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Abstract

We construct a stable universal domain in which forking is trivial,
but which has a reduct which is n-ample for all natural numbers n.

Introduction

The constructions of Hrushovski which produce new strongly minimal sets,
stable ℵ0-categorical structures and supersimple ℵ0-categorical structures are
now very familiar. In those which do not involve an infinite field, the inde-
pendence relation of non-forking satisfies a property called CM-triviality. In
[8], Pillay extended this notion into a hierarchy of geometric complexity for
stable theories: not-1-ample (= modularity); 1-ample and not-2-ample (non-
modular, CM-trivial); 2-ample etc. It is a major open problem to decide
whether there are strongly minimal sets (and so on) which exhibit these var-
ious types of complexity of independence. (Recall [8] that an infinite field
∞-definable in a stable structure is n-ample for all n.) The work of Zil’ber
which interprets Hrushovki’s constructions in the context of complex analytic
functions perhaps gives this problem additional significance.

At present, the construction of a non-CM-trivial strongly minimal set
(not interpreting an infinite field) looks beyond reach, so in exploring this
hierarchy we should settle for less. In [1] Baudisch and Pillay construct an
ω-stable structure (of infinite rank) which is non-CM-trivial (although, as
they observe, all regular types in their example are trivial). Their example
is constructed as an incidence structure of points, lines and planes satisfying
axioms which bear the same relation to properties of points, lines and planes
in euclidean space as Lachlan’s pseudoplane axioms bear to the properties
of points and lines. Baudisch and Pillay therefore refer to their example as
a (free) pseudospace. It is plausible that the construction of [1] could be
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extended to give an (infinite rank) ω-stable structure which is n-ample for
n > 2, although the technical difficulties are already quite severe in [1].

In this paper we give a different type of construction in which there is
really no additional work involved in going from 2-ampleness to n-ample for
all n. Moreover, unlike in [1], n-ampleness is witnessed by points realising the
same type. However, our construction achieves less than [1] in at least two
important respects. Firstly, the structures we produce are not superstable.
Secondly, it is not clear that the notion of stability which we are working
with is full first-order stability. What is lacking (for the latter) is a model
completeness result for a certain class of unary algebras (see Problem 2.5).

The structures we produce are reducts of unary algebras and in some
sense this relates them to the example of [1]. The point is that the free
pseudoplane is easily seen to be a reduct of the free algebra with a single
unary function (cf. [7], Example 4.6.1). It would be interesting to know
if the example in [1] can be seen as a reduct of a structure in which non-
forking is less complicated (even trivial). The same remark applies to the
(unconstrained, infinite rank) Hrushovski constructions.

In the first section we record some generalities about certain universal
theories T of unary algebras with the amalgamation property. For the rest
of the paper we focus on a specific T . We take a large universal domain N for
T and consider a particular reduct M . When we pass to reducts of models
of T the notion of substructure translates into a notion of ‘nicely embedded’
substructure in the reduct, denoted by ≤. We analyse this notion on M
in Section 2. In particular we show that M has properties of universality
and homogeneity for small ≤-embedded substructures (see Lemma 2.17). At
present it is not clear how (M ;≤) fits with other contexts of homogeneous
models or abstract model theory (cf. [2], [3], for example), but nevertheless,
we show that M supports a reasonable notion of independence with respect
to which it is ‘stable’ (see Section 3). The main result (Theorem 3.7) is that
with this notion of independence, M is n-ample for all n. We emphasise that
if the theory of unary algebras we start with has a model completion, then
M has a stable first-order theory which is n-ample for all n. Moreover, as
it is a reduct of a structure N in which forking is trivial, no infinite group
is interpretable in M . In the final section we observe that there are too
many types over small sets for M to be superstable. We also note a curious
connection with the predimensions used in Hrushovski’s constructions, and
show how to interpret a pseudospace in our examples.
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1 Unary algebras

We work with a language L1 which has only unary function symbols f1, f2 . . ..
The L1-theory T has axioms as follows:
(i) Whenever t1, t2 are terms, we have an axiom (∀x)((t1(t2(x)) = x) →
(t2(x) = x));
(ii) a collection of axioms of the form (∀x)φ(x) where x is a single variable
and φ(x) is quantifier-free.

So the axioms in (i) allow fixed points in a model of T , but no ‘cycles’
are obtained by composing the fi.

Lemma 1.1 The theory T has the strong amalgamation property.

Proof. If B1, B2 |= T have a common substructure A, then the disjoint union
C of B1, B2 over A is an L1-structure which is a model of T (because the
axioms are all universal and involve only a single variable). 2

We refer to C in the above as the free amalgam of B1 and B2 over A.
It is not true in general that T has a model companion. However, as we

are dealing with a universal theory which has the amalgamation property,
there is a universal domain N for T (cf. [6], [9]). We take this to be of large
cardinality. So N has the properties:
Compactness: Any small set of q.f. formulas with parameters from N
which is finitely satisfiable in N is realised in N .
Homogeneity: Small tuples with the same q.f. type lie in the same Aut(N)-
orbit.

