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Abstract

Let κ be a cardinal which is measurable after generically adding iκ+ω

many Cohen subsets to κ and let G = (κ, E) be the κ-Rado graph. We
prove, for 2 ≤ m < ω, that there is a finite value r+

m such that the set [κ]m

can be partitioned into classes
˙
Ci : i < r+

m

¸
such that for any coloring

of any of the classes Ci in fewer than κ colors, there is a copy G∗ of G in
G such that [G∗]m ∩ Ci is monochromatic. It follows that G → (G)m

<κ/r+
m

,

that is, for any coloring of [G]m with fewer than κ colors there is a copy
G′ of G such that [G′]m has at most r+

m colors. On the other hand, we
show that there are colorings of G such that if G′ is any copy of G then
Ci ∩ [G′]m 6= ∅ for all i < r+

m, and hence G 9 [G]m
r+

m
.

We characterize r+
m as the cardinality of a certain finite set of types

and obtain an upper and a lower bound on its value. In particular, r+
2 = 2

and for m > 2 we have r+
m > rm where rm is the corresponding number

of types for the countable Rado graph.

1 Introduction

The random or Rado graph is the unique countable graph G which has the
property that for all finite disjoint sets A and B of vertices in G there is a
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vertex c such that there is an edge from c to each element of A and to none of
the elements of B. If κ is any cardinal satisfying κ<κ = κ, one can similarly
define the κ-Rado graph Gκ whose set of vertices is of size κ and which satisfies
that for all disjoint sets A and B of vertices, each of size < κ, there is a vertex
c such that there is an edge from c to each element of A and to none of the
elements of B. Graph Gκ is unique up to isomorphism. Partition properties
of the random graph were studied by several authors, one can see a detailed
discussion in J. Larson’s paper [5]. Using a technique we introduced in our
paper [1] along with a fine analysis of the types of finite subsets of Gκ we are
able to prove the following partition theorem. By G we mean a fixed copy of
Gκ whose universe is κ.

Theorem 1.1. Let m ≥ 2 and suppose that κ is a cardinal which is measurable
in the generic extension obtained by adding λ Cohen subsets of κ, where λ →
(κ)2m2κ . Then for r+m equal to the number of vip m-types, any κ-Rado graph
G = (κ,E) satisfies

G → (G)m
<κ,r+m

and G 9 (G)m
<κ,r+m−1

.

Moreover, there is a canonical partition of [G]m into r+m parts.

We have used the following definition

Definition 1.2. A partition C = {C0, C1, . . . , Cr } of [G]m is a canonical par-
tition if it is persistent and indivisible. To be persistent means that if G∗ is
any copy of G within G then [G∗]m ∩ Cj 6= ∅ for each j < r. To be indivisible
means that for every coloring of G there is a copy G∗ of G within G such that
[G∗]m ∩ Cj is monochromatic for each j < r.

Results analogous to this theorem were already known for κ = ω through
the work of Laflamme, Sauer and Vuksanovic [3]. Many historical points and
a discussion of the use and to a certain extent necessity of the large cardinal
assumptions we have are given in [1].

In [1] we obtained a partition theorem for κ-dense linear orders whose state-
ment is analogous to the statement of our Theorem 1.1. The relevant types are
much more complicated for graphs than for orders and to capture them we need
a better Diagonalization Lemma than the one provided in [1]; this is achieved
in Lemma 3.3. Also we must work harder to show that the relevant types are
realized by the ranges of the maps we use to build our copies of the Rado graph
inside itself; this is achieved in Corollary 5.7.

The paper is organized as follows: in §2 we embed the κ-Rado graph in a
complete binary tree of height κ and translate the notion of a copy of the G
inside G into the new setting. We also introduce notation and several definitions
related to trees and embeddings of their subsets, and prove some basic theorems
needed for the rest of the paper. In §3 we prove the existence of certain nice
mappings of the complete binary tree of height κ into itself, which are used
in the definition of the canonical partition and in the proof of its indivisibility
which gives the existence of the numbers r+m. In §4, we show that all the relevant
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types are realized by subsets of the the ranges of the nice mappings defined in §3.
In §5 we group lemmas necessary for the proof of the persistence, in particular
showing that all the relevant types are realized by subsets of the the ranges of
a wider class of mappings and prove a Uniformization Theorem. Finally in §6
we use the Uniformization Theorem to prove the main theorem and give some
ideas of how large r+m is for some small values of m.

For the remainder of the paper an unattributed m will mean a natural num-
ber with 2 ≤ m and κ a cardinal satisfying the hypotheses of the main theorem
for some number m. In particular, κ = κ<κ and κ is a strong limit. For any
cardinal λ, let [A]λ denote the collection of all subsets of A of cardinality λ, and
let [A]<λ denote the collection of all subsets of A of cardinality less than λ. We
write G = (κ,E) for the κ-Rado graph Gκ.

2 Translation

In this section we give an embedding of the κ-Rado G graph into the complete
rooted binary tree of height κ, prove a Translation Theorem matching increas-
ing isomorphisms of G with pnp maps, defined below. We also define strong
embeddings and m-types prove a preservation property of strong embeddings.

The first lemma of the section states that any induced subgraph of a κ-Rado
graph has an induced subgraph which is isomorphic to the κ-Rado graph by an
isomorphism that also preserves <.

Lemma 2.1. For any H ⊆ κ with G ∼= (H,E�H) there is a <-increasing map
g : κ→ H with G ∼= (g[κ], E�g[κ]).

Proof. Fix attention on a specific induced subgraph (H,E�H) isomorphic to G.
Let h : κ→ H be the isomorphism.

By the definition of the κ-Rado graph for any γ < κ and any subset A ⊆ γ,
there are cofinally many ζ < κ with { δ < γ : {δ, ζ} ∈ E } = A.

Define z : κ → κ and g : κ → H by recursion. Let z(0) = 0 and g(0) =
h(0). Suppose z�α and g�α have been defined so that z is increasing, for all
β < α, g(β) = h(z(β)), and g�α is an increasing endomorphism of (α,E�α) into
(H,E�H). Let γ > α be so large that if h(η) < sup { g(β) + 1 : β < α }, then
γ > η. Let Aα := { z(β) : β < α ∧ {β, α} ∈ E }. Let ζ = z(α) ≥ γ be such that
{ δ < γ : {δ, ζ} ∈ E } = Aα. Let g(α) = h(z(α)). Since h is an isomorphism, a
pair {h(z(β)), h(z(α))} is in E if and only if the pair {z(β), z(α)} is in E. It
follows that {β < α : {g(β), g(α)} ∈ E } = Aα. Therefore by induction, g is the
desired endomorphism into H.

In all the future instances we will assume that any copy of G inside G is
obtained using an increasing isomorphism.

The next step in our proof is to embed the κ-Rado graph into a tree. For
an infinite cardinal κ, the set κ>2, ordered by end-extension, ⊆, is the complete
binary tree on κ with root the empty sequence, ∅. For our embedding, we
generalize the approach used by Erdős, Hajnal and Pósa [2].
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Definition 2.2. The tree embedding of G into κ>2 is the function σ : κ→ κ>2
defined by σ(0) = ∅, and for α > 0, σ(α) : α → 2 is defined by σ(α)(β) = 1 if
and only if {α, β } ∈ E. Let S∗ = σ[κ].

Note that σ is necessarily injective and that for any α < κ, lg(σ(α)) = α.
We next introduce two properties of the range of the embedding σ.

Definition 2.3. A subset S ⊆ κ>2 is cofinal above w if for all t ∈ Cone(w)
there is some s ∈ S with t ⊆ s. If w = ∅, we say S is cofinal.

For any tree T ⊆ κ>2, a subset S ⊆ T is transverse if it has at most one
node on each level of T .

Lemma 2.4. S∗ is a cofinal transverse subset of κ>2.

Proof. By definition of σ, for all α < κ, lg(σ(α)) = α, so S∗ is transverse.
To see that S∗ is cofinal, suppose s ∈ κ>2. Let α = lg(s) and let A be the set

of all β < lg(s) with s(β) = 1. Since G is a κ-Rado graph, there is an element
γ > α such that {β, γ } ∈ E for all β ∈ A and {β, γ } /∈ E for all β ∈ α \ A. It
follows that s ⊆ σ(γ). Thus σ[κ] is cofinal in κ>2.

We review terminology related to trees of large height.

Definition 2.5. For any tree T of sequences ordered by end extension, and any
ordinal α, the αth level of T , in symbols T (α), is the set of all nodes t ∈ T for
which α is the order type of the set of predecessors of t, namely { s ∈ T : s ( t }.
For s ∈ T the length lg(s) is defined to be α if and only if s ∈ T (α).

Our next goal is a translation of questions about isomorphic copies of the κ-
Rado graphs in itself to questions about κ>2. Toward that end, we define passing
number preserving maps. This notion was used in the proof of the limitation
of colors result by Laflamme, Sauer and Vuksanovic [3] for the countable Rado
graph.

Definition 2.6. For s, t ∈ κ>2 with lg(t) > lg(s), call t(lg(s)) the passing
number of t at s. Call a function f : κ>2 → κ>2 passing number preserving or
a pnp map if it preserves

1. length order: lg(s) < lg(t) implies lg(f(s)) < lg(f(t)); and

2. passing numbers: lg(s) < lg(t) implies f(t)(lg(f(s))) = t(lg(s)).

Lemma 2.7. For any <-increasing map g : κ→ κ with G ∼= (g[κ], E�g[κ]), the
composition σ ◦ g ◦ σ−1 : S∗ → S∗ is a pnp map.

Proof. Let f := σ ◦ g ◦ σ−1 for some <-increasing endomorphism g of G into
itself. Suppose s, t ∈ S∗ and β := lg(s) < lg(t) = α. Then σ−1(s) = β and
σ−1(t) = α. Since g is <-increasing, g(β) < g(α). Hence lg(f(s)) = g(β) <
g(α) = lg(f(t)). Moreover, t(lg(s)) = t(β) = 1 if and only if {β, α} ∈ E. Since g
is an endomorphism, t(lg(s)) = 1 if and only if {g(β), g(α)} ∈ E. By definition
of the tree embedding, it follows that t(lg(s)) = 1 if and only if f(t)(lg(s)) = 1.
Thus f is a pnp map from S∗ into S∗.
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By much the same reasoning, one can show the converse.

Theorem 2.8. [Translation Theorem] For any pnp map f : S∗ → S∗, the com-
position g := σ−1◦f ◦σ : κ→ κ is an <-increasing map with G ∼= (g[κ], E�g[κ]).

Proof. Let g := σ−1 ◦ f ◦ σ for some pnp map f : S → S. Suppose β < α < κ.
Then lg(σ(β)) = β < α = lg(σ(α)). Since f is a pnp map, σ−1 ◦ f ◦ σ(β) =
lg(f(σ(β))) < lg(f(σ(α))) = σ−1 ◦ f ◦ σ(α), so g is a <-increasing map.

By the definition of σ, {β, α} is an edge of G if and only if σ(α)(lg(σ(β))) =
1. Since f is a pnp map, it follows that {β, α} is an edge of G if and only
if f(σ(α))(lg(f(σ(β)))) = 1. Apply the definition of σ to the pair g(α) =
σ−1(f(σ(α))) and g(β) = σ−1(f(σ(β))), to see that {β, α} is an edge of G if
and only if {g(β), g(α)} is an edge.

Thus g is a <-increasing endomorphism of G into itself.

