Model-theoretic constructions via amalgamation and
reducts

David M. Evans

Introduction and Motivation

In these talks I will discuss Hrushovski’s construction from 1988 of a new family of strongly
minimal theories [7]. T will do this from the more recent viewpoint of the papers [3, 4].

Recall that a complete first-order theory with infinite models is strongly minimal if in any
of its models, every parameter-definable subset of the model is finite or cofinite. Classical
examples are theories of vector spaces and algebraically closed fields; also the degenerate
example of the theory of infinite ‘pure’ sets where the only structure comes from equality.
Algebraic closure in a strongly minimal structure satisfies the exchange condition, so gives
rise to notions of dimension and independence (corresponding to linear dimension/ inde-
pendence and transcendence degree/ algebraic independence in the two classical examples).

At one point, there was a conjecture of Zilber which, roughly speaking, said that any
strongly minimal structure should be very closely related to one of the classical examples:
more precisely, the dimension should either be (locally) modular, or an algebraically closed
field should be interpretable in the structure. The point of Hrushovski’s construction was
to refute this. (The underlying ideology behind the conjecture was that structures which,
in some sense are the most basic from a model-theoretic viewpoint, should already exist
elsewhere in mathematics. The extent to which this ideology still remains intact is an
interesting question: for some discussion, one can read the introduction to [4] and some of
the references given there.)

Hrushovski’s construction is a ingenious variation of the Fraissé amalgamation class con-
struction. It is best understood in two parts. First, one defines a certain free amalgamation
class; then one restricts to a subclass, where a harder amalgamation result is needed: this
second stage is usually referred to as the ‘collapse’ of the first part. The first stage is inter-
esting in itself and will be the main focus of these talks. Its outcome is a structure which
is not strongly minimal, but which is stable (in fact, w-stable of infinite Morley rank). In
this context, the correct notion of independence that should be considered is rather more
subtle than algebraic closure: it is Shelah’s notion of non-forking. But even at this level
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of generality, the uncollapsed Hrushovski structures give us something new: stable struc-
tures which do not interpret an infinite field, and where independence is not one-based (the
appropriate generalisation of not being locally modular).

Independence in the Hrushovski constructions (both the strongly minimal and uncollapsed
versions) has a property called CM-triviality: this is weaker than being one-based but it
prevents the interpretation of an infinite field (see [8], for example). It is a major open
problem to decide whether there are strongly minimal structures which are not CM-trivial
and which do not interpret an infinite field. At present, this looks beyond reach: the feeling
is that they do exist, but to construct them would require much more than a straightforward
variation on Hrushovski’s original idea. What we shall discuss in these talks is a method
(from [3]) of constructing stable (but sadly not w-stable) structures which do not interpret
an infinite field and which are not CM-trivial.

One curious feature of the method in [3] is that the structures are obtained as reducts of
other stable structures which are one-based (and also trivial). Thus by ‘forgetting’ some of
the structure we make independence behave in a more complicated way. Another slightly
surprising aspect to this is that the uncollapsed Hrushovski structures can themselves
be seen as reducts of such structures: so the method is, in a rather roundabout way, a
generalisation of the uncollapsed Hrushovski construction.

(Note for those who know what the words mean: I am not going to say anything about
fusions or where the predimension is anything other than the simplest form: ‘size of set
minus some linear function of number of atomic relations’.)

The plan of the lectures is to:

e give an example of an uncollapsed Hrushovski construction and show how it can
be seen as a reduct of a ‘simpler’ structure;

e look at the model theory of these examples (axiomatization, stability, nature of
independence);

e use similar ideas to produce non-CM-trivial stable structures.

The first of these is elementary in that it needs almost no knowledge of model theory. For
the second, I will not assume that you know about stability and forking (though I will need
to assume some basic model theory): in fact the examples can be used to illustrate the
basic definitions in the subject. The same is true of the third section, though at this stage
things will become more technical: in principle things can be deduced more-or-less from
the definitions, but a certain amount of faith in the meaningfulness of these definitions is
required.

Prerequisites: Basic model theory including definable sets; types; algebraic closure; imagi-
naries; some understanding of using back-and-forth to prove completeness and understand
types.

Notational conventions: Usually don’t distinguish notationally between a structure and its
domain (and sometimes this will be a bit confusing...)
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1. Two examples of Fraissé - Hrushovski constructions

The construction method being used here is a generalisation of Fraissé’s idea of an amal-
gamation class. The aim is to build a structure with an understandable model-theory out
of a class of finite structures and embeddings between them. Rather than giving a general
version of the construction I will give two examples.