Lemma 1.2 The universal domain N is stable (in the sense that all q.f.
formulas are stable; alternatively, the number of q.f. types over a set of size
µ is ≤ µℵ0). If A, B are small substructures of N then qftp(A/B) does not
divide over A ∩B.

Proof. It is clear that if A, B are small substructures of N , then A ∪ B is
a submodel of N , and is the free amalgam of A and B over A ∩ B. Thus if
b ∈ N then the quantifier free type of b over A is determined by 〈b〉∩A. The
assertions follow. 2
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2 Reducts

Henceforth we work with a specific T . Let s ∈ N, s ≥ 2. Our language
L1 will have unary function symbols f i

j (i ∈ N, j = 1, . . . , s). We write
f i(x) = y as shorthand for

∨s
j=1 f i

j(x) = y. Write Wi(x, y) as shorthand for

(x 6= y) ∧ ((f i(x) = y) ∨ (f i(y) = x)).

Definition 2.1 If i, r ∈ N and A is an L1-structure, an (i, r)-path in A is a
sequence a0, . . . , ar of elements of A with A |= Wi+k(ak, ak+1) for k ≤ r − 1.
It is a nice (i, r)-path if there is l ≤ r with f i+k(ak) = ak+1 for k < l and
ak = f i+k(ak+1) for l ≤ k. We refer to al here as the node of the path. Write
A |= P i,r(a, b) if there is an (i, r)-path in A which starts with a and ends
with b.

We now define T so that the relations P i,r are preserved under extensions
of models of T . Care has to be taken to ensure that the axioms are in the
right form.

Definition 2.2 The type (ii) axioms in T are (universal closures of) the
formulas (f i

j(x) = fk
l (x)) → (f i

j(x) = x) whenever (i, j) 6= (k, l) and a
collection Θ of formulas θi,r (for i, r ∈ N) expressing the following. Suppose
a1 ∈ A |= θi,r. Suppose a0 = f i(a1), a2 = f i+1(a1), . . . , ar = f i+r−1(ar−1)
and aj 6= aj+1 for all j ≤ r− 1. Then there is a nice (i, r)-path in A starting
with a0 and ending with ar.

Remarks 2.3 It is clear that θi,r can be written in the form (∀x)φ(x) for
some q.f. formula φ with a single variable. The following lemma shows that
modulo T , the relations P i,r are expressible in a quantifier-free way.

Lemma 2.4 Let A |= T and suppose a0, . . . , ar is an (i, r)-path in A. Then
there is a nice (i, r)-path in A starting at a0 and ending at ar. In particular,
A |= P i,r(a0, ar) ⇔ 〈a0, ar〉 |= P i,r(a0, ar).

Proof. This is by induction on r. The base case r = 2 follows quickly from the
axioms θi,2. For the inductive step, note first that we may assume a1, . . . , ar

is a nice (i + 1, r− 1)-path, with node ak. If f i(a0) = a1, then a0, . . . , ar is a
nice (i, r)-path. So suppose f i(a1) = a0. If k = 1, there is no problem (we
have a nice (i, r)-path with node a0). If k = r we can appeal directly to θi,r

to get a nice (i, r)-path from a0 to ar. Finally, if 1 < k < r we can apply θi,k
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to get a nice (i, k)-path from a0 to ak. Adjoining ak+1, . . . , ar to this we get
a nice (i, r)-path, as required. 2

By the above lemma the class of models of T does not change if we
regard the Wi and P i,r as atomic relations. So we regard these as part of the
language L1.

Problem 2.5 Does T have a model companion?

Definition 2.6 (i) Let L denote the first-order language with 2-ary relation
symbols Wi and P i,r (for i, r ∈ N). Regard L as a subset of L1, as outlined
above.
(ii) If A |= T then A|L denotes the reduct of A to L.
(iii) We denote by Cs (or just C) the class of L-structures A|L where A |= T .

So Cs is a PC∆-class. We will find it useful to see this from a slightly
different viewpoint.

Definition 2.7 We work with the class G of L-structures D in which the
relations Wi are symmetric, irreflexive and disjoint. The interpretation of the
predicates P i,r should be such that D |= P i,r(a, b) if there is an (i, r)-path in
D from a to b (but not necessarily the converse). We say that an ordering �
of such an L-structure is an s-good ordering (s-g.o.) if:
(i) for all d ∈ D and i ∈ N there are at most s elements e ∈ D with Wi(e, d)
and e � d;
(ii) if D |= P i,r(a, b) there is an (i, r)-path a0 = a, a1, . . . , ar = b in D with
ak ≺ max�(a, b) for 0 < k < r.
Let Gs be the class of elements of G which admit an s-good ordering.

In (ii) we say that the path a0, . . . , ar witnesses D |= P i,r(a, b) in �.

