure and give an example of one paragraded structure which has
2% graded substructures, hence a number not even determined by the
usual axioms of set theory.

All the basic definitions needed in the paper are recalled in §2. Al-
though much of what we say can be applied to any category of para-
graded algebraic structures, for clarity of presentation we limit our-
selves to groups.

2. Background : the definition of a paragraded struc-
ture and elementary chains

Many readers of this volume, to a significant extent devoted to the
memory of Prof. Krasner, will certainly be already familar with the
idea of a paragraded structure. For the convenience of the remaining
readers, we choose to repeat the definition here. For simplicity, we
only give the definition in the case of groups. Our notation for groups
is multiplicative. For x,y which belong to a group G, by z(z,y) we
denote the commutator yzry~'z~! (also often denoted by [z, y] in the
literature).

Definition 2.1. Let (A, <) be a partially ordered set such that for any
A" C A there is an infimum, denoted inf A’, and such that any non
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co-final chain C C A has an upper bound in A (note ). We let the
manimal element of A be denoted by Op. A paragraduation of a group
G by the order A is a system of subgroups {Gs: § € A} such that:

(1) GOA = {6}, 0 < ) = G5 - G(;,

(2) each Gs is a normal subgroup of G,

(3) ZfAl g A then Gian/ = ﬂ&eA’ G(;,

(4) denoting H = \Jsc o Gs, which is called the set of homogeneous
elements, we have that for every A C G (proper subset) satis-
fying that z,y € A = xy € H, there exist ) € A such that
A C G,

(5) H generates G by the relations vy = z and xy = z(x,y)yx
where z(x,y) is the commutator of x and y.

We say that G is the limiting structure of the paragraduation (G5 : § €
A).

A point that we shall make in Theorem 4.1 is that the familiar no-
tion of an elementary chain from model theory gives a paragraduation,
hence we pause to give the required definitions. For the readers not
familiar with elementary submodels, the idea is that a submodel 2l of a
model B is elementary if it solves all the equations with the parameters
in 2 which are solvable in B.

Definition 2.2. (1) Suppose that A and B are models of the same
language £ and A C B. Then A is an elementary submodel of B,
written A < B, if for all formulas p(Z) of L (possibly with parameters)
and all elements a of A such that p(a) is defined, we have A = ¢(a)
iff B = p(a).

(2) An elementary chain is a sequence (U, : o < a*) of models indexed
by some ordinal o* and such that for each a we have Ay < Aqy1.

Finally, we recall the notion of a club subset of an ordinal.

Definition 2.3. Suppose that C C « for some ordinal o. The set C' is
said to be closed if it contains all its limit points in the order topology
of a,, which means that for any v < «, if sup(C N~vy) =, then v € C.
The set C is said to be unbounded if for every v < « there is v with
v <+ <aandy € C. Finally, the set C is said to be club if it is
both closed and unbounded.

3. Bi-embeddability

Since our aim is to seearch for novel examples of paragraded struc-
tures, it is of interest to know when two paragraded structures are

Lwe wish to be able to study the case when A itself does not have the maximal
element, hence we only require the non-cofinal chains to be bounded, not all the

chains
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essentially the same, even if they may be given by different paragrad-
uations. Finding the right notion capturing this is the purpose of this
section.

We start by a given graded structure 2 (it could be a group, a
ring, an algebra ...) with a gradation 2; (i € I) and we explore the
question of how many essentially different paragraded structures we can
construct as substructures of 2. For purposes of readability, we shall
first consider the simplest graduation, that one by N and the simplest
graded structure, that of a graded group. The ideas presented here
can easily be extended to more complex gradations and more involved
algebraic structures.

Example 3.1. Suppose that (G; : i € N) is a graduation with the
limiting group G. Let A C N be any subset which is closed under +
and -. Then, clearly, the same gradation used to construct G induces
a graded structure whose homogeneous part is |J;,cp Gi and which is
generated inside of G by this homogeneous part. To satisfy the defini-
tion of a graded structure we had to restrict our restriction to subsets
closed under + and -. The definition of a paragraded structure (see
§2) lets us exit this paradigm and concentrate on the order structure
of N, so just the underlying set w and the natural order < on it. For
example, the chain (G (i € N)) gives a graduation of G, but the chain
Go, Gai+1 (i € N) does not. However the latter structure does give rise
to a paragraduation.