ExAMPLE 1.1 (The class of 2-out digraphs). First, some terminology. We work in the
language which has a binary relation symbol V(z,y), pronounced ‘y is a descendant of
x.” Let T" be the first-order theory whose models are the simple, loopless directed graphs
(digraphs) in which all vertices have at most two descendants.

The models of 7" are the 2-out digraphs. If B is one of these and X C B then we write
cl’z(X) for the closure of X in B under taking descendants and write X C B if X = clz(X)
(i.e. X is descendant-closed in B). Note that this closure is disintegrated:

lp(X) = [ el({«})

zeX

Let D be the class of 2-out digraphs. The following is just a matter of checking the
definitions:

LEMMA 1.2. For D, E € D we have:

(i) IfCC D and X C D thenCNXC X.
(ii) fCC DC E then CC E.
(iii) (Full Amalgamation) Suppose D, E € D and C' is a sub-digraph of both D and E
and C C E. Let F be the disjoint union of D and E over C' (with no other directed
edges except those in D and E). Then F € D and D C F. O

We refer to F' in the above as the free amalgam of D and E over C.

Using this we have:

PROPOSITION 1.3. There exists a countably infinite digraph N satisfying the following
properties:

(D1): N is the union of a chain of finite sub-digraphs

Cl ECQEC3E (I”ZTLD

(D2): If C T N is finite and C T D € D is finite, then there is an embedding f : D — N
which is the identity on C' and has f(D) C N.

Moreover, N is uniquely determined up to isomorphism by these two properties and is
C-homogeneous (i.e. any isomorphism between finite closed subdigraphs extends to an au-
tomorphism of N ). O

The proof of this is a variant on the classic argument of Fraissé, and we just give a sketch.
We build N as the union of a chain of 2-out digraphs as in (D1) in such a way that (D2)
holds. Suppose we have constructed C; and C' C C;, and C' C D € D, as in (D2). Using
amalgamation, we can take C;,, to be the amalgam of C; and D over C and f: D — Cjy4
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the obvious embedding. As there are only countably many isomorphism types of pairs
C' C D which can arise here, we can arrange that all tasks in (D2) are solved at some point
during the construction.

The proof of the ‘Moreover’ part is by a back-and-forth argument. If N’ also satisfies the
two properties, then the set of isomorphisms f : A — B between finite AC N and B C N’
is a back-and-forth system. For example, given f : A — B and ¢ € N we can find a finite
A; C N containing A and ¢ (using D1 in N). We can then extend f to an isomorphism
g: Ay — By for some B; C N’, using D2 in N'.

We refer to N given by the above as the Fraissé limit of the amalgamation class (D, C).

ExXAMPLE 1.4 (Uncollapsed Hrushovski construction). Here we work with a language which
has a binary relation symbol W (z,y), pronounced ‘x and y are adjacent.” We work with
undirected, loopless graphs. If A is a finite graph we let e(A) be the number of edges in A
(i.e. the number of unordered adjacent pairs of vertices) and define

S(A) = 2|A| — e(A).

Let T° be the theory of graphs in which §(A) > 0 for all finite subgraphs A, and let C be
the class of all models of 7°. If A C B € C are finite we write A < B and say that A is
self-sufficient in B if §(A) < §(B’) whenever A C B’ C B. Note that we can express the
condition that A € C by saying () < A.

The key property of the function 9 is:

Submodularity: If B, C' are finite subgraphs of a graph D then
I(BUC) <H(B)+d(C)—686BNC).

Moreover there is equality here iff B, C' are freely amalgamated over BN C (i.e. there no
adjacencies between B\ C and C'\ B).

LEMMA 1.5. We have:

(i) f A< B and X C B then AN X < X.
(ii) f A< B <C then A<C.
(iii) (Full amalgamation) Suppose A, B € C and C is a subgraph of A and B and
C' < B. Let D be the disjoint union (i.e. free amalgam) of A and B over C'. Then
DeC and A< D.

Proof: All are quick proofs using submodularity. For example, for (i), take ANX CY C X.
Then 0(AUY) < §(A) +6(Y) —(ANY). Rearranging, we get 0 < 6(AUY) —0(A) <
(Y)—0(ANX),as A< B. O

Note (i) and (ii) here imply that if A, B < C then AN B < C. Thus for every X C B
there is a smallest self-sufficient subset of B which contains X. Denote this by clg(X): the
self-sufficient closure of X in B. For infinite graphs A C B we can define A < B to mean
AN X < X for all finite X C B. The lemma also holds, and (i) shows that is consistent
with the definition in the finite case, so we can talk about self-sufficient closure in this more
general context. Note that if X is a finite subset of C' € C then clg(X) is finite (we look at
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finite subsets X CY C C and choose one where §(Y) is as small as possible: then Y < C
and clg(X) CY).