Lemma 2.8 Suppose � is an s-g.o. of D ∈ Gs, and D |= P i,r(a, b). Then
there is a path a0 = a, a1, . . . , ar = b witnessing this in � and k with 0 ≤ k ≤
r and a0 � a1 � · · · � ak � ak+1 � · · · � ar.

Proof. This is an easy induction on r. 2

Definition 2.9 If A ⊆ B ∈ Gs we write A ≤ B if there is an s-good ordering
� of B which has A as an initial segment (i.e. if b ∈ B then b � a ∈ A implies
b ∈ A).

5



Lemma 2.10 (i) The class of L-structures A|L (for A |= T ) is precisely Gs.
(ii) If C ⊆ D ∈ Gs then C ≤ D iff there is an expansion of D to a model of
T in which C becomes the domain of a substructure.

Proof. It is clear that any element of Cs is in G.
First suppose that B |= T and let A be a (possibly empty) substructure

of B. Let � be the transitive closure of the 2-ary relations on B given by the
graphs of the f i

j (so f i
j(b) � b for all b ∈ B). Then (by Axioms (i) of T , which

forbid cycles), this is a partial order on B. Moreover no element of B \ A
comes before an element of A in this partial order. Thus � can be extended
to a total order on B with A as an initial segment (denote this by � also).
We claim that this is an s-good ordering of B|L. Condition (i) in Definition
2.7 is clear. If B |= P i,r(a, b) let a0 = a, . . . , ar be a nice (i, r)-path in B (by
Lemma 2.4). It is then easy to see that this path witnesses B|L |= P i,r(a, b)
in �, as required.

Conversely suppose D ∈ Gs and � is an s-g.o. on D. To expand D to an
L1-structure A, we consider, for a ∈ D the set of predecessors of a which are
Wi-adjacent to it. This has size at most s, and we arbitrarily write these as
f i

j(a). If there are any ‘unused’ f i
j , we let f i

j(a) = a. It is then easy to see
that A |= T , (axioms Θ follows from Lemma 2.8) and A|L = D. Moreover
any initial segment of D under � is the domain of a substructure of A. 2

Lemma 2.11 (i) Suppose B ∈ Gs and � is an s-g.o. on B with A an initial
segment. Let �′ be any other s-g.o. on A and let �′′ be defined on B by
replacing � on A by �′. Then �′′ is an s-g.o. on B.
(ii) If C ∈ Gs and A ≤ B ≤ C then A ≤ C.
(iii) Gs has the strong amalgamation property for ≤-embeddings.

Proof. (i) Easy.
(ii) By (i).
(iii) This follows from the strong amalgamation property for T and Lemma
2.10. But we can also argue directly as follows. Suppose A ≤ B1, B2 ∈ Gs.
Let C be the disjoint union of B1 and B2 over A. The Wi on C are given by
the unions of the Wi on B1 and B2. For the P i,r on C we take the union of the
P i,r on B1 and B2, and also have that P i,r(b1, b2) whenever bi ∈ Bi \ A and
there is an (i, r)-path from b1 to b2 (and the same with the 1 and 2 reversed).
It is necessary to check that if b, b′ ∈ B1 and there is an (i, r)-path from b to
b′ in C then there is such a path in B1. This follows from the definition of C
and Lemma 2.8 (as A ≤ B2). So C ∈ G.
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To see that B1 ≤ C ∈ Gs, take an s-g.o. of B1 with A as an initial
segment. Extend the induced ordering on A to an s-g.o. of B2, and put the
elements of B2 \ A above those of B1 in the ordering on C. It is easy to see
that this is an s-g.o. of C. 2

Definition 2.12 We refer to C in the proof of part (iii) here as the free
amalgamation of B1 and B2 over A.

Definition 2.13 Suppose B |= T and A is a substructure of B. Suppose C
is also a model of T and α : C|L → A|L is an isomorphism of L-structures.
We define a new L1-structure B1 with domain B by setting f i

j(b) = f i
j(b) if

b ∈ B \A and f i
j(b) = α(f i

j(α
−1(b))) if b ∈ A. We say that B1 is obtained by

switching C for A in B via α (omitting the latter phrase if α is the identity).

Lemma 2.14 With the above notation B|L = B1|L and B1 |= T .

Proof. The first part is clear. For the second part, note that B1 has no cycles
(-it has none lying within A, or entirely outside A, and as A is a substructure
of B1, no cycle which enters A can leave it). The condition on disjointness
of the graphs of the f i

j is clear, so it remains to check the axioms Θ.
It is enough to show that if B |= P i,r(a, b) then there is a nice (i, r)-path

in B1 starting at a and finishing at b. If a, b ∈ A this is clear. Take a
nice (i, r)-path a0 = a, . . . , ar = b in B. If this has non-empty intersection
with A then this intersection includes the node and is a (connected) segment
al, al+1, . . . , am, as A is a substructure. Now, A |= P i+l,m−l(al, am) so there
is a nice (i + 1, m− l)-path al, a

′
l+1, . . . , am in αC. Inserting this into the old

path in place of al, . . . , am gives a nice (i, r)-path in B1. 2

From now on, we let N be a large universal domain for T and M = N |L.