Definition 2.9. For any subsets S0 and S1 of κ>2, a function e : S0 → S1 is a
strong embedding if it is an injection with the following preservation properties:

1. (extension) s ⊆ t if and only if e(s) ⊆ e(t);

2. (length order) lg(s) < lg(t) if and only if lg(e(s)) < lg(e(t)) and lg(s) =
lg(t) if and only if lg(e(s)) = lg(e(t));

3. (passing number) if lg(s) < lg(t), then e(t)(lg(e(s))) = t(lg(s)).

Lemma 1.6. from [1] shows that being the range of a strong embedding is
equivalent to being a strongly embedded subset which has another, somewhat
more combinatorial definition.

We review additional definitions and notation in preparation for the def-
inition of strongly diagonal set which is critical to our isolation of the types
underlying the canonical partition. Call two elements s and t of κ>2 incompa-
rable if neither is an end-extension of the other. A subset A of T is an antichain
if all s 6= t are incomparable. By s ∧ t denote the meet of s and t, namely the
longest initial segment of both s and t. For any subset S ⊆ T , let S∧ denote
the meet closure of S, i.e. the set {u : u = s ∧ t for some s, t ∈ S}.

Definition 2.10. A set A ⊆ κ>2 is diagonal if it is an antichain, and its meet
closure, A∧, is transverse. It is called strongly diagonal if, in addition, for all
t ∈ A and all s ∈ A∧ \ {t}, the following implication holds:

(lg(s) < lg(t) ∧ t(lg(s)) = 1) =⇒ s ⊆ t or s has no proper extension in A.

Recall that for any tree T = (T,⊆), a node s is a leaf of T or terminal node
of T if for all t ∈ T \ {s}, one has s 6⊆ t.

Definition 2.11. A similarity tree is a finite subtree of ω>2 closed under initial
segments and such that every level contains at least one leaf node or meet of
leaf nodes. Call τ an m-type if it is a downward closed subtree of 2m−2≥2 whose
set L of leaves is an m-element strongly diagonal set.
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The m-types, defined above, can be used to define an equivalence relation
on m-element subsets of a strongly diagonal set where two such anti-chains are
equivalent if their collapses, defined below, are the same m-type. At a later
point we will add order to get the vip m-types that are used in the definition of
the canonical partition.

Definition 2.12. If x is a finite subset of κ>2 then we write clp(x) for the
collapse of x, which is the subtree y of ω>2 that includes the root and is of
minimal possible height such that there is a strong embedding from x∧ onto the
closure z∧ of the set z of leaf nodes of y.

The next lemma gives a representation for clp(x) when x is a finite strongly
diagonal set.

Lemma 2.13. Suppose x ⊆ κ>2 is a finite strongly diagonal set whose meet
closure is enumerated in increasing order of length as x∧ = { ai : i < m } and
let ρ be an increasing enumeration of { lg(ai) : i < m }. Then clp(x) is the
downwards closure of { ai ◦ (ρ�i) : i < m } and the mapping ai 7→ ai ◦ (ρ�i) is a
strong embedding of x∧ onto the meet closure of the set of leaves of clp(x).

Proof. Let y be the downwards closure of { ai ◦ (ρ�i) : i < m }. Then y is a
subtree of κ>2 and the root of κ>2, namely ∅, is in y. Since ai ◦ (ρ�i) has length
i, it follows that y has height m. The set of leaves of y is

z = { ai ◦ (ρ�i) : i < m ∧ ai ∈ A }

and z∧ = { ai ◦ (ρ�i) : i < m }. One can show that the mapping ai 7→ ai ◦ (ρ�i)
is a strong embedding of x∧ onto z∧. Since clp(x) has height at least m, it
follows that y = clp(x).

Lemma 2.14. Suppose x and y are finite strongly diagonal sets and Φ is a
strong embedding of x∧ onto y∧. Then clp(x) = clp(y).

Proof. Since the elements of x∧ all have different lengths, and strong embeddings
preserve length order, Φ is one-to-one. Enumerate x∧ and y∧ in increasing order
of length as x∧ = { ai : i < m } and y∧ = { bi : i < m }. Then Φ(ai) = bi for all
i < m. Let ρ : µ→ { lg(ai) : i < m } and τ : µ→ { lg(bi) : i < m } be increasing
enumerations.

Use induction on i < m to show that ai ◦ (ρ�i) = bi ◦ (τ�i). Start by noting
that a0 ◦ (ρ�0) = ∅ = b0 ◦ (τ�0). Suppose for j < i, aj ◦ (ρ�j) = bj ◦ (τ�j). Then
for all j < i, (ai ◦ (ρ�i))(j) = ai(lg(aj)) = Φ(ai)(lg(Φ(aj))) = bi(lg(bj)), since Φ
is a strong embedding. That is, ai ◦ (ρ�i) = bi ◦ (τ�i).

Now the lemma follows by Lemma 2.13.

The next definition identifies sufficient conditions for a map to carry a
strongly diagonal set to one of the same m-type. The lexicographic order for
us will be the partial order <lex on κ>2 defined by s <lex t if s and t are
incomparable and (s ∧ t)_〈0〉 ⊆ s and (s ∧ t)_〈1〉 ⊆ t.
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Definition 2.15. Call a map f : κ>2 → κ>2 polite if it satisfies the following
conditions for all x, y, u, v:

1. (preservation of lexicographic order) if x and y are incomparable and
x <lex y, then f(x) and f(y) are incomparable and f(x) <lex f(y);

2. (meet regularity) if {x, u, v } is diagonal and x ∧ u = x ∧ v, then f(x) ∧
f(u) = f(x) ∧ f(v);

3. (preservation of meet length order) if lg(x ∧ y) < lg(u ∧ v), then
lg(f(x) ∧ f(y)) < lg(f(u) ∧ f(v)).

Call it polite to strongly diagonal sets if it is a pnp map which satisfies the above
conditions for all x, y, u, v with {x, y, u, v } a strongly diagonal set.

The next lemma follows immediately from the above definition.

Lemma 2.16. Strong embeddings are polite. The collection of polite embeddings
is closed under composition as is the collection of embeddings polite to strongly
diagonal sets.

Lemma 2.17. Suppose φ : κ>2 → κ>2 is a map which is polite to strongly
diagonal sets and whose image is a strongly diagonal set. For any finite strongly
diagonal set A, clp(A) = clp(φ[A]) and there is a strong embedding φ : A∧ →
(φ[A])∧ such that for all x, y in A, φ(x ∧ y) = φ(x) ∧ φ(y).

Proof. Fix a finite strongly diagonal set A. Let φ(a) = φ(a) for a ∈ A and let
φ(a ∧ b) = φ(a) ∧ φ(b) for a, b ∈ A.

Claim 2.17.a. The map φ is well-defined.

Proof. Suppose x ∧ y = u ∧ v. If x = y or u = v, then x = y = u = v
since A is strongly diagonal. Thus if x = y or u = v or {x, y} = {u, v},
then φ(x) ∧ φ(y) = φ(u) ∧ φ(v). Otherwise, if | {x, y, u, v } | = 3, then the
claim follows from meet regularity. The final case is | {x, y, u, v } | = 4. Since
{x, y, u } is a three element diagonal set and x∧y is an initial segment of all three
elements, either x∧ y = x∧ u or x∧ y = y ∧ u. Hence by meet regularity, either
φ(x)∧φ(y) = φ(x)∧φ(u) = φ(u)∧φ(v) or φ(x)∧φ(y) = φ(y)∧φ(u) = φ(u)∧φ(v),
and the claim follows.

Claim 2.17.b. The map φ preserves length order.

Proof. Assume s, t ∈ A∧ satisfy lg(s) < lg(t). Let x, y, u, v ∈ A be such that
s = x ∧ y and t = u ∧ v. By preservation of meet length order, lg(φ(s)) =
lg(φ(x) ∧ φ(y)) < lg(φ(u) ∧ φ(v)) = lg(φ(t)).

Claim 2.17.c. For all s, t in A, φ(s ∧ t) = φ(s) ∧ φ(t) and φ is a pnp map.
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Proof. By the definition of φ and the previous claims, it suffices to show φ
preserves passing numbers. Suppose s and t are in A∧ and lg(s) < lg(t). Since
any t′ ∈ (∧A) is either in A or has an extension t in A with φ(t′) ⊆ φ(t) = φ(t),
we may assume without loss of generality that t is in A. If s ∈ A, then the
conclusion follows since φ is a pnp map. So suppose s = x ∧ y for x and y
distinct elements of A. Consider s ∧ t.

If lg(s ∧ t) < lg(s), then lg(φ(s ∧ t)) < lg(φ(s)) by the previous claim. In
this case, φ(t)(lg(φ(s))) = 0 = t(lg(s)), since A and its image under φ are both
strongly diagonal.

If lg(s ∧ t) = lg(s), then s ⊆ t. Let w ∈ A be such that s = t ∧ w. Then
the value of t(lg(s)) and φ(t)(lg(φ(s))) are determined by the lexicographic
order of the pairs t, w and φ(t), φ(w). Since φ preserves lexicographic order,
φ(t)(lg(φ(s))) = t(lg(s)), as required.

Claim 2.17.d. The map φ preserves extension.

Proof. Suppose s, t ∈ A∧ and s ( t. Since A is strongly diagonal, it follows that
s = x ∧ y for x, y ∈ A with x <lex y. Let u, v ∈ A be such that t = u ∧ v, where
we allow the possibility that u = v.

First suppose t(lg(s)) = 0. Then s_〈0〉 ⊆ t and x∧y = t∧y = u∧y = v∧y.
By meet regularity of φ, φ(s) = φ(x) ∧ φ(y) = φ(u) ∧ φ(y) = φ(v) ∧ φ(v). It
follows that φ(s) ⊆ φ(u) and φ(s) ⊆ φ(v), so φ(s) ⊆ φ(u) ∧ φ(v) = φ(t).

Otherwise t(lg(s)) = 1. In this case s_〈1〉 ⊆ t and x∧y = x∧t = x∧u = x∧v.
Argue as in the previous case to see that s ⊆ φ(u) ∧ φ(v) = φ(t).

By Claims 2.17.a, 2.17.b, 2.17.c and 2.17.d, φ : A∧ → φ[A]∧ is a well-
defined strong embedding. By Lemma 2.14, clp(A) = clp(φ[A]). Since A was
an arbitrary strongly diagonal set, the lemma follows.

At this point we introduce a linear order of κ>2 into our picture.

Definition 2.18. Say that ≺ is a level ordering of κ>2 or alternatively that ≺
is an ordering of the levels of κ>2, if ≺ linearly extends the length order, i.e. ≺
is a linear order of κ>2 and lg(s) < lg(t) implies s ≺ t.

Two finite antichains x and y in κ>2 are similar if clp(x) = clp(y), and
≺-similar if the ordering ≺ induces the same ordering ≺x=≺y on the collapsed
trees. In this case we call (clp(x),≺x) the ordered similarity type of (x,≺) and
(y,≺).

Definition 2.19. Suppose T is a subtree of κ>2 and D ⊆ κ>2 is transverse.
Call ≺ a pre-S-vip order on T ⊆ κ>2 if ≺ is a well-ordering of each level of T
such that for every d ∈ S, d is the ≺-least element of its level, T (lg(d)), and for
all u, v ∈ T (d) \ {d}), ≺ satisfies the condition:

if d ∧ u ( d ∧ v 6= d, then u ≺ v).