As in the previous example, we get:
PROPOSITION 1.6. There is a countably infinite graph M satisfying the following properties:

(C1): M is the union of a chain of finite subgraphs

Bl SBQ SBgS -~ allinC.

(C2): If B < M is finite and B < C € C is finite, then there is an embedding f : C' — M
which is the identity on B and has f(C) < M.

Moreover, M s uniquely determined up to isomorphism by these two properties and is <-
homogeneous (i.e. any isomorphism between finite self-sufficient subgraphs extends to an
automorphism of M ). O

The two examples give amalgamation classes (D,C) and (C, <) from which we construct
respectively, as Fraissé limits, a countable digraph N and a countable graph M.

THEOREM 1.7. If we forget the direction on the edges in N, the resulting graph is isomorphic
to M.

Thus M is a reduct of N (in the sense that there is a bijection M — N which sends
(-definable sets to (-definable sets in all powers).

DEFINITION 1.8. Suppose A is a graph. A D-orientation of A is a directed graph AT € D
with the same vertex set as A and such that if we forget the direction on the edges, we
obtain A. We say that Ay, Ay € D are equivalent if they have the same vertex set and the
same graph-reduct (i.e. they are D-orientations of the same graph).

The Theorem is a fairly straightforward corollary of the following two lemmas:

LEMMA 1.9. (1) Suppose B is a finite graph. Then B € C iff B has a D-orientation.
(2)If B€C and A C B, then A < B iff there is a D-orientation of B in which A is closed.

LEMMA 1.10. (1) If C € D € D and we replace the digraph structure on C' by an equivalent
structure C' € D, then the resulting digraph D' is still in D.

(2) If A < B € C then any D-orientation of A extends to a D-orientation of B. O

Part (1) of the second of these is straightforward: just observe that any vertex in D’ has at

most two directed edges coming from it. Part (2) then follows from (2) of the first lemma
and (1).
The proof of the first lemma uses a classical theorem of combinatorics, usually referred to

as Hall’s Marriage Theorem:

THEOREM 1.11. Suppose S is a set, I is a finite set and for each © € I we have a finite
subset X; C S. Suppose further that for every J C I we have

Jxi1= 1.
jedJ

Then there ezists a sequence of distinct elements (z; : i € I) such that x; € X;. O
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Proof of 1.9: (1) First suppose B has a D-orientation BT, and let Y C B. This also has
an orientation (induced by that on B). Now count directed edges in the orientation (which
is of course the same as e(Y')): each vertex has at most two directed edges coming from it,
so the number of them is < 2|Y|. Thus 6(Y) > 0, so B € C.

Conversely, suppose B € C. Let I denote the set of edges in B. For each i = {a, b} we wish
to choose a direction of the edge. This is equivalent to selecting one of a,b as the initial
vertex of the directed edge; and for the resulting digraph to be in D we should select the
same vertex no more than twice as i varies. Let B’ be another copy of the vertex set B and
S=BUB'. Fori={a,b} €llet X;={a,b,a, b} (wherea V' denote the copies of a,b in
B’). Now suppose J C [ and let Y = |JJ (the vertices in these edges). Then 6(Y) > 0, so

I <e(Y) <2iY| =Xl
jed

Thus the condition in the Marriage Theorem is satisfied, and we can find distinct (z; : i € I)
with z; € X;. To orient the edge i = {a, b} we look at z;: if x; = a or a’ then we make a
the initial vertex. As the z; are distinct, any vertex is chosen no more than twice in this
way.

(2) The proof is just a modification of the above. O

Now we prove Theorem 1.7. Let N~ denote the graph-reduct of the digraph N. Property
(D1) in N and Lemma 1.9 imply that N~ has property (C1). To prove the Theorem it
suffices (by proposition 1.6) to show that (C2) also holds in N~.

Suppose B < N~ and B < C € C. Let D" be the C-closure of B in N. So D" is a finite
2-out digraph, and B inherits a D-orientation BT from it. By Lemma 1.10, this extends
to a D orientation of C' in which B is E-closed: call the resulting digraph C*. By Full
Amalgamation for D (Lemma 1.2(iii)) the free amalgam E* of DT and C't over BT is in
D and DT C E*. So by (D2) there is a digraph embedding f* : Et — N which is the
identity on DT and with fT(E*) C N. Now pass to the graph-reduct (indicated in the
notation by dropping the ™ superscript): E is the free amalgam of C' and D over B and as
B < D we have C' < E. We have a graph embedding f : £ — N~ which is the identity on
B and f(C) < f(F) < N, as required.