Lemma 2.15 Suppose A is a small substructure of N and N ′ is obtained by
switching C for A in N . Then N ′ is a universal domain for T (and therefore
isomorphic to N).

Proof. For compactness, let Φ(x) be a small collection of q.f. formulas with
parameters from the small substructure B and which is finitely satisfiable in
N ′. We may assume that B contains C and then that B = C (- switch B
for the substructure with domain B in N : the result is still N ′). As N ′ |= T
and Φ is finitely satisfiable in N ′, there is a small D |= T which contains C
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as a substructure and in which there is a tuple d realising Φ. Let E be the
result of switching A for C in D. By compactness of N we may assume that
E is a substructure of N (containing A). If we switch C for A in N again,
we obtain D as a substructure of N ′ (E becomes D) and the tuple d satisfies
Φ, as required.

For homogeneity we observe that small partial isomorphisms of N ′ form
a back-and-forth system. This in turn follows from the following:
Claim: If B is a small substructure of N ′ and also of the small model D of
T there is an embedding α : D → N ′ over B.

We know that N has this property (- a rather clumsy way of seeing this
is that T has the amalgamation property and N is |N |-e.c. universal for T ).
Let B′ = C ∪ B and D′ = D ∪ C (the former in N ′, the latter the disjoint
union over B ∩ C). So B′, D′ |= T and C ≤ B′ ≤ N ′. Switching A for C
in B′ gives B′′ ≤ N . Switching A for C in D′ gives D′′ |= T with B′′ as a
substructure. So there is an embedding α : D′′ → N over B′′. Now, D is not
necessarily the domain of a substructure of D′′, but when we switch C for A
in D′′ and N , α gives an embedding of D′ into N ′ over B′, and restricting
this to D gives an embedding over B. 2

Definition 2.16 If A is a small subset of M we write A ≤1 M to indicate
that there is an expansion of M to an L1-structure isomorphic to N in which
A is the domain of a substructure. Note that this relation is preserved by
automorphisms of M .

Lemma 2.17 (i) M has the compactness property for q.f. types, and the q.f.
formulas are stable in M .
(ii) If A1, A2 ≤1 M are small and α : A1 → A2 is an isomorphism (of L-
structures) there is an automorphism of M which extends α.
(iii) If A ≤1 M is small, B ∈ Gs is small and β : A → B is an embedding such
that βA ≤ B, then there is an embedding γ : B → M such that γB ≤1 M
and γ ◦ β is the identity.
(iv) If A ≤ B ≤1 M then A ≤1 M .
(v) If (Ai : i ∈ I) is a small collection of small substructures of M with
Ai ≤1 M for all i, then there is a small B ≤1 M with Ai ≤ B for all i ∈ I.

Proof. (i) These properties are preserved under taking reducts.
(ii) Let Ni be an expansion of M to a copy of N which has Ai as a

substructure. Let N ′
2 be the result of switching the L1-structure α(A1) for
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A2 in N2. Let A′
2 be the resulting substructure of N ′

2 with domain A2. Now
N ′

2 is isomorphic to N1 and α : A1 → A′
2 is an isomorphism of L1-structures.

Thus there is an isomorphism N1 → N ′
2 which extends α. Taking the reduct

to L gives an automorphism of M extending α.
(iii) We may assume that A is the domain of a substructure of N and of

a substructure of an expansion of B to a model of T . The result now follows
from universality of N .

(iv) Let B1 be a model of T with domain B which has A as the domain of
a substructure. We may assume B is the domain of a substructure of N . If
we switch B1 for B in N we obtain an isomorphic copy of N (by the lemma)
which has A as the domain of a substructure.

(v) For i ∈ I let Ni be an expansion of M to an isomorphic copy of N
which has Ai as the domain of a substructure. There is a small subset B
containing

⋃
Ai which is the domain of a substructure in each of these Ni.

2

Corollary 2.18 If A is a small subset of M then A ≤ M iff A ≤1 M .

Proof. Suppose A ≤ M (the other direction is obvious). Let N ′ be an
expansion of M to a model of T in which A is the domain of a substructure.
There is a small subset B containing A which is the domain of a substructure
in both N ′ and N . So A ≤ B and B ≤1 M . Thus A ≤1 M , by Lemma
2.17(iv). 2

3 Independence in M

In this section we give a notion of independence |̂∗ A defined over small
A ≤ M which implies non-dividing (in M) over A. Furthermore, using the
terminology of [8], M is n-ample for all n ∈ N (as far as this notion is
concerned). In order to interpret properly the latter in this (possibly) non-
first-order context, we need a substitute for the notion of algebraic closure
in M eq. We take the (rather extreme) notion of ‘small closure,’ as defined
below. If T has a model completion, then M is stable and n-ample. (The
definition of n-ampleness is found in the statement of the main result here:
Theorem 3.7.)