IfD is diagonal, call ≺ aD-vip order if it is a pre-D∧-vip order and for u, v ∈ D∧

with lg(d) < lg(u), lg(v), ≺ also satisfies the condition below:

if d ∧ u = d ∧ v 6= d and u(lg(d)) < v(lg(d)), then u� lg(d) ≺ v� lg(d).
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Lemma 2.20. If S ⊆ κ>2 is transverse, then there is a pre-D-vip order of κ>2.

Proof. Let l be any well-ordering of the levels of κ>2. Use recursion to define a
pre-S-vip order ≺ by adjusting l separately on each level which has an element
of S.

Definition 2.21. An ordered similarity tree is a similarity tree t with an or-
dering ≺t of its levels. Call (τ,l) a vip m-type if τ is an m-type and l is an
L-vip order on τ . If x is a subset of κ>2 and ≺ is a given order of κ>2, then ≺x
is the order on clp(x) induced by the strong embedding from clp(x) to x and ≺.

Lemma 2.22. Assume D ⊆ κ>2 is a strongly diagonal set and ≺ is an ordering
of the levels of κ>2 which is a D-vip order. Then for all m-element sets x ⊆ D,
(clp(x),≺x) is a vip m-type.

A κ-dense order is an order <Q of size κ such that for all A,B of size < κ
satisfying A <Q B there is c with A <Q c <Q B. In [1] we defined such an order
on κ>2 by letting s <Q t if and only if one of the following conditions holds:
(1) t_〈0〉 ⊆ s; (2) s_〈1〉 ⊆ t; or (3) s and t are incomparable and s <lex t. We
proved the following in [1] about this linear order.

Lemma 2.23. If S ⊆ κ>2 is cofinal above w and transverse, then
(S ∩ Cone(w), <Q) is κ-dense.

The following theorem of Shelah plays a crucial role in our technique. A
detailed proof of it is provided in [1].

Theorem 2.24 (Shelah [6]). Suppose that m < ω and κ is a cardinal which is
measurable in the generic extension obtained by adding λ Cohen subsets of κ,
where λ→ (κ)2m2κ . Then for any coloring d of the m-element antichains of κ>2
into σ < κ colors, and any well-ordering ≺ of the levels of κ>2, there is a strong
embedding e : κ>2 → κ>2 and a dense set of elements w such that

1. e(s) ≺ e(t) for all s ≺ t from Cone(w), and

2. d(e[a]) = d(e[b]) for all ≺-similar m-element antichains a and b of Cone(w).

3 A strong diagonalization

In this section we prove results which will be used to obtain a limitation of
colors result for κ-Rado graphs using Shelah’s Theorem 2.24.

Definition 3.1. Call f a pnp diagonalization into S∗ ∩Cone(w) if f is a polite
injective <Q-preserving pnp map whose range is a strongly diagonal subset D
with D∧ ⊆ S∗ ∩ Cone(w). Call f a pnp diagonalization if it is a pnp diagonal-
ization into S∗.

An extra quality we desire for our diagonalization is level harmony, which
will be used in the section on lower bounds.
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Definition 3.2. Suppose f : κ>2 → κ>2 is an injective map. Define f̂ : κ>2 →
κ>2 by f̂(s) = f(s_〈0〉) ∧ f(s_〈1〉). Then f has level harmony if f̂ is an
extension and <lex-order preserving map satisfying the following conditions for
all s, t ∈ κ>2:

1. f̂(s) ( f(s);

2. lg(s) < lg(t) implies lg(f(s)) < lg(f̂(t));

3. lg(s) = lg(t) implies lg(f̂(s)) < lg(f(t)).

Lemma 3.3. [Diagonalization lemma] For any w ∈ κ>2, there is a pnp diago-
nalization into S∗ ∩ Cone(w) which has level harmony.

Proof. Our plan is to approach the problem in pieces by using recursion to define
three functions, ϕ0, ϕ1, ϕ : κ>2 → S∗ so that ϕ is the desired diagonalization,
ϕ̂ = ϕ0, ϕ1(t) is the minimal extension in S∗ of ϕ0

_〈1〉, ϕ(t)∧ϕ(t_〈1〉) = ϕ1(t),
and ϕ(t) <lex ϕ(t_〈1〉).

For notational convenience, if ϕ has been defined on α>2, then we let `0(α)
be the least θ such that lg(ϕ(t)) < θ for all t ∈ α>2. Also, if ϕ1 has been defined
on α≥2, then we let `1(α) be the least θ such that lg(ϕ1(t)) < θ for all t ∈ α≥2.

Let ≺ be a well-ordering of the levels of κ>2. We use recursion on α < κ
to define the restrictions to α2 of ϕ0, ϕ1 and ϕ so that the following properties
hold:

1. extension and lexicographic order:

(a) the restriction of ϕ0 to α≥2 is extension and <lex-order preserving;

(b) for all s ∈ α2, ϕ1(s) is the minimal extension in S∗ ∩ Cone(w) of
ϕ0(s)_〈1〉;

(c) for all s ∈ α2, ϕ(s) is an extension in S∗ ∩ Cone(w) of ϕ1(s)_〈0〉;
(d) for all s ∈ α>2, ϕ0(s_〈0〉) is an extension of ϕ0(s)_〈0〉 and

ϕ0(s_〈1〉) is an extension of ϕ1(s)_〈1〉;

2. length order:

(a) for all t ∈ α2 and s ∈ α≥2, if s ≺ t, then
`0(lg(s)) ≤ lg(ϕ0(s)) < lg(ϕ0(t)) and
`1(lg(s)) ≤ lg(ϕ(s)) < lg(ϕ(t));

3. passing number:

(a) for all t ∈ α2 and s ∈ α≥2, if s ≺ t and s 6⊆ t, then
ϕ0(t)(lg(ϕ0(s)) = 0 and ϕ0(t)(lg(ϕ1(s)) = 0;

(b) for all t ∈ α2 and s ∈ α≥2, if s ≺ t and s 6⊆ t, then
ϕ(t)(lg(ϕ0(s)) = 0 and ϕ(t)(lg(ϕ1(s)) = 0;

(c) for all t ∈ α2 and s ∈ α>2, ϕ0(t)(lg(ϕ(s)) = t(lg(s));

(d) for all s, t ∈ α2, if s ≺ t, then ϕ(t)(lg(ϕ(s)) = 0.
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Suppose α < κ is arbitrary and for all β < α, the restrictions to β2 of ϕ0, ϕ1

and ϕ have been defined. To maintain length order, we first define ϕ0 and ϕ1

by recursion on ≺ restricted to level α2. So suppose lg(t) = α and for all s ≺ t,
ϕ0 and ϕ1(s) have been defined.

Use extension and<lex-order properties to identify an element ϕ−0 (t) of which
ϕ0(t) is to be an extension by recursion. To start, for α = 0, set ϕ−0 (t) = ∅. For
α a limit ordinal, let ϕ−0 (t) be

⋃
{ϕ0(t�β) : β < α }. For α a successor ordinal

and t = t−_〈δ〉, let ϕ−0 (t) = ϕδ(t−)_〈δ〉.
Next determine an ordinal γ0(t) sufficiently large that if ϕ0(t) is at least that

length, it will satisfy the length order property. If t is the ≺-least element of
length α, let γ0(t) = `0(α). If t has a ≺-immediate predecessor t′ of length α,
let γ0(t) = lg(ϕ1(t′)) + 1. If t is a ≺-limit of elements of length α, then let γ0(t)
be the supremum of lg(ϕ1(s)) + 1 for s of length α with s ≺ t.

Now define an extension ϕ+
0 (t) of ϕ−0 (t) of length γ0(t) so that the passing

number properties are satisfied by ϕ+
0 (t). If α = 0, then t = ∅, ϕ−0 (t) = ∅,

γ0(0) = 0 and ϕ+
0 (t) = ∅. If α > 0 is a limit ordinal, then by induction on

β < α, `0(β) is an increasing sequence. Moreover, the limit of this sequence is
the length of ϕ−0 (t). It follows that ϕ−0 (t) satisfies the passing number properties
for s ∈ α>2. Let ϕ+

0 (t) be the sequence extending ϕ−0 (t) by zeros, as needed, to a
length of γ0(t). If α is a successor ordinal and t = t−_〈δ〉, then let ϕ+

0 (t) be the
extension of ϕ−0 (t) of length γ0(t) such that for all η with lg(ϕ−0 (t)) ≤ η < γ0(t),
ϕ+

0 (η) = δ if η = lg(ϕ(s)) for some s with lg(s) + 1 = α, and ϕ+
0 (η) = 0

otherwise.
To continue, let ϕ0(t) be an extension in S∗∩Cone(w) of ϕ+(t) and let ϕ1(t)

be an extension in S∗ ∩Cone(w) of ϕ0(t)_〈1〉 as required by the extension and
lexicographic order properties. The reader may now check that the various
properties hold for the restrictions of ϕ0 and ϕ1 to α2.

Use a similar process to define the restriction of ϕ to α2 by recursion on ≺
restricted to α2. Suppose that lg(t) = α and for all s ≺ t, ϕ(s) has been defined.
Let ϕ−(t) = ϕ1(t)_〈0〉.

If t is the ≺-least element of length α, let γ1(t) = `1(α). If t has a ≺-
immediate predecessor t′ of length α, let γ1(t) = lg(ϕ(t′)) + 1. If t is a ≺-limit
of elements of length α, then let γ1(t) be the supremum of lg(ϕ(s)) + 1 for s of
length α with s ≺ t.

Next define an extension ϕ+(t) of ϕ−(t) of length γ1(t) so that the passing
number properties are satisfied by ϕ+(t). If α = 0, there are no passing number
properties that need be checked, and we set ϕ+(t) = ϕ−(t). If α > 0, then let
ϕ+(t) be the extension by zeros of ϕ−(t) of length γ1(t). Since ϕ0(t) and ϕ1(t)
satisfy the passing numbers properties, it follows that ϕ+(t) does as well, since
all passing numbers longer than lg(ϕ−(t)) will be zero.

Finally let ϕ(t) be an extension in S∗ ∩ Cone(w) of ϕ+(t). The reader may
now check that the various properties hold for the restriction of ϕ to α2.

This completes the recursive construction of ϕ0, ϕ1 and ϕ. By induction,
the various properties hold for all α < κ.

Thus ϕ0 = ϕ̂ is extension and <lex-order preserving, and by the length
order property, different elements of the union of the ranges of ϕ0, ϕ1 and
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ϕ have different lengths. It also follows that these three maps are injective.
Moreover the union of their ranges is a subset of S∗∩Cone(w). By the extension
and lexicographic order properties and the length order property, ϕ has level
harmony.

By the passing number properties, ϕ is a pnp map. By the extension and
lexicographic order properties, ϕ preserves <Q-order.

By the extension and lexicographic order properties, ϕ carries incomparable
elements into incomparable elements and preserves <lex-order. By the length
order property, ϕ preserves meet length order. Since ϕ̂ = ϕ0 preserves extension,
ϕ satisfies meet regularity. Thus ϕ is polite.

From the extension and lexicographic order properties, it follows that the
meet closure of D := ran(ϕ) is the union of the ranges of ϕ, ϕ0 and ϕ1 and
all elements of the range of ϕ are incomparable. Hence D is an antichain and
D∧ ⊆ S∗ ∩Cone(w) is transverse, so D is diagonal. Note that passing numbers
of 1 were introduced only to keep ϕ0 extension and <lex-order preserving, to
ensure ϕ(t) <lex ϕ1(t) so that <Q-order is preserved, and to ensure ϕ is a pnp
map. It follows that D∧ is strongly diagonal.

