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In a two-fluid system where the upper surface of the upper fluid is free, there are
two independent modes of oscillation about the state of equilibrium, an ‘internal’
mode and an ‘external’ mode, which are described by two distinct dispersion curves.
An efficient numerical scheme based on Fourier series expansions is used to calculate
periodic waves of permanent form and of finite amplitude. Three kinds of waves are
calculated: combination waves resulting from the interaction between an ‘internal’
mode and an ‘external’ mode with the same phase speed but wavelengths in a ratio
of 2 (1:2 resonance), combination waves resulting from the interaction between a
long ‘internal’ mode and a short ‘external’ mode with the same phase speed, and
pure ‘external’ waves. It is shown that the 1:2 resonance, which is well-known for
capillary – gravity surface waves and can profoundly affect wave field evolution, can
affect pure gravity waves in a two-fluid system, but not in oceanic conditions. On the
other hand, it is shown that the long/short wave resonance can occur in ocean-type
conditions. Finally it is confirmed that pure external waves of finite amplitude behave
like surface waves.

1. Introduction
The influence of internal waves on oceanic surface waves has been a subject of

oceanographic interest for several decades. Likewise the possible importance of surface
waves for the generation of internal waves has also been studied. To better understand
such interactions, idealized internal-wave/surface-wave systems have been introduced
theoretically and experimentally. The simplest model is a two-fluid system where the
upper surface of the upper fluid is free. This system has two independent modes of
oscillation about the state of equilibrium, an ‘internal’ mode and an ‘external’ (or
‘surface’) mode.†

Such a two-fluid system admits resonant interactions between external and internal
modes, which play an important role in energy transfer processes. For example Ball
(1964) considered resonant triads that couple two external modes and one internal
mode, while Segur (1980) showed that triads coupling two internal modes and one
external mode are also possible. In the experiments of Lewis, Lake & Ko (1974),

† In this paper the terminology external/internal is used to describe the independent modes of
oscillation. The terminology free-surface/interfacial is used to describe waves along the free surface
and the interface, respectively. For instance, if only the ‘external’ mode is excited, we talk about
‘external’ waves, both for the interfacial and the free-surface waves.
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in which a mechanically generated surface wave packet interacts with a constant-
amplitude interfacial wave, it was shown that matching the group velocity of the
surface wave with the phase velocity of the interfacial wave leads to a resonance in
the system. All these resonances are important from a dynamical point of view.

Two-fluid systems where the upper surface of the upper fluid is free also admit
waves of permanent form. These waves can feel the influence of resonant interactions
between external and internal modes. A clear illustration is given by Akylas &
Grimshaw (1992), who studied internal waves in a density-stratified fluid. Their
figure 2 provides a field observation of a wave resulting from the interaction between
a long ‘internal’ mode and a short ‘external’ mode with the same phase speed. Walker
(1973), who designed experiments to observe interfacial solitary waves, writes that the
unavoidable presence of surface mode noise poses a serious problem. It is possible
that the noise is only part of the problem and that in fact solitary waves interact with
a short external mode.

In this paper we calculate periodic waves of permanent form that propagate in a
two-fluid system with free-surface boundary conditions. In contrast to waves travelling
along the interface between two homogeneous fluids in the rigid-lid approximation
(Holyer 1979; Meiron & Saffman 1983; Grimshaw & Pullin 1986; Funakoshi &
Oikawa 1986; Evans & Ford 1996), there has been relatively little numerical work
on interfacial waves with free-surface boundary conditions, although they are truer
to nature, at least in oceanic situations as pointed out by Evans & Ford (1996).
The main reason is that interactions between external and internal modes make the
calculations difficult. Moni & King (1995) have computed pure ‘external’ solitary
waves. Michallet & Dias (1999) have computed combination solitary waves resulting
from the interaction between a long internal mode and a short external mode.

In § 2 we formulate the inviscid two-layer problem. The dispersion relation and the
conditions for resonant interaction between external and internal modes are studied in
§ 3. The numerical procedure is given in § 4. It is based on Fourier series expansions.
Some results of the calculations are presented in § 5. Three cases are considered:
combination waves resulting from the interaction between an internal mode and
an external mode with the same phase speed but wavelengths in a ratio of 2 (1:2
resonance), combination waves resulting from the interaction between a long internal
mode and a short external mode with the same phase speed, and pure external waves.