For the following, recall the definition of free amalgamation in Definition
2.12.
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Definition 3.1 Suppose A ≤ B1, B2 ≤ M are small. We write B1 |̂∗ AB2

to indicate that:
(i) B1, B2 ≤ B1 ∪B2 ≤ M ;
(ii) B1, B2 are freely amalgamated over A.

More generally, if A ≤ M is small and b1, b2 are small tuples in M
we write b1 |̂∗ Ab2 to mean that there are B1, B2 as above containing b1, b2

respectively. We will not define independence over arbitrary A.

Remarks 3.2 So B1 |̂∗ AB2 means that there is an expansion of M to a copy
of N in which B1, B2 become the domains of substructures with intersection
A.

Lemma 3.3 In the following A, B, C, D etc. denote small ≤-subsets of M .
The notion |̂∗ has the following properties.
(i) (Symmetry) Suppose A ≤ B1, B2 ≤ M . Then B1 |̂∗ AB2 iff B2 |̂∗ AB1.
(ii) (Extension) If A ≤ B, C ≤ M , there is g ∈ Aut(M/A) with gC |̂∗ AB.
(iii) (Transitivity) Suppose A ≤ B ≤ C ≤ M and D ≤ M . Then D |̂∗ AC
iff D |̂∗ AB and D ∪B |̂∗ BC.
(iv) (Stationarity) If A ≤ C1, C2 ≤ M and A ≤ B ≤ M , and Ci |̂∗ AB and
C1, C2 are Aut(M/A)-conjugate, then C1, C2 are Aut(M/B)-conjugate.
(v) (Local character) If X ⊆ M is countable and B ≤ M , then there are
countable A ≤ B and C ≤ M with X ⊆ C and C |̂∗ AB.
(vi) (Non-dividing) Suppose A ≤ B, C ≤ M and B |̂∗ AC. If (gi : i ∈ I) is a
small family of elements of Aut(M/A), there exists an Aut(M/A)-conjugate
B1 ≤ M of B with B1 |̂∗ AgiC for all i ∈ I. In particular, tpM(B1(giC)) =
tpM(BC) for all i.

Proof. (i), (ii), (iv) are clear from definitions and Lemma 2.17. Both di-
rections of (iii) follow quite easily from the above remark. For (v), take an
expansion of M to a copy of N in which B is the domain of a substructure.
Let C be the substructure generated by X, and A the intersection of C and
B.

Finally, (vi) follows from lemma 2.17(v) together with (ii), (iii) and (iv)
here. 2

Remarks 3.4 If M is saturated, then (vi) shows that if B |̂∗ AC then
tp(B/AC) does not divide over A.
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Definition 3.5 Let κ be a (small) infinite cardinal. Let G = Aut(M). If a
is a tuple of elements of M then Ga denotes the stabilizer in G of a. We fix
an isomorphism type of every transitive G-space (said another way, we take
representatives for G-conjugacy classes of subgroups of G and consider coset
spaces for these). The κ-small closure of a is defined to be the union of the
Ga-orbits of size less than κ on these. Denote this by sclκ(a).

Lemma 3.6 Suppose A ≤ B, C ≤ M are small and B |̂∗ AC. Then
〈Aut(M/B), Aut(M/C)〉 = Aut(M/A). In particular, sclκ(B) ∩ sclκ(C) =
sclκ(A).

Proof. This is a standard argument. Let H = 〈Aut(M/B), Aut(M/C)〉. Let
g ∈ Aut(M/A) and C1 = gC. Let D ≤ M contain C1 ∪ C and let B1 have
the same type over A as B and be such that B1 |̂∗ AD. Then B1 |̂∗ AC and
so by stationarity, there is an element of Aut(M/C) taking B to B1. In
particular, H contains Aut(M/B1). But then C, C1 are independent over
A from B1 and of the same type over A (via g). So by stationarity again,
there is h ∈ Aut(M/B1) with h−1g ∈ Aut(M/C). It follows that g ∈ H, as
required. 2

Theorem 3.7 Suppose s ≥ 2 and κ is any small infinite cardinal. Take
A = {a0, . . . , an, . . .} ≤ M such that Wi(ai−1, ai) and P i+1,(j−i)(aiaj) (for
j > i + 1), and no other atomic relations hold on A. Then ai ≤ M for each
i, and for all n:
(i) an |̂∗ ai

a0 . . . ai−1 for i < n;
(ii) an 6 |̂∗ a0, and in fact P 1,n(a0, y) divides over ∅;
(iii) sclκ(a0) ∩ sclκ(a1) = sclκ(∅);
(iv) sclκ(a0 . . . ai−1ai) ∩ sclκ(a0 . . . ai−1ai+1) = sclκ(a0 . . . ai−1) for all i.