The process from Example 3.1, though, feels far from the desired gen-
eralisation since the homogeneous elements of the two paragraduations
Uien G2i and Go U ey G2i41 will generate the same group, namely
G. As paragraded structures, the two chains allow homomorphic em-
beddings? into each other, so are basically the same. This example
leads us to refine what we consider as essentially different paragraded
structures, as we now define.

Definition 3.2. (1) Two structures 2 and B of the same type (so in
particular, groups, rings. etc.) are said to be bi-emeddable if there is
an isomorphic embedding from A to B and an isomorphic embedding
from B to .

(2) Suppose that ; (i € I) and B, (j € J) are paragraduations of two
structures of the same type (a group, a ring, an algebra ...). We say
that the two paragraduations are bi-emeddable if for all i € 1 there is
J € J and a homomorphism ; ; from ; to B;, and vice versa, or all
Jj € J there is i € I and a homomorphism ;; from B; to A;, and
moreover the homomorphisms are such that i <y i, = ¢;; C ¢ ;
for any fized j and j <y j' = ;; C ¥y, for any fived i.

2following the tradition in model theory, what is called homomorphism in alge-
bra, will from this point be called isomorphic embedding and is applicable to other
structures but to those coming from algebra.
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(3) Two paragraded structures of the same type are said to be essentially
different if they are not bi-emebeddable.

We see in the above simple example of odd versus even paragrad-
uation of a paragraded group, that the two paragraduations are bi-
emeddable. Here is an observation which shows that the limiting struc-
tures of two bi-emeddable paragraded structures are also bi-embeddable.

Theorem 3.3. Suppose that A; (i € I) and B;(j € J) are two bi-
embeddable paragraded groups, rings or algebras, respectively. Then
the limiting groups (respectively rings, algebras) generated by the ho-
mogeneous elements of the two paragraduations are also bi-embeddable.

Proof. Let us again concentrate on the case of paragraded groups, say
G]I and GJ].

In the forward direction, for ¢« € I and j € J let ¢;; and ;; be
the embeddings witnessing that Definition 3.2(2) is satisfied, which
exist by the assumption of the bi-embeddability of the paragraduations.
Let Hy and Hj denote the sets of homogeneous elements of the two
paragraduations and Gy and Gy the paragraded groups generated by
Hy and Hj respectively. To produce an isomorphic embedding ¢ from
Gr to Gy it then suffices to obtain the restriction of this embedding
on Hy, and then to extend it using the equations used to generate the
paragraded groups, and vice versa. An isomorphic embeddding from
Hy to Hjy is given by letting ¢(x) = y if there exists i € [ and j € J
such that ¢; j(x) = y. Let us check that this is indeed a well-defined
isomorphic embedding.

If x € Hy, then there exist ¢ € I such that x € H;, and therefore
by the choice of the bi-embedability witnesses, there exists j € J such
that ¢; ;() is defined. Moreover the value of ¢; ;(z) does not depend
on j, and hence the function ¢ is well-defined on the entire Hy. We can
similarly check that this function is an isomorphic embedding, since
every equation of the type x -y = z in Hj is present already in H; for
some i, and therefore p(x) - ¢(y) = p(z) since the analogue is true for
@i, for any j.