Therefore, ϕ is the required pnp diagonalization into S∗∩Cone(w) with level
harmony.

Lemma 3.4. There are pnp maps 〈ϕt : t ∈ κ>2〉 with strongly diagonal ranges
and a pre-S∗-vip order ≺ such that for all t ∈ κ>2, the following conditions
hold:

1. if x is a finite strongly diagonal set, then clp(ϕt[x]) = clp(x);

2. the meet closure of the set Dt := ran(ϕt) is a subset of S∗∩Cone(t) disjoint
from D∧

s for all s 6= t; and

3. ≺ is a Dt-vip order.

The maps ϕt may be chosen to be pnp diagonalizations into S∗ ∩ Cone(t) with
level harmony.

Proof. Use Lemma 2.20 to find ≺∗, a pre-S∗-vip order on κ>2.
Apply the Diagonalization Lemma 3.3 to each t ∈ κ>2 to obtain ϕ∗t , a pnp

diagonalization into S∗ ∩ Cone(t) which has level harmony. Use recursion on
≺∗ to define π : κ>2 → κ>2, 〈ϕt : t ∈ κ>2 〉 and 〈Dt : t ∈ κ>2 〉 such that for all
t ∈ κ>2, Dt := ran(ϕt), π(t) is an extension of t with Cone(π(t)) disjoint from
the union over all s ≺∗ t of D∧

s . Since the order type of { s ∈ κ>2 : s ≺∗ t } is
less than κ and each Ds is a strongly diagonal set whose meet closure is a subset
of S∗, it is always possible to continue the recursion.

Use induction on the recursive construction to show that the meet closures
of the sets Dt are disjoint.

Let D =
⋃
{D∧

t : t ∈ κ>2 }. Then D is transverse since it is a subset of S∗

and S∗is transverse. Let ≺ agree with ≺∗ on all pairs from different levels, and
use recursion on α < κ to define ≺ from ≺∗ as follows. If there is no element of
D in α2 then ≺ and ≺∗ agree on α2.
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So suppose d ∈ D∧
t and lg(d) = α. For each β < α, let C(β) be the set

of all x ∈ α2 such that x�β = d�β and x(β) 6= d(β). Since ≺∗ is a pre-S∗-vip
order, if β < γ < α, then C(β) ≺∗ C(γ) in the sense that for every element x
of C(β) and y of C(γ), one has x ≺∗ y. Use the fact that Dt is a diagonal set
to partition α2 = {d} ∪ Aα(0) ∪ Aα(1) ∪ Aα(2) into disjoint pieces where for
δ < 2, Aα(δ) := {u�α : u ∈ Dt ∧ u(α) = δ }. Let the restriction of ≺ to α2 be
such that for each β < α,

C(β) ∩Aα(0) ≺ C(β) ∩Aα(1) ≺ C(β) ∩Aα(2)

and otherwise ≺ agrees with ≺∗. Then the restriction of ≺ to α2 is a well-order,
since the restriction of ≺∗ is and because ≺∗ is a pre-S∗-vip order.

Since the restriction of ≺ to each level is a well-order, it follows that ≺ is
a well-ordering of the levels of κ>2. For each t ∈ κ>2, since ≺∗ is a pre-S∗-vip
order, it follows that ≺ is a pre-Dt

∧-vip order, so by construction, ≺ is a Dt-vip
order.

Since pnp diagonalizations with level harmony are polite, by Lemma 2.17,
for any finite strongly diagonal set x, the collapse of ϕt[x] is the same as the
collapse of x.

4 Type realization

The computation of lower bounds for Rado graphs is more complex than the
computation for κ-dense linear orders as done in [1]. We reduce the problem by
showing for suitable κ that if D ⊆ κ>2 is the range of a pnp diagonalization with
level harmony and ≺ is a D-vip level order, then every vip m-type is realized
as (clp(x),≺x) for some x ⊆ D. In comparison with the corresponding theorem
in [1], the proof uses a pnp diagonalization with level harmony in place of a
semi-strong embedding.

We start this section with some definitions and results from [1].

Definition 4.1. Call an ordering ≺ of the levels of κ>2 small if (α2,≺) has
order type 2α for each cardinal α < κ.

Lemma 4.2. Suppose κ is a limit cardinal, ≺ ′ is a small ordering of the levels
of κ>2 and w ∈ κ>2. For all n < ω and orderings l of the levels of n≥2, there
is an order preserving strong embedding j taking (n≥2,l) into (Cone(w),≺ ′),
i.e. s l t implies j(s) ≺ ′ j(t). Furthermore, j may be chosen such that for all
s, the length of j(s) is a cardinal.

If s is a node of T and both s_〈0〉 and s_〈1〉 have extensions in T , then we
call s a splitting node of T .

Definition 4.3. Call a node w in a tree T evenhanded in T if for all δ < 2 it is
the limit of splitting nodes u ∈ T with u_〈δ〉 ⊆ w. An almost perfect tree is a
subtree T ⊆ κ>2 such that the following three conditions hold:

• for every t ∈ T , there is a splitting node of T above t;
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• every evenhanded limit of splitting nodes of T is in T ;

• for every splitting node u ∈ T there are δ < 2 and a branch b ⊆ T of
length lg(b) = κ such that b favors δ above u.

Lemma 4.4. Suppose that S ⊆ κ>2 and (S,<Q) is κ-dense. Then

T (S) := { t ∈ T : S ∩ Cone(t) is κ-dense }

is an almost perfect tree.

Lemma 4.5. Suppose S ⊆ κ>2 and (S,<Q) is κ-dense. Let C(S) be the set of
all limit ordinals α > 0 such that every t ∈ T (S)∩ α>2 has proper extensions in
both S ∩ α>2 and W(S) ∩ α>2. Then C(S) is a club of κ.

Now we are ready to state the main theorem of this section.

Theorem 4.6. Suppose that κ is a cardinal which is measurable in the generic
extension obtained by adding λ Cohen subsets of κ, where λ → (κ)62κ . Further
suppose f : κ>2 → κ>2 is a pnp diagonalization with level harmony, D :=
f [κ>2], and ≺ is a D-vip order of the levels of κ>2. Then every vip m-type
(τ,l) is realized as (clp(x),≺x) for some x ⊆ D.

Proof. For t ∈ α2, i = 0, 1 and δ = 0, 1, define well-orderings ≺i,δt on α2 as
follows. First let β0

t = lg(f̂(t)) and set β1
t = lg(f(t)). Next set s ≺i,δt s′ if and

only if f(s_〈δ〉)�βit ≺ f(s′_〈δ〉)�βit.
Let ≺ ′ be a fixed small well-ordering of the levels of κ>2. Call a triple

{ s, s′, t } local if lg(s) = lg(s′) = lg(t), s <lex s′, t ≺ ′ s, and t ≺ ′ s′, and
s ∧ s′ 6⊆ t.

Let d be a coloring of the triples of κ>2 defined as follows: if { s, s′, t } is not
local, let d i,δ({ s, s′, t }) := 2 and otherwise set d i,δ({ s, s′, t }) := ‖s ≺ ′ s′ ⇐⇒
s ≺i,δt s′‖. For b = { s, s′, t } ∈ [α2]3, define

d(b) := (d 0,0(b), d 0,1(b), d 1,0(b), d 1,1(b)).

Apply Shelah’s Theorem 2.24 to d and ≺ ′ to obtain a strong embedding
e : κ>2 → κ>2 and an element w so that for triples from T := e[Cone(w)], the
coloring depends only on the ≺ ′-ordered similarity type of the triple.

Then two local triples { s, s′, t } and {u, u′, v } of T are colored the same if
and only if for all i = 0, 1 and δ = 0, 1,

s ≺i,δt s′ ⇐⇒ u ≺i,δv u′.

Thus for t ∈ T , the orderings ≺i,δt must always agree with one of ≺ ′ and its
converse on T on pairs {s, s′} ⊆ T with {s, s′, t} local and s ≺ ′ s′. Similarly,
they must always agree with one of ≺ ′ and its converse on T on pairs {s, s′} ⊆ T

with {s, s′, t} local and s′ ≺ ′ s. Since ≺ is a well-order, all of the orderings ≺i,δt
are also well-orders. Thus they always agree with ≺ ′.
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Let (τ,l) be an arbitrary vip m-type. Let L be the set of leaves of τ . Then
τ is a subtree of 2m−2≥2 and every level of 2m−2≥2 has exactly one element of
L∧. Extend l defined on τ to l∗ defined on all of 2n≥2 in such a way that the
extension is still a L∧-vip order.

Apply Lemma 4.2 to get an order preserving strong embedding j of (2m−2≥2,l∗)
into (Cone(w),≺ ′).

Let 〈 t` : ` ≤ 2m− 2 〉 enumerate the elements of L∧ in increasing order of
length. Note that lg(t`) = `. For ` ≤ 2m− 2, define

β` :=

{
lg(f̂(e(j(t`)))) if t` /∈ L,
lg(f(e(j(t`)))) if t` ∈ L.

Finally define ρ : τ → κ>2 by recursion on ` ≤ 2m − 2. For ` = 0, let
ρ(∅) = f̂(e(j(∅))). For ` > 0, consider three cases for elements of τ ∩ `2. If
t` ∈ L, let ρ(t`) = f(e(j(t`))). If t` /∈ L, let ρ(t`) = f̂(e(j(t`))). Note that in
both these cases, β` = lg(ρ(t`)). If s ∈ τ \L∧ has length `, then there is a unique
immediate successor in τ , s_〈δ〉. In this case, let ρ(s) = f(e(j(s))_〈δ〉)�β`.

Since j sends l∗-increasing pairs to ≺ ′-increasing pairs and e is a ≺ ′-order
preserving strong embedding, their composition sends sends l∗-increasing pairs
to ≺ ′-increasing pairs. Since for v` = e(j(t`)) ∈ T , the order ≺ ′ agrees with
≺iv`

on T ∩ γ2 where γ = lg(v`), it follows that ρ sends l∗-increasing pairs to
≺-increasing pairs.

Since f̂ preserves extension and lexicographic order and f̂(s) ( f(s), ρ
preserves extension and lexicographic order. By construction ρ sends levels to
levels, meets to meets and leaves to leaves. Let x = ρ[L] be the image under ρ
of the leaves of τ . By construction, x ⊆ ran(f). Also (clp(x), <x) = (τ,l), as
required.

Since (τ,l) was arbitrary, the theorem follows.

5 Lower bounds for Rado graphs

The main result of this section is Theorem 5.6 below and its Corollary 5.7,
which will be used to prove the persistency property of the canonical partition
described in the proof of the main theorem. Throughout this section we fix pnp
diagonalizations 〈ϕt : t ∈ κ>2 〉 with level harmony into S∗ and a pre-S∗-vip or-
der ≺ satisfying the three conditions of Lemma 3.4. For notational convenience,
let ψ = ϕ∅.

To prove Theorem 5.6 we work by successive approximation.

Lemma 5.1. Suppose f is a pnp diagonalization with level harmony, g has
range a strongly diagonal set D with D∧ ⊆ S∗, and g is polite to subsets of the
range of f . Then g ◦ f is a pnp diagonalization with level harmony.

Proof. Since f is a pnp diagonalization, it is polite, so its composition with g
is a polite pnp map whose range is strongly diagonal subset. Since <Q agrees
with the lexicographic order on incomparable pairs, f preserves <Q and sends
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all pairs to incomparable pairs, the composition g ◦ f preserves <Q. Since f is
injective with range a strongly diagonal set and g is a pnp map, the composition
is injective. Thus the composition, g ◦ f , is a pnp diagonalization.