2. Formulation
Both fluids are inviscid. The flow is assumed to be irrotational in each layer. In the

undisturbed state, both layers are at rest. The subscripts 1 and 2 refer to the lower and
upper layers, respectively. The lower layer is of infinite depth while the upper layer is
of thickness h. As we are interested in systems of travelling interfacial and free-surface
waves of permanent form, it is convenient to adopt a reference frame moving with the
speed c of the waves so that the flow is made steady and to use c to make velocities
dimensionless. Since we only deal with periodic waves, the wavelength λ is used to
make lengths dimensionless. The dimensionless coordinates are x (horizontal) and y
(vertical). The following dimensionless numbers are introduced:

H = h/λ, K = (2π/λ)h, F = c2/(gh), Fλ = c2/(gλ), R = ρ2/ρ1,

where g is the acceleration due to gravity and ρi the fluid density in layer i.
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In dimensionless form, the governing equations in each layer are

∆φi = 0, i = 1, 2, (2.1)

where φi is the velocity potential in layer i. Along the interface described by y = Y (x)
there are two kinematic conditions

∂φi

∂x

dY

dx
− ∂φi

∂y
= 0, i = 1, 2. (2.2)

Using Bernoulli’s equation in each fluid and eliminating the pressure at the interface,
one can write the dynamic condition in the form

1
2
|∇φ1|2 − 1

2
R|∇φ2|2 + (1− R)

1

Fλ
Y = 1

2
(1− R) + 1

2
B1. (2.3)

Along the free surface described by y = Ys(x) there is the kinematic condition

∂φ2

∂x

dYs
dx
− ∂φ2

∂y
= 0. (2.4)

Using Bernoulli’s equation, one can write the free-surface dynamic condition in the
form

1
2
|∇φ2|2 +

1

Fλ
Ys = 1

2
+
H

Fλ
+ 1

2
B2. (2.5)

The constants B1 and B2 are the unknown Bernoulli’s constants. The mean level of
the interface y = Y (x) is chosen to be zero and we only consider symmetric waves.
The waves are centred at x = 0 and therefore the study is restricted to values of x
between 0 and 1

2
. The mean value condition on the interface is written as∫ 1/2

0

Y (x)dx = 0, (2.6)

while the mean value of the free-surface elevation is written as

2

∫ 1/2

0

Ys(x)dx = H. (2.7)

The problem involves three independent parameters, which can be chosen as the
Froude number Fλ based on the wavelength (or the Froude number F based on the
upper layer thickness), the density ratio R and the ratio H between the thickness of
the upper layer and the wavelength (or the wavenumber K = 2πH).

3. Conditions for resonant interaction between external and internal modes
Given waves of the form

φ1 = x+ Ce2πy sin (2πx),

φ2 = x+ [A cosh (2πy) + B sinh (2πy)] sin (2πx),

where A,B and C are constants, the linearization of the problem (2.1)–(2.5) results in
the wave profiles

Y = −C cos (2πx), (3.1)

Ys = H − C cos (2πx)

[
cosh (2πH) + sinh (2πH)

(
1

R
− 1− R

2πRFλ

)]
, (3.2)
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Figure 1. Dispersion curves for (3.3) in the (F,K)-plane (a) and in the (Fλ,H)-plane (b) for R = 0.1
and R = 0.8. The solid lines are the external modes. The dotted lines are the internal modes. The
‘external’ branch does not depend on R.

and in the dispersion relation (Lamb 1932, Article 231)

[1 + R tanh (2πH)]F2
λ − Fλ

2π
[1 + tanh (2πH)] +

1

4π2
(1− R) tanh (2πH) = 0. (3.3)

Solving (3.3) for Fλ gives two solutions: the external mode Fe
λ and the internal mode

F i
λ,

Fe
λ =

1

2π
, F i

λ =
1

2π

(1− R) tanh (2πH)

1 + R tanh (2πH)
, (3.4)

or, rewritten in terms of the wavenumber K = 2πH and the Froude number
F = Fλ/H ,

Fe =
1

K
, F i =

1

K

(1− R) tanhK

1 + R tanhK
. (3.5)