We can similarly define an isomorphic embedding ¢ from Hj to Hj.
%33 O

We can then ask if the limiting structures of two bi-embeddable
paragraduations are in fact isomorphic. In some categories, such as
that of pure sets with injection (by the Schroeder-Bernstein theorem)
and that of countable torsion groups (see [4] for a proof) the notions
of bi-embeddability and the isomorphism coincide, but in general bi-
embedability is weaker than isomorphism, for example in the category
of groups. So our example 3.1 is to some extent misleading, as it gave
us isomorphic limiting structures, an upgrade of the situation promised
in Theorem 3.3.
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Another question is if the converse of Theorem 3.3 is true: do two bi-
emebddable paragraded groups have bi-embeddable paragraduations?
Note that given such two groups say Gy and G with given paragrad-
uations G; (i € I) and G; (j € J), even if we suppose that Gy and G
are actually isomorphic, say with an isomorphism ¢, there is no reason
to think that ¢ will carry the homogeneous elements of G; (i € I) to
the homogeneous elements of G, (j € J). Therefore, we shall not be
able to use the isomorphism to give us bi-embeddability between the
paragraduations. Of course, an easy partial converse to Theorem 3.3
is provided by the following basic observation:

Lemma 3.4. Suppose that Gy is a paragraded group with a given para-
graduation G; (i € I) and that Gy is isomorphic to a group G'. Then
G’ is paragraded and has a paragraduation G (i € 1) with each G
1somorphic with the corresponding G;.

Proof. Let ¢ be an isomorphism from Gy to G’. Define for ¢ € T the
group G as the image under ¢ of Gj; it is easily seen that this gives
us a paragraduation as required. 34 ]

A more interesting version of Lemma 3.4 shows that a similar con-
clusion can be made with the assumption of embeddability.

Lemma 3.5. Suppose that Gy is a paragraded group with a given para-
graduation G; (i € 1) and that Gy is isomorphically embeddable in a
group G'. Then G' has a paragraded subgroup with a paragraduation
G (i € 1) such that G; (i € 1) is element-wise embeddable in G (i € 1),
in the sense that each G; isomorphically embeds into the corresponding

G

Proof. Let ¢ be an isomorphic embedding from Gy to G’ . Define for
i € I the group G as the image under ¢ of G;. Note that G}, = {e},
since ¢ is a homomorphism. It follows that for each G is a normal
subgroup of G’, as each Gj is closed under commutators. It is then
easily seen that G (i € I) is a paragraduation of some subgroup G” of
G’ and that it is as required, as ¢ embeds G; into G}. %35 O

The corresponding versions of Lemma 3.4 and 3.5 for bi-embeddability
seem to be more interesting and to depend on the underlying order I.
We shall show in §4 that the analogue holds in the natural case when
I is an uncountable ordinal and the given paragraduation is actually a
filtration.

In conclusion of this section, we see that the results obtained jus-
tify the name “essentially different” from Definition 3.2(3) because two
essentially different paragraduation are not going to have the same
limiting structure, at least in a many cases, while the essentially same
paragraduations lead to essentially same limiting structures.
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4. Elementary chains

It turns out that there is an example of paragraduations that is ubig-
uitous in model theory, as we now show.

Theorem 4.1. Suppose that X is a regular uncountable cardinal and
(Go :aa < A) and (G, : o« < \) are two filtrations of the same group G
of size A such that Gy = G, = {eg}. Then:

(1) each of the filtrations gives a paragraduation of G and
(2) there is a club C' of X such that for every o in C we have G, =
G,

In particular, the two paragraduations are bi-embeddable.

Proof. (1) The ordinal X certainly satisfies the properties required from
the partial order A in the Definition 2.1, since it is a linear order
where every non-empty subset has a minimal element and every non-
cofinal subset is bounded from the above. Since every G, and G, is
an elementary substructure of G, it certainly is a normal subgroup
(or closed under the relevant properties, as the case may be for the
structure in question). The rest of the properties are easy to check.

(2) This follows a well known method (see [2]) from the theory of
elementary models and can be obtained by closing under functions
described by taking f(a) for & < A to be the minimal 5 such that
Go C G and g(a) to be the minimal 3 such that G7, € Gj5. Note that
both f and g are well defined, by the regularity of A\ (which simply
means, by definition, that A has no cofinal subsets of size < A). In
other words, let Cjy be the set of ordinals a < A such that for every
v < a we have f(v),g(y) < a. To show that this set is closed, suppose
that a < A is a limit of ordinals in Cy and that v < A. Then there
is f with v < 8 < a and 8 € Cy. Therefore f(v),g(v) < 8 < a.
To check that the set Cy is unbounded in A, start with any o < A.
Let ap = sup{f(5),9(p) : B < a} U{a}. By the regularity of A, we
have that oy < A. We continue this definition by induction on n < w,
defining a,+1 = sup{f(8),9(8) : B < a,}, hence each a,, < A by
the same argument. At the end let us take a* = sup, ., o, and then
observe that o is closed under f and g by construction and that a* < A
since \ is regular uncountable. Hence a* > o and o* € Cj.