For notational convenience, let h = g ◦ f . Then

ĥ(s) := h(s_〈0〉) ∧ h(s_〈1〉) = f(g(s_〈0〉)) ∧ f(g(s_〈1〉)).

Claim 5.1.a. For any s ∈ κ2, ĥ(s) = h(s_〈1 − δ〉) ∧ h(s) ( h(s), where
δ = g(s)(ĝ(s)).

Proof. Since f has level harmony, f̂(s) ( f(s). Set δ := f(s)(lg(f̂(s)). Since
s_〈0〉 <lex s

_〈1〉 and g preserves lexicographic order, it follows that
f(s_〈0〉) <lex f(s_〈1〉), hence f(s_〈δ〉)(lg(f̂(s)) = δ.

Since g is polite, g(f(s_〈1− δ〉))∧ g(f(s_〈δ〉)) = g(f(s_〈1− δ〉))∧ g(f(s)),
by meet regularity. That is, ĥ(s) = h(s_〈1− δ〉) ∧ h(s).

Claim 5.1.b. The function ĥ preserves lexicographic order.

Proof. Suppose s <lex t. Since f has level harmony, f̂(s) <lex f̂(t), f̂(s) ( f(s)
and f̂(t) ( f(t). Hence f̂(s) ∧ f̂(t) = f(s) ∧ f(t). Thus lg(f(s) ∧ f(t)) <
lg(f(s_〈0〉) ∧ f(s_〈0〉)) and lg(f(s) ∧ f(t)) < lg(f(t_〈0〉) ∧ f(t_〈0〉)). Since
g preserves meet length order, it follows that lg(h(s) ∧ h(t)) < lg(ĥ(s)) and
lg(h(s) ∧ h(t)) < lg(ĥ(t)).

Since g preserves lexicographic order, h(s) <lex h(t). By the Claim 5.1.a,
ĥ(s) ( h(s) and ĥ(t) ( h(t). Thus ĥ(s) <lex ĥ(t).

Claim 5.1.c. For all s and t, lg(s) < lg(t) implies lg(h(s)) < lg(ĥ(t)).

Proof. Suppose lg(s) < lg(t). Then lg(f(s)) < lg(f̂(t)) = lg(f(s_〈0〉)∧f(s_〈1〉).
Since f(s) ∧ f(s) = f(s), by preservation of meet length order by g, it follows
that lg(h(s) < lg(ĥ(t)).

Claim 5.1.d. For all s and t, lg(s) = lg(t) implies lg(ĥ(s)) < lg(h(t)).

Proof. Suppose lg(s) = lg(t). Then lg(f̂(s)) < lg(f(t)). Argue as in the previous
claim: by preservation of meet length order by g, it follows that lg(ĥ(s) <
lg(h(t)).

Claim 5.1.e. The function ĥ preserves extension.

Proof. Suppose s ( t. Then f̂(s) ( f̂(t), since f has level harmony. Since g
satisfies preservation of meet length order, lg(ĥ(s)) < lg(f̂(s)). By Claim 5.1.a,
ĥ(t) ( h(t), so lg(ĥ(s)) < lg(h(t)). Thus to show ĥ(s) ⊆ ĥ(t), it is enough to
show ĥ(s) ⊆ h(t).

For the first case, assume h(t)(lg(ĥ(s))) = 1, then ĥ(s) ⊆ h(t), since ran(h) is
strongly diagonal. If t is one of s_〈0〉 and s_〈1〉, then ĥ(s) ⊆ h(t) by definition
of ĥ(s).
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Next suppose h(t)(lg(ĥ(s))) = 0 and lg(t) > lg(s) + 1. Since f has level
harmony, f̂(s) ( f(s) and f̂(s) ⊆ ˆf(t) ( f(t). By Claim 5.1.a, ĥ(s) = h(t_〈1−
δ〉) ∧ h(s) where δ = f(lg(f̂(s)). For notational convenience, let α = lg(f̂(s)).
For the first subcase, suppose f(t)(α) 6= f(s)(α). Then f(t)(α) = f(s_〈1 −
δ〉)(α), so f(s) ∧ f(s_〈1 − δ〉) = f(s) ∧ f(t). Since ran(f) is strongly diagonal
and g is polite, it follows that g(f(s)) ∧ g(f(s_〈1− δ〉) = g(f(s)) ∧ g(f(t)), so
ĥ(s) = h(s) ∧ h(t) ⊆ h(t). For the second subcase, in which f(t)(α) = f(s)(α),
interchange the roles of f(s) and f(s_〈1−δ〉). The parallel argument concludes
with the inclusion ĥ(s) = h(s_〈1− δ〉) ∧ h(t) ⊆ h(t).

Now the lemma follows from the claims.

The next lemma gives an inequality, for pnp maps, which compares lengths
of meets of images with lengths of images of meets.

Lemma 5.2. Suppose g : κ>2 → κ>2 is a pnp map and {x, u, v } is a three
element strongly diagonal set with x∧u = x∧ v ( u∧ v. Then lg(g(x)∧ g(u)) ≤
lg(g(x ∧ u)) and lg(g(x) ∧ g(v)) ≤ lg(g(x ∧ u)).

Proof. Let α := lg(u ∧ x) = lg(u ∧ v) and set β := lg(g(x ∧ u)) = lg(g(x ∧ v).
Since g is a pnp map, β < lg(g(x)) and g(x)(β) = x(α). Similarly, β < lg(g(u))
and g(u)(β) = u(α). Also, β < lg(g(v)) and g(v)(β) = v(α).

Since x ∧ u = x ∧ v, it follows that x(α) 6= u(α) = v(α). Consequently,
g(x)(β) 6= g(u)(β) = g(v)(β). Thus lg(g(x)∧ g(u)) ≤ β and lg(g(x)∧ g(v)) ≤ β,
so the lemma follows.

Call x ∈ [κ>2]3 a short leaf triple if it is strongly diagonal and some leaf of
x is shorter than the meet of a pair of leaves from x; it is a long leaf triple if it
is strongly diagonal but not a short leaf subset.

Lemma 5.3. Suppose g is a pnp map which preserves <Q and has range a
strongly diagonal set. If x is a long leaf triple, then g[x] is a long leaf triple

Proof. List x in increasing lexicographic order as x0, x1, x2 and in increasing
order of length as xi, xk, x`. Then x0, x0 ∧ x1, x1, x1 ∧ x2, x2 lists the elements
of x∧ in <Q-increasing order, so x0 ∧ x1 6= x1 ∧ x2 and x0 ∧ x2 is the shorter of
x0 ∧ x1 and x1 ∧ x2. It follows that for some δ ∈ { 0, 2 }, the following is a list
of the elements of x∧ in increasing length order:

x0 ∧ x2, x1 ∧ xδ, xi, xk, x`.

It follows that lg(x0 ∧ x1) < lg(x2) and lg(x1 ∧ x2) < lg(x0). By Lemma 5.2
and the pnp property of g, lg(g(x0) ∧ g(x1)) ≤ lg(g(x0 ∧ x1)) < lg(g(x2)) and
lg(g(x1)∧ g(x2)) ≤ lg(g(x1 ∧x2)) < lg(g(x0)), so { g(x0), g(x1), g(x2) } is a long
leaf triple.

Lemma 5.4. Suppose g is a pnp map which preserves <Q and has range a
strongly diagonal set and x is a long leaf triple which witnesses meet regularity.
Then clp(g[x]) = clp(x).
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Proof. List x as x0, x1, x2 in increasing lexicographic order length order and as
xi, xk, x` in increasing order of length. By Lemma 5.3, g[x] is a long leaf triple.
Thus if x0 ∧ x2 = x1 ∧ x2−δ, x1 ∧ xδ, xi, xj , xk lists the meet closure of x in
increasing length order for some δ ∈ {0, 2}, then g(x0) ∧ g(x2), g(x1) ∧ g(xδ),
g(xi), g(xj), g(xk) lists the meet closure of g[x] in increasing length order. Thus
g preserves lexicographic order and meet length order on x and satisfies meet
regularity there, so by Lemma 2.17, clp(g[x]) = clp(x).

Next we show how to use Shelah’s Theorem 2.24 to obtain a polite pnp map
from a <Q-preserving pnp map whose range is a strongly diagonal set.

Lemma 5.5. Suppose that κ is a cardinal which is measurable in the generic
extension obtained by adding λ Cohen subsets of κ, where λ → (κ)62κ . Further
suppose g : κ>2 → κ>2 is a pnp map whose range is a strongly diagonal set.
Then there is a pnp map f such that g ◦ f is a polite pnp map.

Proof. Enumerate the vip 3-types as (τ0,l0), . . . , (τr−1,lr−1). Define a color-
ing d′ on three element subsets of κ2 as follows:

d′(x) = ((clp(x),≺x), (clp(g[x]),≺g[x])).

Apply Shelah’s Theorem 2.24 to d′ and ≺ to obtain a strong embedding e and
w ∈ κ2 such that e preserves ≺ on Cone(w) and for all three element subsets x of
Cone(w), the value of d′(e[x]) depends only on the ≺-ordered similarity type of
x, which is the same as the ≺-ordered similarity type of e[x]. Let e′ = e◦ϕw and
set T = ran(e′). Observe that for every triple x ⊆ T (clp(x),≺x) is a vip 3-type,
since the map ϕw is pnp diagonalization with level harmony into S∗ ∩Cone(w)
and e preserves ordered similarity types. Since ≺ is a D-vip level order, for
every triple x ⊆ T , (clp(g[x]),≺g[x]) is a vip 3-type. Define d ′′ on T by by
d ′′(x) = d′(ϕw[a]) where x = e(ϕw(a)). Since the value of d′ on y ⊆ e[Cone(w)]
depends only on (clp(y),≺y), the value of d ′′ on x ∈ [T ]3 depends only on
(clp(x),≺x).

To show g satisfies meet regularity on T it is enough to show it satisfies it for
every triple from g. Next we single out the key property. Suppose x0, x1, x2 lists
a strongly diagonal set x in increasing lexicographic order. Then x witnesses
meet regularity for g if either (x0∧x2 = x0∧x1 and g(x0)∧g(x2) = g(x0)∧g(x1))
or (x0 ∧ x2 = x1 ∧ x2 and g(x0) ∧ g(x2) = g(x1) ∧ g(x2)). It refutes meet
regularity for g if either (x0 ∧ x2 = x0 ∧ x1 and g(x0) ∧ g(x2) 6= g(x0) ∧ g(x1))
or (x0 ∧ x2 = x1 ∧ x2 and g(x0) ∧ g(x2) 6= g(x1) ∧ g(x2)).

Claim 5.5.a. Every short leaf triple x ⊆ T witnesses meet regularity; also its
image g[x] is a short leaf triple and g preserves meet length order on x.

Proof. Let (τ,l) a vip 3-type with τ a short leaf triple. List the leaves of τ
in increasing order of length as a0, a1, a2. Since τ is a short leaf triple, the
meet closure of the set of leaves of τ may be listed in increasing length order as
follows:

a0 ∧ a1 = a0 ∧ a1, a0, a1 ∧ a2, a1, a2.
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Thus a0∧a1 = ∅ = a0∧a2, lg(a0) = 1, lg(a0∧a1) = 2, lg(a1) = 3 and lg(a2) = 4.
We claim that every x ⊆ T with clp(x) = τ witnesses meet regularity. We

start by building a large family of triples whose image under e′ has ordered
similarity type (τ,l). Let ν be a cardinal larger than lg(g(e′(a0))). For α < ν,
let bα be the sequence of length 2α + 3 if α < ω and of length γ + 2n + 1 if
α = γ + n for some limit ordinal γ ≥ ω and n < ω such that

bα(η) =



a1(0), if η = 0,
a1(1), if η = 1,
a2(2), if 0 < η < lg(bα)− 1 even,
a1(2), if η = lg(bα)− 1,
a2(3), otherwise.