Replacing Fλ by its value from (3.4) in (3.2) gives

Y e
s = H − C cos (2πx)e2πH (external mode), (3.6)

Y i
s = H + C cos (2πx)e−2πH

(
1− R
R

)
(internal mode). (3.7)

One sees that the interface y = Y (x) (3.1) and the free surface y = Y e
s (x) (3.6) are in

phase for the external mode while y = Y (x) and y = Y i
s (x) (3.7) are out of phase for

the internal mode. Moreover external waves do not depend on the density ratio R:
Fe
λ and Y e

s are both independent of R.†
Both branches of the dispersion curve are plotted in figure 1, in the (K, F)-plane

as well as in the (H, Fλ)-plane for R = 0.1 and R = 0.8. A density ratio of 0.1 is not
encountered in nature but is used in this paper to illustrate some of the effects of the
interactions between external and internal modes. Typical values of R in laboratory
experiments are between 0.75 and 0.9. In oceanographic applications, the density ratio
is close to unity (0.998 or so).

Looking at the dispersion curves in the (F,K)-plane, one sees that for a given inter-
nal mode of wavenumber K i there is always a shorter external mode of wavenumber

† The fact that linear external waves do not depend on the density ratio is no longer true in the
case of a lower layer of finite depth. On the other hand Lamb (1932) pointed out that this fact
remains true in the case of an arbitrary number of liquids of different densities, arranged one over
the other in horizontal strata, provided the uppermost surface be free, and the total depth infinite.
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Figure 2. Ratio Ke/K i of the wavenumbers of external and internal modes with the same phase
speed vs. F for R = 0.1 (a) and R = 0.8 (b). The dotted line represents the 1:2 resonance.

Ke which moves with the same speed (same F). Whenever the ratio Ke/K i is an
integer the interactions between both modes become ‘resonant’, because they have
the mathematical form of a resonantly forced, linear oscillator. The ratio Ke/K i is
plotted in figure 2 as a function of F for R = 0.1 and R = 0.8. When F approaches 0,
the ratio tends towards (1 + R)/(1− R). When F approaches the Froude number of
long internal waves (limK→0 F

i), the ratio Ke/K i becomes infinite, because Ke is finite
and K i = 0.

Two special resonances are considered in this paper: the 1:2 resonance (Ke = 2K i)
and the 1:M resonance (Ke = MK i) with M large. The 1:2 resonance is a special case
of a resonant triad coupling one external mode and two (identical) internal modes.
Our study is not directly applicable to oceanic applications since the 1:2 resonance in
the two-layer model can only occur if R < 1/3. However, it may occur in a three-layer
configuration with realistic density ratios. The dispersion relation for a three-layer
system is given for example by Baines (1995). The behaviour of the ratio Ke/K i as a
function of F is qualitatively similar to those in figure 2 and one can show that

lim
F→0

Ke

K i
=

1− ρ3/ρ1 + ρ2/ρ1 − ρ3/ρ2

1− ρ3/ρ1 − ρ2/ρ1 + ρ3/ρ2

,

where ρ3 is the density of the top layer. Taking ρ2/ρ1 = 0.99 and ρ3/ρ2 = 0.99
(oceanic type conditions) or more generally ρ2/ρ1 = ρ3/ρ2 leads to a limit equal to 1.
Therefore the 1:2 resonance can occur.

The 1:M resonance with M large corresponds to the resonance between a short
external mode and a long internal mode. One of the consequences of this resonance
is the appearance of short-wave oscillations at the tails of long internal waves. This
resonance is realistic in oceanic conditions. Indeed a simple calculation in the limit
M → ∞ with R = 0.99 and h = 100 m shows that long waves with ripples move at a
speed of the order of 3 m s−1 and that the wavelength of the ripples is of the order
of 6 m. A calculation with R = 0.998 gives 1.4 m s−1 for the speed and 1.3 m for the
wavelength. In fact there is experimental evidence of such waves as mentioned in the
introduction.