Proof. First note that a0, a1, . . . is an s-good ordering of A, so we can indeed
find such points in M . Moreover, for any i, the enumeration ai, ai−1, . . . , a0 is
also an s-good enumeration of the initial segment a0, . . . , ai, so in particular
{ai} ≤ M . In fact, one can now see that for any i, A is the free amalgam
over ai of ai, ai−1, . . . , a0 and {ai, ai+1, . . .} ≤ A . This gives (i).

(ii): Note that M |= P 1,n(a0, an), so {a0, an} 6≤ M . Thus the first part of
(ii) follows straight from the definition. However, as we are not claiming that
|̂∗ is really non-forking, the second part is stronger, and requires a separate

argument. We do this as follows.
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Let C = {ci : i < ω} be the L-structure with all atomic relations empty.
This is clearly in Gs so we may assume that C ≤ M . Note that ci ≤ C, so
the ci are all Aut(M)-conjugates of a0 (and of course, the ci are indiscernible
over ∅). We show that no subset of {P 1,n(ci, x) : i < ω} of size greater than
sn is realised in M . Indeed, take an s-good enumeration � of M with C
as an initial segment. Let d ∈ M and suppose M |= P 1,n(ci, d). This is
witnessed by a nice (1, n)-path in M and (as C is an initial segment and
there are no realisations of Wj in C) all vertices in this path (apart from the
ends) lie between C and d in �. It follows that there is a nice (1, n)-path
ci = e0, e1, . . . , en = d with e0 � e1 � · · · � en. But the number of such
paths (for fixed d) is at most sn, so the number of possible ci reachable by
such a path is at most sn.

(iii): Suppose e ∈ sclκ(a0) ∩ sclκ(a1). So e lies in an Aut(M/a0)-orbit of
size < κ with ω ≤ κ < λ = |M |. There exists a sequence (cj : j < κ) with
c0 = a1, W1(a0cj) for all j and C = {a0} ∪ {cj : j < κ} ≤ M (and there are
no other atomic relations on {a0, c0, . . .}). Then a0cj ≤ M and the cj are
Aut(M/a0)-conjugate.

Claim: For some j 6= 0 we have that c0, cj are Aut(M/a0, e)-conjugate.
Indeed, by Lemma 2.17(i), for all i < κ there is gi ∈ Aut(M/a0) with

gic0 = ci which permutes the elements of C. As the Aut(M/a0)-orbit con-
taining e has size < κ there exist distinct i, k < κ with gie = gke. Then
g = g−1

i gk ∈ Aut(M/a0, e) and gc0 6= c0. As the gj permute the ct it follows
that gc0 = cj for some j 6= 0, as required.

It follows that e ∈ sclκ(c0) ∩ sclκ(cj). But (as s ≥ 2) any ordering of C
which starts with c0, cj, a0 is s-good, so {c0, cj} ≤ M . So c0 |̂∗ ∅cj and by
Lemma 3.6, e ∈ sclκ(∅).
(iv): This is similar to (iii). Fix i. Let ā = (a0, . . . , ai−1) and â =
(ai−1, . . . , a0). Suppose e ∈ sclκ(āai)∩sclκ(āai+1). So e is in an Aut(M/āai+1)-
orbit of size < κ. There exist distinct (cj : j < κ) with D = {ā, ai+1, cj : j <
κ} ≤ M , c0 = ai, Wi(ai−1cj), Wi+1(cjai+1) and the only other instances of
atomic relations holding on D being those P j,r forced by the (j, r)-paths. For
each j, any enumeration of D starting off with cj, â, ai+1 is an s-good order-
ing, so cj âai+1 ≤ M and therefore the cj are Aut(M/āai+1)-conjugate. Thus
(as in the proof of the claim in (iii)) we may assume c0, c1 are Aut(M/āai+1e)-
conjugate. So e ∈ sclκ(āc0) ∩ sclκ(āc1). But any ordering of D starting with
ā, c0, c1, ai+1 is s-good (again, using s ≥ 2) so c0 |̂∗ āc1 and by Lemma 3.6 we
have e ∈ sclκ(ā), as required. 2
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4 Further properties of M

4.1 Non-superstability of M

In this section we show that for suitable small A ≤ M there are |A|ℵ0

Aut(M/A)-orbits on M . So M cannot in any sense be superstable. This
non-superstability can be seen within the reduct to a single Wi, and in
this language there is a curious connection between s-good orderings and
Hrushovski’s predimensions.

Let G1
s be the L-structures A where all relations Wi, P

i,r are empty, with
the possible exception of W1 (which we will denote by W ). Thus G1

s consists
of graphs which admit an ordering in which no vertex is adjacent to more
than s of its predecessors. Note that (in contrast to Gs), this class is closed
under substructures so by general results (for example [4], Theorem 6.6.7) it
is axiomatisable by universal sentences. In particular, a graph is in G1

s iff all
its finite subgraphs are.