Note that the length of bα is always odd and at least 3, and that for odd
η ≥ 3, bα(η) = a2(3). For β < α, by construction, bβ ∧ bα = bβ�(lg(bβ) −
1). Using the above calculations, the reader may check that for β < α, one
has clp({ a0, bβ , bα }) = τ . Notice that a0 ∧ bβ = a0 ∧ bα = ∅. Since ϕw
is a pnp diagonalization, ≺ is a ran(ϕw)-vip level order, and l is the only
level order on τ which makes it a vip 3-type, the ordered similarity type of
{ϕw(a0), ϕw(bβ), ϕw(bα) } is (τ,l). Since e is a strong embedding which pre-
serves ≺ on Cone(w), the ordered similarity type of set
x(β, α) := { e′(a0), e′(bβ), e′(bα) } is also (τ,l).

Thus each x(β, α) either witnesses or refutes meet regularity for g. Since
d ′′ is constant on triples from T of the same ordered similarity type, and every
x(β, α) has ordered similarity type (τ,l), either every x(β, α) witnesses meet
regularity or every x(β, α) refutes it.

Suppose each x(β, α) refutes meet regularity. Then g(e′(a0)) ∧ g(e′(bβ)) 6=
g(e′(a0))∧g(e′(bα)) for β < α < ν. Since ν is a cardinal larger than lg(g(e(a0))),
by the Pigeonhole Principle, there are β < α with g(e′(a0)) ∧ g(e′(bβ)) =
g(e′(a0))∧g(e′(bα)). This contradiction shows that each x(β, α) witnesses meet
regularity. It follows that every x ⊆ T with clp(x) = τ witnesses meet regularity.

Next we claim that for every x ⊆ T with clp(x) = τ , g(x) is a short leaf
triple and g preserves meet length order on x. Assume toward a contradiction
that g(x) is not a short leaf triple. Let (τ ′,l′) be the ordered similarity type of
g(x). Since g(x) is strongly diagonal, it must be a long leaf triple. List the leaves
of x in increasing length order as x0, x1, x2. Since x witnesses meet regularity
for g, the meet closure of x may be listed in increasing length order: g(x0) ∧
g(x1) = g(x0)∧g(x2), g(x1)∧g(x2), g(x0), g(x1), g(x2). Let ν be an uncountable
cardinal greater than 2| lg(g(e′(a0)))|. Construct a sequence 〈 bα : α < ν 〉 as in
the previous claim such that for all α < ν, a0 ∧ bα = ∅ and for all β < α < ν,
clp({ a0, bβ , bα }) = τ and lg(bβ) < lg(bα). As we saw in the earlier claim, for
β < α < ν and for {ϕw(a0), ϕw(bβ), ϕw(bα) } has ordered similarity type (τ,l)
as does x(β, α) := { e′(a0), e′(bβ), e′(bα) }.

Since d ′′ is constant on triples of T of the same ordered similarity type,
each g[x(β, α)] has ordered similarity type (τ ′,l′). Thus for all β < α < ν,

19



the inequality lg(g(e′(a0))) ≥ lg(g(e′(aβ)) ∧ g(e′(aα))) holds. Since the range
of g is a strongly diagonal set, these inequalities must be strict. Since ν is an
uncountable cardinal greater than 2| lg(g(a0))|, by the Pigeonhole Principle, there
are β < γ with

g(e′(aβ))� lg(g(e′(a0))) = g(e′(aγ))� lg(g(e′(a0))).

Thus we have reached the contradiction that g(e′(aβ)) ∧ g(e′(aγ)) must have
length shorter than and greater than or equal to lg(g(e′(a0))). Thus g(x) is a
short leaf triple.

Since g(x) is a short leaf triple and g preserves length order, the elements of
the meet closure of g(x) may be listed in increasing length order:

g(x0) ∧ g(x1) = g(x0) ∧ g(x2), g(x0), g(x1) ∧ g(x2), g(x1), g(x2).

Thus g preserves meet length order on x.
We have shown that every short leaf triple which realizes (τ,l) witnesses

meet regularity for g, that g preserves meet length order on it, and that the
image under g is a short leaf triple. Since (τ,l) was an arbitrary vip 3-type of
a short leaf triple, the claim now follows

Claim 5.5.b. Every triple x ⊆ T witnesses meet regularity for g.

Proof. Let (τ,l) be an arbitrary vip 3-type. If τ is a short leaf triple, then
every triple x with clp(x) = τ witnesses meet regularity for g and g preserves
meet length order on x by Claim 5.5.a.

So assume τ is a long leaf triple. Let the leaves of τ be listing in increasing
lexicographic order as a0, a1, a2. Since τ is strongly diagonal, either a0 ∧ a2 =
a0 ∧ a1 or a0 ∧ a2 = a1 ∧ a2.

For the first case, suppose a0 ∧ a2 = a0 ∧ a1.
Then a0 ∧ a1 = ∅ and a1 ∧ a2 = 〈1〉, since τ is a long leaf triple. Let

s∗ = 〈1, 0〉, t∗ = 〈0, 0, 0, 1〉, u∗0 = 〈0, 0, 0, 0〉_a0, u∗1 = 〈1, 1, 0, 0〉_a1, and u∗2 =
〈1, 1, 0, 0, 0〉_a2. Let z∗ = { s∗, t∗, u∗0, u∗1, u∗2 }. Note that the lengths of the meet
closure listed in increasing order are

s∗ ∧ t∗, s∗ ∧ u∗1, s∗, u∗0 ∧ t∗, t∗, u∗1 ∧ u∗2, u∗i , u∗j , u∗k

where u∗i , u
∗
j , u

∗
k lists u∗0, u

∗
1, u

∗
2 in increasing order of length. Thus z∗ is strongly

diagonal and clp(z∗) = z∗. Let ≺∗ be a vip ordering of the levels of clp(z∗) such
that if lg(a0) < min { lg(a1), lg(a2) }, then u∗1� lg(u∗0) ≺∗ u∗2� lg(u∗0) if and only if
a1� lg(a0) l a2� lg(a0). The careful reader may check that there is one and only
one way to define ≺∗.

By Theorem 4.6, the vip 5-type (z∗,≺∗) can be realized by a subset z =
{u0, u1, u2, s, t } of the range of ϕw. Note for u = {u0, u1, u2 }, (clp(u),≺u) =
(τ,l) = (clp(e[u]),≺e[u]). Moreover, {e(u0), e(s), e(t)} and {e(t), e(u1), e(u2)}
are short leaf triples, so by Claim 5.5.a, the inequalities
lg(g(e(t))) < lg(g(e(u1)) ∧ g(e(u2))) and lg(g(e(s))) < lg(g(e(t))) hold. Since
e(u0) ∧ e(u1) = e(u0) ∧ e(u2) ( e(u1) ∧ e(u2), by Lemma 5.2,
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lg(g(e(u0)) ∧ g(e(u1))) ≤ lg(g(e(u0 ∧ u1))) and
lg(g(e(u0)) ∧ g(e(u2))) ≤ lg(g(e(u0 ∧ u1))).

By construction, u0 ∧ u1 = s ∧ t, so e(u0 ∧ u1) = e(s ∧ t) and g(e(u0 ∧
u1)) = g(e(s ∧ t)) is shorter than g(e(t)). Therefore lg(g(e(u0)) ∧ g(e(u1))) ≤
lg(g(e(s ∧ t))) < lg(g(e((t))) < lg(g(e(u1)) ∧ g(e(u2))). Similarly, lg(g(e(u0)) ∧
g(e(u2))) < lg(g(e(u1))∧g(e(u2))). Thus e[u] witnesses meet regularity for g and
(clp(e[u]),≺e[u]) = (τ,l). It follows that any x ⊆ T with (clp(x),≺x) = (τ,l)
also witnesses meet regularity.

Our next goal is to show that for every pair from T , depending on the type
of the pair, g preserves or reverses the lexicographic order of the pair.

For notational convenience, let η0 be the 2-type whose leaves are 〈0〉 and
〈1, 0〉; let η1 be the 2-type whose leaves are 〈1〉 and 〈0, 0〉; let η2 be the 2-type
whose leaves are 〈0〉 and 〈1, 1〉; and let η3 be the 2-type whose leaves are 〈1〉
and 〈0, 1〉.

For all x ∈ [κ2]2, the set clp(x) is one of η0, η1, η2 and η3. For i < 4, let
Ci be the unique vip level order on ηi. Then the set { (ηi,Ci) : i < 4 } is the
collection of all vip 2-types.

Since g is a pnp map and T is strongly diagonal, x ∈ [T ]2 with clp(x) = η0
or clp(x) = η1 we must have clp(g[x]) = η0 or clp(g[x]) = η1. Similarly, for any
pair x ⊆ T with clp(x) = η1 or clp(x) = η2 we must have clp(g[x]) = η1 or
clp(g[x]) = η2. Say g sends i to j if for all incomparable pairs x from T with
clp(x) = ηi, one has clp(g[x]) = ηj .

Note that every element of the range of e ◦ ϕw′ for w′ = ϕw(〈0, 0〉) is an
extension of e(w′) so any pair of elements of the range of e ◦ ϕw′ forms a short
leaf triple with e(ϕw(〈1〉)). Thus without loss of generality we may assume that
for every pair x1, x2 from T there is a node x0 from T such that {x0, x1, x2 } is a
short leaf triple with short leaf x0 such that with clp({x0, x2}) = clp({x0, x1}) =
clp({〈0, 0〉, 〈0〉}). Then the type of {x0, x1, x2 } depends only on the type of
{x1, x2 }. Since d ′′ is constant on triples from T of the same ordered similarity
type, for each i < 4, g sends i to j for some j < 4.

Claim 5.5.c. Either g sends 0 to 1 and 1 to 0, or g sends 0 to 0 and 1 to 1.

Proof. Consider a = 〈0, 0, 0, 0〉, b = 〈0, 1〉 and c = 〈1, 0, 0〉. Then { a, b, c } is
diagonal, and c ∧ a = ∅ = c ∧ b.

Now clp({ a, c }) = η1 and clp({ b, c }) = η0. Let s = e′(a), t = e′(b) and
u = e′(c). Set x := { s, u } and y = { t, u }. Since e′ is a polite pnp map, by
Lemma 2.17, we have clp(x) = η1 and clp(y) = η0.

Since every triple of T witnesses meet regularity for g, g(u) ∧ g(s) = g(u) ∧
g(t). That is, g(s) and g(t) are on the same side of g(u). Let γ = lg(g(u)∧g(s)).
Then g(s)(γ) = g(t)(γ) = 1 − g(u)(γ). If g(s)(γ) = 0 then clp(g[x]) = η1 and
clp(g[y]) = η0, so g sends 1 to 1 and 0 to 0. Otherwise g(s)(γ) = 1. In this case
clp(g[x]) = η0 and clp(g[y]) = η1, so g sends 1 to 0 and 0 to 1.