4. Numerical scheme for periodic waves
We follow the approach of Saffman & Yuen (1982) for computing interfacial waves

in a rigid-lid configuration and extend it to a free-surface configuration. The method
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is based on Fourier series expansions of the physical variables x and y in terms of
the complex potential φ+ iψ. They give in the bottom layer

x1 = φ1 +

N∑
n=1

an sin (2πnφ1) exp (2πnψ1), (4.1)

y1 = ψ1 + a0 +

N∑
n=1

an cos (2πnφ1) exp (2πnψ1), (4.2)

and in the upper layer

x2 = φ2 −
N∑
n=1

sin (2πnφ2)[bn cosh (2πnψ2)− dn sinh (2πnψ2)], (4.3)

y2 = ψ2 + b0 −
N∑
n=1

cos (2πnφ2)[bn sinh (2πnψ2)− dn cosh (2πnψ2)]. (4.4)

The interface is described by ψ1 = ψ2 = 0. We write the potentials as

φ1 = ξ − s, φ2 = ξ + s. (4.5)

The unknown function s is expanded in a Fourier series

s(ξ) =

N−1∑
n=1

cn sin (2πnξ). (4.6)

Therefore along the interface one has

x1 = ξ − s+

N∑
n=1

an sin (2πn(ξ − s)), Y1 = a0 +

N∑
n=1

an cos (2πn(ξ − s)), (4.7)

and

x2 = ξ + s−
N∑
n=1

bn sin (2πn(ξ + s)), Y2 = b0 +

N∑
n=1

dn cos (2πn(ξ + s)). (4.8)

Along the free surface, described by ψ2 = ψs, one has

x2 = φ2 −
N∑
n=1

sin (2πnφ2)[bn cosh (2πnψs)− dn sinh (2πnψs)], (4.9)

Ys = ψs + b0 −
N∑
n=1

cos (2πnφ2)[bn sinh (2πnψs)− dn cosh (2πnψs)]. (4.10)

Of course, along the interface x1 and Y1 must be equal to x2 and Y2, respectively.
We discretize ξ as

ξi =
i− 1

2N
, i = 1, . . . , N + 1. (4.11)

The resulting system of equations consists of (N − 1) equations x1 = x2 (at the end
points, it is automatically satisfied), (N + 1) equations Y1 = Y2, (N + 1) Bernoulli’s
equations along the interface, (N + 1) Bernoulli’s equations along the free surface
and the zero mean value condition (2.6). The (4N + 3) unknowns are the Bernoulli’s
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constants B1 and B2, the coefficients an (n = 0, . . . , N), the coefficients bn (n = 0, . . . , N),
the coefficients dn (n = 1, . . . , N) and the coefficients cn (n = 1, . . . , N − 1).

Written explicitly, the mean value condition becomes∫ 1/2

0

Y1

dx1

dξ
dξ = 0 or

∫ 1/2

0

Y2

dx2

dξ
dξ = 0. (4.12)

The relative thickness of the upper layer is H = ψs + b0. The system is solved
by Newton’s method. In Michallet & Dias (1999) the size of the system was of
the order 5N while it is only of order 4N with the present method. However, like
other methods based on Fourier series expansions it is not adequate to compute
large-amplitude waves.

5. Some numerical results

The numerical scheme described in § 4 is used to compute solutions for several
values of the three independent parameters of the problem: the Froude number F ,
the density ratio R and the dimensionless wavenumber K . We focus our attention on
two values of R, 0.1 and 0.9, and we study three cases: (i) the 1:2 wave resonance
(only when R = 0.1), (ii) combination waves resulting from the interaction between a
short external mode and a long internal mode – for these waves, which approximate
solitary waves with ripples, K is small and F is slightly above F i(K) defined in (3.5) –
and (iii) ‘external’ periodic waves – for these waves, K is unrestricted and F is larger
than Fe(K) defined in (3.5).

5.1. The second-harmonic resonance

As mentioned above, the second-harmonic resonance between an external mode and
an internal mode can occur when R < 1/3. But it can also occur in realistic conditions
if a third layer is added (the code can be easily extended to a three-layer configuration).
When R = 0.1 the resonance takes place at K i

1:2 = 0.675, F i
1:2 = 0.741. We compute

solutions in the neighbourhood of this point. The number of mesh points is of the
order of 20 because it is difficult to increase the number of points. The reason is
that terms like cosh (2πnψs) and sinh (2πnψs) in (4.9) and (4.10), which behave like
cosh (nK) and sinh (nK) for large n, explode rapidly as n increases. But N = 20 is
enough to describe waves of moderate amplitude. In the case of capillary–gravity
surface waves, Schwartz & Vanden-Broeck (1979) found that N = 30 was adequate
for ‘easy’ profiles.