Of course, this class is precisely the reducts to W1 of the unary algebras
with s functions and which have no cycles. It is not too hard to see that the
e.c. models in this class of algebras are axiomatizable, so one has a model
completion which is stable. Thus the corresponding reduct is stable in the
full first-order sense.

Lemma 4.1 Suppose A ≤ B ∈ G1
s and X ⊆ B. Then X ∩ A ≤ X.

Proof. Take an s-g.o. of B with A as an initial segment and restrict this to
X. The result is an s-g.o. of X with X ∩ A as an initial segment. 2

It follows that each B ∈ G1
s has a closure operation clB, where (for X ⊆ B)

clB(X) is the intersection of all A ≤ B with A ⊇ X. The lemma gives that
clB(X) ≤ B.

Lemma 4.2 A graph B is in G1
s iff every finite subgraph of B has a vertex

of valency at most s (in the subgraph).

Proof. First suppose B ∈ G1
s and A is a finite subgraph. Take an s-g.o. on

B. Then the maximal element of A with respect to this ordering is adjacent
to at most s other vertices in A.

For the converse, we need only consider the case where B is finite and
every subgraph has a vertex of valency at most s. We construct an s-g.o.
b1 � b2 � · · · � bn of B by taking bn any vertex of valency ≤ s in B and bn−i

any vertex of B \ {bn−i+1, . . . , bn} of valency ≤ s in this subgraph. 2
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Lemma 4.3 If B ∈ G1
s is finite and X ⊆ B then clB(X) is the union Z of

all Y with X ⊆ Y ⊆ B such that the only vertices of valency ≤ s in the
subgraph on Y lie in X.

Proof. Note that Z also has the indicated property. We first say why Z ≤ B.
This is similar to the proof of the previous lemma. The point is that if
Z ⊂ A ⊆ B there is a vertex in A \ Z of degree ≤ s in the graph on A (-
consider X ∪ (A \ Z)).

Next, we observe that if X ⊆ A ≤ B then Z ⊆ A. Otherwise, consider
A ∪ Z. By Lemma 4.1 A ≤ A ∪ Z. But all elements of Z \ A which are of
valency ≤ s in Z ∪ A lie in X. So no vertex of Z \ A can be greater than A
in an s-g.o. of A ∪ Z. 2

We now construct continuum many graphs in G1
s which are all closures of

single points.

Definition 4.4 Suppose we are given the following data T :

• a rooted, finitely branching tree T of height ω;

• a collection (Bt : t ∈ T ) of connected finite graphs, each of which is
regular of valency s + 1;

• for each t ∈ T an edge et = {at, bt} of Bt;

• for each t ∈ T and each immediate successor r of t, a vertex vr ∈ Bt.

We write t+ for the set of (immediate) successors of t in the tree T , and t−

for the (immediate) predecessor of t. We let Rt = {vr : r ∈ t+}, and we
assume the vr are distinct, and at, bt 6∈ Rt. Furthermore, we assume that:

• Rt is a coclique in Bt

• Bt \Rt is connected.

We form a graph B = BT by joining the graphs Bt together along the
tree T , as follows. The vertex set of B consists of a new vertex x0 and the
disjoint union of the vertices of the Bt. The edges of B are as in the Bt, with
the following exceptions:

• the edges et are removed;

• for each non-root vertex r in T we form new edges {vr, ar}, {vr, br};
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• if t is the root of T , we form new edges {x0, at}, {x0, bt}.

Lemma 4.5 With T and B as above we have:
(i) B ∈ G1

s ;
(ii) clB(x0) = B;
(iii) clB(vr) = {vr} ∪

⋃
r′≥r Br′.

Proof. (i) Suppose for a contradiction that X is a finite subset of B on
which the induced subgraph has no vertex of valency at most s. Suppose
X ∩Bt 6= ∅. We show that x0 ∈ X, which is a contradiction.

First, observe that X ∩ Bt 6⊆ Rt as s ≥ 2 and Rt is a coclique. Next, if
x ∈ X ∩ (Bt \Rt) then all neighbours of x lie in X as there are only s + 1 of
them. So as Bt \ Rt is connected, we have that all vertices of Bt \ Rt are in
X, in particular, at ∈ X. But then it follows that vt ∈ X ∩Bt− , and we can
proceed down the tree to force x0 ∈ X.

(ii) If T ′ is a finite initial segment of T then x0 is the only vertex of
valency ≤ s in {x0} ∪

⋃
t∈T ′ Bt. So the statement follows from Lemma 4.3.

(iii) This is similar to (i) and (ii). 2

Using this it is easy to construct 2ℵ0 non-isomorphic ≤-substructures of
M . With only a little more effort one obtains the following.

Corollary 4.6 For every ν < |M | there is A ≤ M of cardinality ν with νℵ0

Aut(M/A)-orbits on M . 2

Remarks 4.7 Note that by the various properties of independence on M ,
the number of Aut(M/A)-orbits on M is at most |A|ℵ0 for all small A ⊆ M .