Claim 5.5.d. Either g sends 2 to 3 and 3 to 2, or g sends 2 to 2 and 3 to 3.
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Proof. The proof parallels that of the previous claim using a = 〈1, 1, 1, 1〉, b =
〈1, 0〉 and c = 〈0, 0, 1〉. The details are left to the reader.

Claim 5.5.e. The map (g ◦ e′) ◦ (g ◦ e′) which preserves <Q.

Proof. It is enough to show that for all i < 4, (g ◦ e′) ◦ (g ◦ e′) preserves <Q on
pairs x, y whose image under ϕw has type ηi.

Note that e′ is a polite pnp map which preserves <Q and similarity types
and takes comparable pairs to incomparable ones where <Q coincides with <lex.
Thus if g sends 0 to 0 and 1 to 1, then g ◦ e′ preserves both the order <Q and
similarity type on pairs of type η0 or η1, as does its square. If g sends 0 to 1 and
1 to 0, then g ◦ e′ reverses order and reverses similarity type on pairs of type η0
or η1, so its square preserves the order <Q and similarity types on pairs of type
η0 or η1.

A similar argument holds when 0 and 1 are replaced by 2 and 3 so the claim
follows.

Claim 5.5.f . The maps (g ◦ e′) and (g ◦ e′)◦ (g ◦ e′) are pnp maps which satisfy
meet regularity.

Proof. The maps are pnp maps since they are compositions of pnp maps. Now
e′ preserves meet regularity, and every three element subset of T = ran(e′)
witnesses meet regularity for g, so g ◦ e′ satisfies meet regularity as does its
square.

Claim 5.5.g. For all three element subsets x ⊆ T , clp(g ◦ e′ ◦ g[x]) = clp(x).

Proof. Since e′ preserves <Q and (g ◦ e′) ◦ (g ◦ e′) preserves <Q, it follows that
g ◦ e′ ◦ g preserves <Q=<lex on T . Since by Claim 5.5.b, every triple from T
witnesses meet regularity for g, it follows that every triple from T witnesses
meet regularity for g ◦ e′ ◦ g.

Recall that g takes short leaf triples of T to short leaf triples and preserves
meet length order on such triples. Since e′ preserves similarity types, g ◦ e′ ◦ g is
polite on short leaf triples x from T so by Lemma 2.17, clp(g◦e′ ◦g[x]) = clp(x).

Now suppose x ⊆ T is a long leaf triple. Since g◦e′◦g preserves <Q on T and
has range a strongly diagonal set, by Lemma 5.3, g ◦e′ ◦g[x] is a long leaf triple.
Since g ◦ e′ ◦ g also preserves meet regularity on T , clp(g ◦ e′ ◦ g[x]) = clp(x) by
Lemma 5.4.

Claim 5.5.h. The map g′ := (g ◦ e′) ◦ (g ◦ e′) preserves meet length order.

Proof. Since e′ preserves meet length order, it suffices to show that g ◦ e′ ◦ g
preserves meet length order on z ⊆ T with |z| ≤ 4. Let z = {x, y, u, v } ⊆ T be
arbitrary and assume lg(x ∧ y) < lg(u ∧ v).

For the first case, assume |z| = 2; let z = { s, t } where lg(s) < lg(t). Then
there are only three possible meets, listed here in increasing order of length:
s ∧ t, s ∧ s and t ∧ t. Since g is a pnp map, lg(g(s)) < lg(g(t)). Since the range
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of g is strongly diagonal set, g(s) and g(t) are incomparable, so g(s) ∧ g(t) is a
proper initial segment of both g(s) and g(t).

For the second case, assume |z| = 3. Then clp(g′[z]) = clp(z) by Claim 5.5.g,
so g′ preserves meet regularity on z.

For the third case, assume |z| = 4 and x∧y ⊆ u∧v. Either (x∧y)_〈0〉 ⊆ u∧v
or else (x ∧ y)_〈1〉 ⊆ u ∧ v. Thus either x ∧ y = y ∧ u = y ∧ v or else x ∧ y =
x ∧ u = y ∧ v. Since clp(g′[{x, u, v }]) = clp({x, u, v }) and clp(g′[{ y, u, v }]) =
clp({ y, u, v }), it follows that g′(x) ∧ g′(y) < g′(u) ∧ g′(v).

For the final case, assume |z| = 4 and x∧y 6⊆ u∧v. Since lg(x∧y) < lg(u∧v),
it follows that x ∧ y and u ∧ v are incomparable. Thus x ∧ v = y ∧ v ⊆ u ∧ v.
Since z is strongly diagonal, so is {x, y, v }, so by Lemma 5.2, lg(g′(x)∧g′(y)) ≤
lg(g′(x∧ y)). Now z′ = {x ∧ y, u, v } is a short leaf triple which is a subset of z.
Since (clp(z),≺z) is a vip 4-type, it follows that (clp(z′),≺z′) is a vip 3-type.
Thus clp(g′[z′]) = clp(z′) and g′[z′] is a short leaf triple. In particular, lg(g′(x∧
y)) < lg(g′(u)∧ g′(v)), hence lg(g′(x)∧ g′(y)) ≤ lg(g′(x∧ y)) < lg(g′(u)∧ g′(v)),
and g′ preserves meet length order on z.

Since g′ trivially preserves meet length order on the empty set and sets of
size 1, the claim follows from the above case analysis.

By Claims 5.5.b, 5.5.e and 5.5.h, g′ = (g ◦ e′) ◦ (g ◦ e′) is a polite pnp map
which preserves <Q. Therefore the lemma follows with f = e′ ◦ g ◦ e′.

Theorem 5.6. Suppose that κ is a cardinal which is measurable in the generic
extension obtained by adding λ Cohen subsets of κ, where λ → (κ)62κ . If g :
κ>2 → κ>2 is a pnp map whose range is a strongly diagonal set whose meet
closure is a subset of S∗ = σ[κ], then there is pnp map f such that g ◦ f is a
pnp diagonalization into S∗ with level harmony.

Proof. Apply Lemma 3.4 to obtain a pre-S∗-vip order ≺ and a sequence of pnp
diagonalizations with level harmony 〈ϕt : t ∈ κ>2 〉 such that for all t ∈ κ>2, the
three listed properties of the lemma hold. Apply Lemma 5.5 to g to obtain a pnp
map f0 such that g◦f0 is a polite pnp map and f0 preserves meet regularity and
meet length order on short leaf triples. Since ψ = ϕ0 is a pnp diagonalization
with level harmony, by Lemma 5.1, the map g ◦ f0 ◦ ψ is a pnp diagonalization
with level harmony and f0 ◦ ψ preserves meet regularity and meet length order
on short leaf triples. Let f = f0 ◦ ψ. Then g ◦ f is a pnp diagonalization with
level harmony as required.

Corollary 5.7. Suppose that κ is a cardinal which is measurable in the generic
extension obtained by adding λ Cohen subsets of κ, where λ → (κ)62κ . If g :
S∗ → κ>2 is a pnp map whose range is a strongly diagonal set D whose meet
closure is a subset of S∗ = σ[κ] and ≺ is a D-vip order of the levels of κ>2,
then every vip `-type (τ,l) for 0 < ` < ω is realized as (clp(x),≺x) for some
x ⊆ D and for all y ∈ [D]`, (clp(y),≺y) is a vip `-type.

Proof. By Lemma 2.22, for all y ∈ [D]`, (clp(y),≺y) is a vip `-type.
Use the Diagonalization Lemma 3.3 to obtain a pnp diagonalization ϕ :

κ>2 → S∗ with level harmony. Apply Theorem 5.6 to g ◦ϕ to obtain a pnp map
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f so that g ◦f is a pnp diagonalization with level harmony. Let D′ = g ◦f [κ>2].
Since D′ ⊆ D, D′ is it a strongly diagonal subset whose meet closure is a subset
of S∗. Thus by Theorem 4.6, every vip `-type (τ,l) is realized as (clp(x),≺x)
for some x ⊆ D′ ⊆ D.

Definition 5.8. Suppose ψ is a pnp map whose range is a strongly diagonal
set D and ≺ is a D-vip level order. Call I,H ⊆ κ a coding pair for ψ and ≺ if
the following conditions are satisfied:

1. clp(u) = clp({ 〈0, 0〉, 〈1〉 }) for every pair u ⊆ ψ ◦ σ[I];

2. every triple v ⊆ ψ ◦σ[I ∪H] whose intersection with ψ ◦σ[I] is non-empty
is a short leaf triple;

3. for all α ∈ I and β ∈ H, α < β and ψ ◦ σ(β) <lex ψ ◦ σ(α).

Theorem 5.9 (Uniformization Theorem). Let n ≥ m ≥ 2 and suppose that κ
is a cardinal which is measurable in the generic extension obtained by adding
λ Cohen subsets of κ, where λ → (κ)2m

′

2κ for m′ = max(3,m). There are a
pnp mapping ψ : κ>2 → κ>2 whose range is a strongly diagonal set D and
a D-vip level ordering ≺ such that for all copies G∗ = (H,E�H) of the Rado
graph and all colorings c of [H]m with fewer than κ colors, there is an increasing
endomorphism h : κ→ H and I ∈ [H]n such that the following conditions hold:

1. for all positive ` < ω, every `-element subset of ψ ◦ σ[κ] realizes some vip
`-type and every vip `-type is realized by some subset of ψ ◦ σ[h[κ]];

2. for all a ∈ [κ]m, clp(ψ ◦ σ[h[a]]) = clp(ψ ◦ σ[a]);

3. c(x) = c(y) for all x, y ∈ [I ∪ h[κ]]m whose images under ψ ◦ σ have the
same vip m-type; and

4. I, h[κ] is a coding pair for ψ and ≺.

Proof. Let 〈ϕt : t ∈ κ>2 〉 and ≺ such that for all t ∈ κ>2, ϕt is a pnp diag-
onalization with level harmony into S∗ ∩ Cone(t); the meet closure of the set
Dt := ran(ϕt) is a subset of S∗ disjoint from D∧

s for all s ≺ t; and ≺ is a Dt-vip
order. Let ψ = ϕ∅. Then ≺ is a D-vip level order for D = ran(ψ).

Recall that by Lemma 2.17, if φ is polite pnp map, then clp(φ[x]) = clp(x)
for every strongly diagonal set x ⊆ κ>2. Also, polite pnp maps are closed under
composition. We use these facts repeated in this proof.

Let G∗ = (H,E�H) be an arbitrary copy of G in G and suppose c is an
arbitrary coloring of [H]m with fewer than κ many colors. Apply Lemma 2.1
to get an increasing endomorphism j : κ → H. By Lemma 2.7, σ ◦ j0 ◦ σ−1 is
a pnp map on S∗, so (ψ ◦ σ) ◦ j0 ◦ ψ is a pnp map on κ>2. Let f0 be a pnp
map obtained from Theorem 5.6 such that (psi ◦ σ) ◦ (j0 ◦ σ−1 ◦ψ ◦ f0) is a pnp
diagonalization with level harmony. Set g := j0 ◦ σ−1 ◦ ψ ◦ f0. Note that σ ◦ g
is a pnp map.

Define a coloring d on [κ>2]m by d(x) = ((clp(ψ◦σ[g[x]]),≺ψ◦σ[g[x]]), c(g[x])).
Apply Shelah’s Theorem 2.24 to d to obtain w ∈ κ>2 and a strong embedding e

24



such that e preserves ≺ on Cone(w) and for all u, v ∈ [Cone(w)]m, (clp(u),≺u
) = (clp(v),≺v) implies d(e[u]) = d(e[v]).