Now let C' be the set of limit points in Cj, so those a € Cj satisfying
that a = sup(CoNa). It is well known (see [11] or check by hand) that C'
is still a club of A\. Now it is easy to verify that C satisfies that for every
a in C' we have G, = G.,. Namely, if « € C and = € G, then there
is f < a such that x € G, as a is a limit ordinal, so G, = U5<a Gp.
Therefore f(8) < a and hence z € Gy C Gy,. Therefore G, C G, and
the other direction is symmetric, so G, = G., %41 O
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It is interesting to note that any first order structure whose size is an
infinite regular cardinal X allows for a filtration (see again [2]) and hence
by Theorem 4.1, it can be seen as a paragraded structure. Theorem 4.1
really shows to a logician what the interest is in paragraded structures:
they are mostly interesting for countable structures or structures whose
cardinality has countable cofinality. At such cardinals we do not have
the general analog of the combinatorics of club sets and filtrations and
hence paragraded structures provide us with a version of filtrations, at
least for algebraic structures such as groups, rings and modules!

We note another application of filtrations which gives a theorem that
was announced at the end of §3.

Theorem 4.2. Suppose that X is an uncountable reqular cardinal, G is
a paragraded group with a filtration (G, : o < \) and that H is a group
bi-embeddable with G. Then H has a filtration that is bi-embeddable
with (Go @ a < \).

Proof. Let ¢ : G — H and v : H — G be isomorphic embeddings. Let
us first note that this implies that |H| = A. Indeed the image ¢"G of
G is a subset of H of size A, hence H > A, but also |H| = [¢v"H| C G
and hence |H| < |G| < A. Let (H, : @ < A) be any filtration of H.
Now for each o« < X we can find 3, < A such that ¢"G, C Hg,, and
we hence define for 8 > f3, the embedding p,5 = ¢ | G,. We can
similarly define the embeddings v, for large enough ~, going from
H, to G,. It is clear that these embeddings provide bi-embeddability
between the paragraduations. ¥4 O

5. Paragraduation versus graduation

We finish the paper by an example which shows that one paragradua-
tion can lead to a large number of graded substructures and which also
shows a context in which it is much more natural to speak of paragrad-
uation than of graduation. This example also shows that the number
of graded substructures of a given paragraded structure cannot always
be decided by the axioms of set theory, even in the case of countable
structures.

An example of a non-linear partial order which satisfies the require-
ment of Definition 2.1 is the infinite binary tree <“2 of finite sequences
of 0s and 1s, ordered by s < t if s is an initial segment of ¢, denoted by
s < t. We shall use this example to obtain an example of a paragraded
structure which is not graded. By recursion on the length of ¢t € <¥2,
we define the group H;.

Let Hy be the trivial group {e}. Given H; for all s <t, let H; be
the abelian group freely finitely generated by |J,,, Hs except for the
equations s -t = t for s <t. It is clear that (H, : t € <“2) is a
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paragraded system of groups which gives rise to a limiting paragraded
group, say H.

The paragraded group H does not give rise to a natural graded struc-
ture, yet it has many graded subgroups. In particular, every infinite
branch p of <“2 gives rise to a graded subgroup H, of H given by the
gradation (H; : t < p). We recall that the number of infinite branches
of <¥2 is 2% whose value in terms of the R-hierarchy is not decidable
in the ordinary set theory ZFC, by the well known work of Cohen (see
[11]). As a corollary we obtain the following theorem:

Theorem 5.1. The number of graded substructures of a given para-
graded structure in general is not decidable in ZFC.
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