Results are shown in figure 3 for K < K i
1:2 (K = 0.64) and in figure 4 for K > K i

1:2

(K = 0.706). As the wave amplitude increases, the wave goes from a pure linear
‘internal’ wave to a combination wave mixing the internal and the external modes.
When K < K1:2 the speed decreases with amplitude. When K > K1:2 it is the opposite.

Combination waves can bifurcate into a pure external wave as shown in figures 5
and 6. The parameters for the various plots of figures 3–6 are summarized in figure 7.
The curve along which a combination wave bifurcates into a pure external wave is
indicated as well. This curve is in fact very close to the curve F = 1/(2K), which
is the external branch of the dispersion curve (3.3) evaluated at a wavenumber 2K
instead of K .
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Figure 3. Profiles of the free surface (a) and of the interface (b) in a neighbourhood of the
second-harmonic resonance. The parameters are R = 0.1 and K = 0.64. Three profiles with
F = 0.733 (—), F = 0.743 (– –) and F = 0.75 (· · ·) are shown. When F = 0.75 the waves are almost
pure linear internal waves and consequently the interface and the free surface are out of phase, in
agreement with the results of § 3.
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Figure 4. Same as figure 3 but with K = 0.706; F = 0.734 (—), 0.747 (– –) and 0.765 (· · ·). When
F = 0.734 the waves are almost pure linear internal waves and therefore are out of phase.
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Figure 5. Profiles of the free surface (a) and of the interface (b) near and at the bifurcation from
a combination wave into a pure external wave: K = 0.64 with F = 0.794 (—) and F = 0.781 (– –).
The pure external waves (– –) are in phase.

5.2. Long waves with ripples resulting from the interaction between a long internal
mode and a short external mode

The computations in this case were generally performed with N = 160 or 200 mesh
points. We checked that the results are independent of the number of mesh points
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Figure 6. Same as figure 5 but with K = 0.706; F = 0.702 (—) and F = 0.709 (– –).
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Figure 7. The 1:2 resonance in the (K, F)-plane. The circles (◦) represent the solutions plotted in
figures 3–6. The solid line is the internal branch of the dispersion curve (3.3). The dotted line is the
curve along which a combination wave bifurcates into a pure external wave.

within graphical accuracy. Long waves have already been computed by Michallet &
Dias (1999). However the numerical scheme is different and in the present compu-
tations the bottom layer is unbounded. Moreover we can now follow the branches
of long waves with ripples all the way up to their bifurcation into a short wave. For
long waves, H is small (typically H ∈ [0.005, 0.01]).

Typical profiles are shown in figure 8. The free-surface solitary pulse is always of
elevation while the interfacial pulse is of depression. The free-surface ripples are in
phase with the interfacial ripples.

If Ke denotes the wavenumber of the ripples obtained from the dispersion relation
(3.3) for a given Fλ, we observe that for M < Ke/K < M + 1 (M integer) we
have a family of solutions characterized by the the same number of ripples. For
Ke/K ≈ M + 1/2 the minimum amplitude of the ripples for such a family of
solutions is reached (see figure 8). When Ke/K ≈ M the solutions are more difficult
to obtain. They could not be obtained by Michallet & Dias (1999). In this case
the ripple amplitude increases to the amplitude of the solitary pulse and the long
wave with ripples becomes an external wave of wavenumber close to Ke. It is not
exactly Ke because there is a nonlinear correction to the wavenumber due to the
finite amplitude of the ripples. The bifurcation of a long wave with ripples into a
short external wave is shown in figure 9. One sees that there are two short waves with
M oscillations which can appear when Ke/K ≈ M. As an example take M = 24.
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Figure 8. Profiles of the free surface and of the interface for R = 0.1, H = 0.01 and three values
of the Froude number: Fλ = 0.0092 (dotted), 0.0093 (dashed), 0.00935 (solid). The corresponding
ratios of the wavenumbers Ke/K are 17.3, 17.11 and 17.02, respectively. The corresponding values
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Figure 9. The parameters are R = 0.1, F = 1. (a) As the ripple amplitude increases along the branch
of long waves with ripples (—), the long waves bifurcate into a short external wave indicated by
the dot. Only the amplitude of the free-surface ripples is shown because the same behaviour occurs
along the interface. The branches of short waves (· · ·) are indicated all the way up to the limiting
configuration. (b) Profiles (—) of the short free-surface and interfacial waves obtained as the limit
of long waves with ripples along the branch Ke/K ≈ 24 (see the dot in (a)). The value of H is
0.0067. A system of short waves close to the limiting configuration is shown as well (· · ·) (see the
circle in (a)).