We conclude by noting a curious connection between G1
s and certain

classes of graphs first used by Hrushovski to construct pseudoplanes.

Definition 4.8 If k ∈ R≥0 and A is a finite graph let δk(A) = k|A| − e(A),
where e(A) is the number of edges in A. For B ⊆ A write B ≤k A if whenever
B ⊆ A′ ⊆ A then δk(A

′) ≥ δk(B).

Remarks 4.9 Of particular interest for Hrushovski’s constructions is the
class of all finite graphs A with ∅ ≤k A.

Lemma 4.10 Suppose A is a finite graph.
(i) If B ∈ G1

s , k ≤ s/2 and B ≤k A, then A ∈ G1
s and B ≤ A.

(ii) If A ∈ G1
s and B ≤ A then B ≤s A.
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Proof. (i) So we show that if B ⊂ C ⊆ A then there is a vertex in C \ B
with valency ≤ s in the subgraph on C.

The sum of the valencies in C of vertices in C \B is 2e(C)−2e(B). So as
δk(C) = k|C| − e(C) ≥ k|B| − e(B) this is at most 2k|C \B|. So the average
valency in C of vertices in C \B is ≤ 2k ≤ s. Thus there is a vertex in C \B
with valency ≤ s in C.

(ii) It is clear (by looking at how the number of edges changes as we
proceed along an s-good enumeration) that e(A) ≤ e(B) + s|B \ A|. So
s|B| − e(B) ≤ s|A| − e(A), as required. 2

4.2 Pseudospaces in M

It is not completely clear what the precise definition of ‘pseudospace’ should
be (the term is also not defined in [1]). Ideally, one would like to define
the combinatorial notion of an ‘n-pseudospace’ so that a stable structure is
n-ample iff it type-interprets an n-pseudospace. Of course, we have this for
n = 1: this is Lachlan’s notion of a pseudoplane. In vague terms, however, an
n-pseudospace should consist of points, lines, planes, . . . which satisfy various
‘geometric’ incidence properties.

We show how to build such a structure in M . In the example below,
one could think of the loci of a0, . . . , an over B as (canonical parameters for)
points, lines,. . . , n-flats, with the various 2-types (aiaj/B) giving incidence
relations between these.

Proposition 4.11 Let M be the structure constructed in the previous sec-
tions, with s = 2.
(i) There are points A = {ai, bi+1, ci, di+1 : i < ω} with A ≤ M and only the
following atomic relations (and the instances of the P (i,r) they imply) on A
(see Figure 1): for i ≥ 1
Wi(ai−1, ai), Wi(bi, bi+1), Wi+1(ci−1, ci), Wi(ai−1, ci−1), Wi(bi, ai), Wi(di, bi),
Wi+1(di, ci).

If B = {bi+1, ci, di+1 : i < ω}, then B ≤ A.

With this notation, we have, for all i < ω:
(ii) ai 6∈ acl(Ba0, . . . , ai−1, ai+1, . . .);
(iii) the locus of (ai, ai+1) over B is a pseudoplane.

Proof. (i) Using Figure 1 to identify the instances of the relations P i,r, one
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Figure 1: The pseudospace

checks that

d1, d2, . . . , b1, b2, . . . , c0, c1, c2, . . . , a0, a1, a2, . . .

is a 2-good ordering of A.
(ii) Let i < ω. Consider the structure E = A ∪ {ej : j < ω} where

the quantifier free type of ej over A \ {ai} is the same as that of ai, and
there are no other basic relations on E other than what is implied by this.
Then Ba0, a1, . . . , e0, e1, e2, . . . is a 2-g.o. of E with A as an initial seg-
ment, so we may assume that the ej are in M . We may interchange ai

with any of the ej and still have a 2-g.o. of E. Thus ai, ej lie in the same
Aut(M/Ba0, . . . , ai−1, ai+1, . . .)-orbit.

(iii) Suppose a′i is a translate of ai over Bai+1. We need to check that
ai+1 ∈ acl(aia

′
i). Indeed, suppose ai+1 = a1

i+1, . . . , a
r
i+1 are translates over

Baia
′
i. If r ≥ 3, then the graph with edge set Wi+1 on the points bi+1, ai, a

′
i,

a1
i+1, . . . , a

r
i+1 has all vertices being of valency at least 3, which contradicts

the existence of a 2-g.o. on M . Thus r ≤ 2.
Similarly, suppose a′i+1 is a translate of ai+1 over Bai, and ai = a1

i , . . . , a
r
i

are translates over Bai+1a
′
i+1. Again, if r ≥ 3 then the graph with edge set

Wi+1 on the points ci, ai+1, a
′
i+1, a

1
i , . . . , a

r
i has all vertices of valency ≥ 3,

which is again a contradiction. 2

Remarks 4.12 Conditions (ii) and (iii) are probably weaker than n-ampleness.
In the example we also have that:
(iv) a0, . . . , ai−1 |̂∗ Bai

ai+1 . . ..
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