REMARKS 1.12. (1) One can see that this is a general argument. One has a class (D, C) of
relational structures and distinguished embeddings which (amongst other things) satisfies
full amalgamation. By taking reducts one obtains another class (C, <) of structures and
distinguished embeddings where the definition of A < B can be taken as saying that there
is an expansion of B to a structure B* € D so that A T BT. The extra condition which
one needs to make this work is the analogue of Lemma 1.10.

(2) In [7] Hrushovski works with structures with a ternary relation R and a predimension
d(A) = |A| — |R[A]|. This leads to a structure of Morley rank w which can be collapsed to
a structure of rank 1. Our graph M has rank w.2 and can be collapsed to a structure of
rank 2. I've chosen to work with graphs and digraphs here as they’re rather more intuitive
than ternary structures and directed ternary structures. But the same sort of thing can be
done for the original Hrushovski example: see [4].
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2. Model theory of the constructions

2.1. The theory of N.

2.1.1. Axiomatization and understanding types. Recall that T” is the theory of 2-out
digraphs in the language L’ which has a 2-ary relation symbol V' (z, y) for ‘there is a directed
edge from z to y.” We want to axiomatise Ty = Th(N) in this language, where N is the
Fraissé limit in Proposition 1.3.

Suppose X T A € D are finite. Let  and gy be tuples of variables with the variables in z
corresponding to the elements of X and the variables in y corresponding to the elements of
A\ X. Let Ax(z) and Ax 4(Z,y) denote the basic diagrams of X and A repectively and
¢x .4 the L'-sentence:

VZIy(Ax(z) — Axa(z, ) A (zy) = ' (z) UY)

The condition ‘cl'(zy) = cl'(z) U §’ is expressed in a first-order way by saying that any
descendant of a variable in ¢ is one of the variables in xy.

Let 77 consist of (the deductive closure of) T” together with all these ¢x 4. Thus a model
Ny of T" is a model of 77 iff for all finite subsets X of N; and X C A € D with A finite,
there is an embedding over X of A into N; whose image A; has closure clyy, (X)UA;. Note
that by compactness we have also have the following. Suppose N; is an w-saturated model
of T{, X C Nj is the closure of a finite set, and X T A € D where A is the closure of a
finite set. Then there exists an embedding over X of A into N; with closed image.

LEMMA 2.1. The theory T} is consistent and complete. In fact, Th(N) = T{. Moreover,
n-tuples a,b in models N1, Ny of T] have the same types iff the map a v~ b extends to an

isomorphism between cly (a) and cly, (b).

Proof: First we show that N = ¢x 4. This follows from full amalgamation in (D, C). More
precisely, given X C N finite and X C A € D (also finite) let Y = cl)y(X). Then Y C N
is finite. Let B be the free amalgam of Y and A over X. So Y C B is the closure of A in
B. By (D2) in Proposition 1.3, there is a closed copy of B over Y in N: this witnesses the
truth of ¢x 4 for this particular X.

If the types of @ and b are the same, then clearly we have an isomorphism between their
closures. For the rest, it is enough to show that if Ny, N, are w-saturated models of 77,
then the set of isomorphisms between closures of finite subsets of N7 and N is a back-and-
forth system (cf. [12], Chapitre 5.b or [13], Section 5.2). But this follows at once from the
remarks immediately preceding the lemma. O

2.1.2. Stability and non-forking. Suppose N is a highly saturated model of Ty. If
B C N is small and a is a tuple of elements of N then by the above tp(a/B) is determined
by cl'(@B), which is the free amalgam of A = cl'(a) and B over their intersection. Let’s
count the number of possible types here. Note that A is countable, so the number of
possibilities for AN B is | B[N, The number of possibilities for the isomorphism type of A
over AN B is at most 2%, so the number of n-types over B is at most max (2%, |B|*).
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DEFINITION 2.2. Suppose A is an infinite cardinal. A complete theory T in a countable
language is A-stable if for every model M of T and B C M with |B| < A, the number of
1-types over B is at most \. We say that T is stable if it is A-stable for some A.

Thus our calculation shows that Ty is A-stable whenever A = A%, so Tl is stable.

A stable theory has saturated models of arbitrarily large cardinality. It’s convenient to have
the convention that we fix a large saturated model (the ‘monster model’) and all models of
T we want to discuss are regarded as elementary submodels of this and all parameter sets
are small subsets of it.