Set K :=
{

02i_〈1〉 : i < n
}
; let J := ϕw ◦ ψ[K] and let I := g ◦ e[J ]. Since

ψ ◦ σ ◦ g, e, ϕw and ψ are all polite pnp maps, clp(ψ ◦ σ[I]) = clp(e[J ]) =
clp(ϕw ◦ ψ[K]) = clp(K).

Let z be an extension of z′ := ϕw ◦ ψ(02n_〈1〉) such that g ◦ e(z) is larger
than every α ∈ I. Set h := (g ◦ e) ◦ (ϕz ◦ ψ) ◦ σ. Since σ ◦ g is a pnp map, so
is σ ◦ (g ◦ e) ◦ (ϕz ◦ ψ). Thus by Lemma 2.7, h is an increasing endomorphism.
Since g = j0 ◦ σ−1 ◦ ψ, h maps into H.

Claim 5.9.a. I, h[κ] is a coding pair.

Proof. Since J := ϕw ◦ ψ[K] is a subset of Cone(w), the meet closure of L :=
ϕ ◦ ψ[S∗] is a subset of Cone(z) ⊆ Cone(w), the only triples of J ∪ L which
fail to be short leaf triples are subsets of L. Thus I, h[κ] satisfies the second
condition of the definition of coding pair,since ψ ◦ σ[I] = (ψ ◦ σ) ◦ (g ◦ e)[J ],
ψ ◦σ[h[κ]] = (ψ ◦σ)◦(g ◦e)[L] and (ψ ◦σ)◦(g ◦e) is a polite pnp map. Similarly,
I, h[κ] satisfies condition 1 of the definition of coding pair, since clp is preserved
by pnp maps and all pairs from K have the desired collapse. and I ∪ h[κ] =
g ◦e[J ∪ (ϕ◦ψ)[S∗]], For all α ∈ I and β ∈ h[κ], then the inequality α < β holds
by choice of z and, if α = g ◦ e(u) and β = (g ◦ e)(v) for v = ϕw ◦ ψ(02i_〈1〉),
then the order relation ψ◦σ(β) <lex ψ◦σ(α) holds since z′ <lex ϕw◦ψ(02i_〈1〉),
clp({u, v}) = clp({z′, v}), and ψ◦σ◦g◦e preserves the collapses. That is, I, h[κ]
satisfies the third condition of coding pair and hence is a coding pair.

Claim 5.9.b. for all positive ` < ω, every `-element subset of ψ ◦ σ[κ] realizes
some vip `-type and every vip `-type is realized by some subset of ψ ◦ σ[h[κ]].

Proof. Since ψ is a pnp diagonalization into S∗ with level harmony, and ≺ is
a ran(ψ)-vip level order, by Lemma 2.22, every `-element subset realizes some
vip `-type. Since ψ ◦σ[h[κ]] is (ψ ◦σ) ◦ g ◦ e ◦ϕz ◦ψ[S∗], by Corollary 5.7, every
vip `-type is realized by some subset of this range.

Claim 5.9.c. For all a ∈ [κ]m, clp(ψ ◦ σ[h[a]]) = clp(ψ ◦ σ[a]).

Proof. Let a ∈ [κ]m be arbitrary. Since h[a] = (g ◦ e ◦ϕz)[ψ ◦σ[a]], and (ψ ◦σ) ◦
(g◦e◦ϕz) is a polite pnp map, it follows that clp(ψ◦σ[h[a]]) = clp(ψ◦σ[a]).

Claim 5.9.d. For all x, y ∈ [I ∪ h[κ]]m, if the images of x and y under ψ ◦ σ
have the same vip m-type, then c(x) = c(y).

Proof. By Corollary 5.7, every vip m-type is realized by some subset of the
range of ϕw ◦ f ◦ ψ. Similarly, since the mapping t 7→ w_t is a pnp map,
every vip m-type is realized by some subset of Cone(w). By choice of e and
w, for all m-element subsets u, v ⊆ Cone(w) if (clp(u),≺u) = (clp(v),≺v), then
d(e[u]) = d(e[v]).

Thus we can define a map ρ on the vip m-types by ρ(τ,l) = (τ ′,l′)
is such that for all u ⊆ ϕw ◦ ψ[S∗] with (clp(u),≺u) = (τ,l), d(e[u]) =
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((τ ′,l′), c(g[e[u]])). Since by Corollary 5.7, every vip m-type is realized in
the range of (ψ ◦ σ) ◦ g ◦ e, it follows that ρ is surjective. Since the domain and
range of ρ are the same finite set, ρ must also be injective, i.e. bijective.

Recall I ∪ h[κ] = g ◦ e[J ∪ L] for L = ϕw ◦ ψ[S∗] and J ∪ L ⊆ Cone(w).
Thus if x and y are arbitrary m-element subsets of I ∪h[κ] whose images under
ψ ◦ σ have the same vip m-type (τ ′,l′), and u and v be subsets of Cone(w)
such that x = (g ◦ e)[u] and y = (g ◦ e)[v], then u and v must have the same
vip m-type (τ,l) where ρ(τ,l) = (τ ′,l′), so d(e[u]) = d(e[v]); it follows that
c(g ◦ e[u]) = c(g ◦ e[v]), that is, c(x) = c(y).

Now the theorem follows from the claims.

6 Canonical partitions and the main result

This section is devoted to the proof of the Theorem 1.1, which, for the conve-
nience of the reader, we restate below.

Theorem 6.1. Let m ≥ 2 and suppose that κ is a cardinal which is measurable
in the generic extension obtained by adding λ Cohen subsets of κ, where λ →
(κ)2m2κ . Then for r+m equal to the number of vip m-types, any κ-Rado graph
G = (κ,E) satisfies G → (G)m

<κ,r+m
and G 9 (G)m

<κ,r+m−1
. Moreover, there is a

canonical partition of [G]m into r+m parts.

Proof. Let us first note that it suffices to prove that there is a canonical partition
into r = r+m parts. Namely, suppose that C = {C0, C1, . . . , Cr } is such a
partition and that c : [κ] → µ for some µ < κ is a coloring. Then by indivisibility
there is a copy G∗ of G within G such that [G∗]m∩Cj is monochromatic for each
j < r and hence [G∗]m is colored into at most r colors. Hence G → (G)m

<κ,r+m
.

On the other hand, if we define a coloring c of [κ]m by letting c(z) = j iff z ∈ Cj
we obtain a coloring into < κ colors in which every copy G∗ of G within G has
all r+m-colors, by indivisibility. Therefore G 9 (G)m

<κ,r+m−1
.

Let us prove the existence of a canonical partition. Apply Theorem 5.9 to to
obtain a pnp mapping ψ whose range is a strongly diagonal set D and a D-vip
level order ≺ with the specified properties.

With r = r+m, let (τ0,l0), (τ1,l1), . . . , (τr−1,lr−1) enumerate the vip m-
types. For j < r, let Cj be the set of all m-element subsets A ⊆ κ for which
(clp(ψ ◦σ[A]),≺ψ◦σ[A]) = (τj ,lj). Then C := {C0, C1, . . . , Cr−1 } is a partition
of [κ]m into r sets.

Claim 6.1.a. C is persistent.

Proof. Suppose that G∗ = (H,E�H) is an isomorphic copy of the κ-Rado graph
within G.

If m = 2, apply Lemma 2.1 to get an increasing map h : κ → H, observe
that σ−1 ◦ h ◦ σ is a pnp map by the Translation Theorem 2.8, and ψ ◦ h ◦ σ is
a pnp map whose range is a strongly diagonal subset of κ>2. By Theorem 4.1
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of [3], there is a similarity embedding of every 2-type into the range of ψ ◦h ◦σ,
i.e. every 2-type can be realized by some subset of ψ ◦ σ[h[κ]]. By Lemma 2.22,
every equivalence class of the partition has non-empty intersection with [H]2.

Now suppose m > 2. Let c be the coloring defined on x ∈ [H]m by c(x) =
(clp(ψ ◦ σ[x]),≺ψ◦σ[x]). Since the range of ψ is a strongly diagonal set D and
≺ is a D-vip level order, c maps into the set of all vip m-types, which is finite.
Let h : κ → H be the increasing endomorphism whose existence is guaranteed
by the Uniformization Theorem 5.9. By the first condition h must satisfy, every
vip m-type is realized by a subset of ran(h) ⊆ H, so every equivalence class
meets [H]m and C is persistent.

Claim 6.1.b. For all copies G∗ of G, the restriction of the partition C to m-
element subsets of G∗ is indivisible.

Proof. Fix a copy G∗ = (H,E�H) of G and suppose c is a coloring of [H]m with
µ < κ many colors.

If m = 2, let h be as in argument for m = 2 in the previous claim, apply
Shelah’s Theorem to d(x) := (clp(ψ ◦ σ[g[x]], c(g[x])) for g = h ◦ σ to get e and
w so that for x ⊆ Cone(w), d(x) depends only on the ordered similarity type of
x, hence only on the similarity type of x. Continue as in Claim 5.9d.

So suppose m > 2. Let h : κ → H be the increasing endomorphism whose
existence is guaranteed by the Uniformization Theorem 5.9. By the third con-
dition h must satisfy, c is monochromatic on m-element subsets of h[κ] of the
same vip m-type. Hence G∗∗ = (h[κ], E�h[κ]) is a copy of G in G∗ such that c
is monochromatic on [h[κ]]m ∩ Cj for each j < r. Therefore C is indivisible on
G∗ and the claim follows.

By the claims, C is a canonical partition and the theorem follows.

Definition 6.2. A family B forms a basis for the equivalence relations on the
n-element subsets of G if the following two conditions hold:

1. For every equivalence relation F on the [κ]n and every copy G∗ of G,
there is a copy G∗∗ of G in G∗ and an element B ∈ B(n) such that
F �[G∗∗]n = B�[G∗∗]n.

2. If F1 and F2 are different elements of B(n) and G∗ is a copy of G in G,
then F1�[G∗]n 6= F2�[G∗]n.

Using results of this paper and Shelah’s Theorem, Larson and Mitchell in
a forth-coming paper prove there is a finite basis for the for the equivalence
relations on the m-element subsets of G.

We finish with some ideas on the size of r+m. There are four 2-types and each
of them admits a single vip order. Any copy of an uncountable Rado G has an
induced subgraph which is a countable Rado graph. Since Laflamme, Sauer and
Vuksanovic [3] have shown that these four types must appear in translations of
every induced subgraph of the countable Rado graph which is itself isomorphic
to the countable Rado graph, it follows from their work that Gκ 9 (Gκ)2<ω,r+2 −1

.
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m r+m rm
1 1 1
2 4 4
3 128 112
4 26, 368 12, 352
5 41, 932, 288 4, 437, 760

Figure 1: Some small values of r+m and rm.

For larger values of m, we use Shelah’s Theorem. Since the partition we use
in the proof of Theorem 1.1 is definable without Shelah’s Theorem we focus
attention on the following question.

Question 6.3. Suppose κ is an uncountable cardinal with κ<κ = κ, Gκ is a
κ-Rado graph and 2 < m < ω. Does G 9 (G)m

<ω,r+m−1
? i.e., does the lower

bound hold even when κ does not satisfy the hypothesis of Shelah’s Theorem?

Figure 1 summarizes the calculation from [4] of values of r+m for m ≤ 5. A
comparison with rm, the number of m-types, is also included, where rm is the
critical value for finite colorings of m-tuples of the countable Rado graph.
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