If one approaches Ke/K ≈ 24 from the right, the limit is a periodic wave with 24
oscillations, with a trough at the ends and consequently at the origin as shown in
figure 9. If one approaches Ke/K ≈ 24 from the left, the limit is a periodic wave with
24 oscillations, with a crest at the ends and consequently at the origin. The branch of
short external waves is shown as well in figure 9.

Since the short waves remain in phase along the free surface and the interface, the
curvature at the origin must change sign along either the free surface or the interface
as one moves along the branch of long waves with ripples (see the formation of a
dip along the free surface in figure 10a). Another comment is that the amplitude of
the free-surface solitary pulse is greater than the amplitude of the interfacial pulse
for R = 0.1, and this is also true for the amplitudes of the ripples. For R = 0.9 the
situation is the opposite (see figure 10b). For R = 0.9 we were not able to compute
long waves with ripples of arbitrary amplitude, because the ratio Ke/K is quite large.
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(Ke/K ≈ 79.57).
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Figure 11. Profiles of interfacial and free-surface ‘external’ periodic waves. (a) H = 0.04, Fλ = 0.165;
R = 0.9 (—) and 0.1 (−−). (b) R = 0.9, H = 0.04, Fλ = 0.186 (—) and R = 0.1, H = 0.01, Fλ = 0.18
(−−).

The situation is even worse if we take R = 0.998. Indeed the total number of mesh
points becomes prohibitive if one wants to have enough mesh points in each ripple.

5.3. External periodic waves

Equation (3.3) shows that the dispersion relation of external waves is the same as
the dispersion relation of deep-water surface waves. Therefore it is not surprising
that external waves behave like deep-water surface waves. For example the speed
of external periodic waves increases with amplitude. Consequently external waves lie
above the curve F = Fe

λ in figure 1. For the reason discussed in § 5.1 we only studied
in detail long waves (H 6 0.04) with a number of mesh points between 60 and 100.
For larger values of H , solutions can be obtained with a smaller number of mesh
points (for example, for H = 0.1124, the scheme works with N = 20).

Figure 11 shows various waves obtained with R = 0.1 or 0.9 and Fλ larger than Fe
λ .

Overall, external waves behave like surface waves. The interface and the free surface
are always in phase. Figure 11(a) shows that nonlinear external waves depend slightly
on the density ratio R, as opposed to linear external waves which are independent on
R. A final remark is that the code can be used to compute external periodic waves
even if R > 1 since Fe is independent of R. But such waves are most likely unstable.
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6. Conclusion
The rigid-lid approximation is commonly used to compute interfacial waves in a

two-fluid system. However this approximation is too restrictive in certain circum-
stances and the rigid lid must be replaced by a free surface. In this paper interfacial
periodic waves of permanent form with free-surface boundary conditions have been
calculated. For density ratios less than 1/3, combination waves resulting from the
interaction between an ‘internal’ mode and an ‘external’ mode with the same phase
speed but wavelengths in a ratio of 2 (1:2 resonance) can exist. Density ratios less
than 1/3 are not commonly found in nature or in laboratory experiments but we have
shown that the 1:2 resonance can occur in a three-layer system with density ratios
typical of those found in nature or in laboratory experiments. For all density ratios,
combination waves resulting from the interaction between a long ‘internal’ mode and
a short ‘external’ mode with the same phase speed can exist. These long waves are
characterized by short-wave oscillations in their tails. We expect them to be found in
oceanic conditions. Numerical difficulties were encountered when computing waves
in ocean-type conditions, due to the large difference in length scales between the long
internal mode and the short external mode. Finally it was shown that pure external
waves behave like surface waves.

The authors thank the referees for suggestions which have hopefully made the
paper more readable.
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