DEFINITION 2.3. Suppose 7' is a complete stable theory in a countable language L and
¥(Z,b) a consistent L-formula (with parameters b). Say that v(z,b) divides over C if there
exist a natural number k and distinct realisations (b; : i < w) of tp(b/C) such that no k of
the formulas {1 (Z,b;) : i < w} are consistent.

If C C B we say that tp(a/B) divides over C' if there is some v(z,b) € tp(a/B) which
divides over C.

If tp(a/B) does not divide over C' we write @ | ., B: pronounced a is independent from B
over C.

If you've never seen this before it’s a bit hard to understand. Roughly the idea is that
independence means that ‘a is as free as possible from B over C'.” It’s far from obvious that
| has any nice properties, but it does. Suppose we make the notation more symmetric
by writing A |, B to mean that @ | , B for every finite tuple @ from A. Then, assuming
(harmlessly) that A O C', we have the symmetry property:

A| B< B | A
C C

Another property of independence is that if C' is a model and a and a’ have the same type
over M and each is independent from B over C, then a and a’ have the same type over B.
In fact if we include imaginary elements, the same is true for any algebraically closed C.

(We should also remark that there is a notion called forking which is in general weaker
than dividing, but which coincides with it in stable (and simple) theories. It would be
more usual to pronounce a | ., B as ‘tp(a/B) does not fork over C.’)

To illistrate the definitions, we prove the following.

LEMMA 2.4. With the above notation, and working in a large saturated model N1 of Ty, if
B is closed in Ny, then tp(a/B) does not divide over C = cl'(a) N B.

Proof. Suppose (B; : i < w) is a sequence of translates of B over C' (more formally, we
regard these as being enumerated as tuples which have the same type over C' as some fixed
enumeration of B). Note that B; © N;. Let X be the union of these and let Y be the
free amalgam of X and cl'(a) over C. Then X C N; and X C Y so we may assume that
Y C N;. Let a; be the copy of @ inside Y. Then cl'(a;) N B; = C and cl'(a,) and B; are
freely amalgamated over C'. Thus tp(a;B;) = tp(aB) for all 7. This proves the lemma. O
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COROLLARY 2.5. If A, B,C' are subsets of a model of Ty then
A | B& d'(AC) N (BC) =cl'(C).
c

Proof. The direction <= follows from the Lemma. For the other direction note that cl'(AC)
is equal to the algebraic closure of AC' in N; and we have in general:

LEMMA 2.6. For any stable theory, A |, B implies that acl(AC) Nacl(BC) = acl(C). O

(Here algebraic closure can be taken to include imaginary elements: we do not need this
here, but we shall use it later.) O

2.2. Model theory of M.

2.2.1. Axiomatization and types. We now do the same sort of thing for the structure
M constructed in Example 1.4. So 79 is the theory of graphs satisfying 6 > 0 on all finite
subgraphs, in the language L° with a binary relation symbol W (x,%). The axiomatization
of Tyy = Th(M) is similar to the axiomatization of Th(NV), but with one extra complication.

For a natural number m and finite Y C Z € C we write Y <" Z to mean that 6(Y") < §(Z)
whenever Y C 7/ C Z and |Z'\ Y| < m. It’s easy to check that Lemma 1.5 holds if we
replace < throughout by <™. In particular there is a closure cI™ associated to <™.

Suppose X < A € C are finite. As before, let £ and y be tuples of variables with the
variables in Z corresponding to the elements of X and the variables in 4 corresponding to
the elements of A\ X. Let Ax(z) and Ax 4(Z,7y) denote the basic diagrams of X and A

repectively and for each natural number m let o%¢ 4 be the L’-sentence:

Vz3y(Ax(Z) — Axa(Z,§) Acd™(zy) = 1™(Z) UY)

It takes a little bit of thought to see that the condition ‘cl™(zy) = cl™(z) Uy’ can be
expressed in a first-order way.

Let T? be (the deductive closure of) T° and these 0% 4. S0 a model My of T % is a model
of Tf iff for all finite subsets X of M; and X < A € C (with A finite) and all m there
is an embedding over X of A into M; whose image A; has m-closure cly; (X) U A;. By
compactness if M is w-saturated and X < M, is finite and X < A € (' is finite, then there
is an embedding of A over X into M; whose image A; is closed in M;. The proof of the
following is then as in Lemma 2.1.

LEMMA 2.7. The theory T? is consistent and complete. In fact, Th(M) :_Tf. Moreover,
n-tuples a,b in models My, My of T? have the same type iff the map a v+ b extends to an

isomorphism between cly, (a) and clyg (). 0

2.2.2. Stability and independence. We now want to count types in a highly saturated
model M; of Ty;. Suppose B < M, and a is a tuple in M;. There is a finite C' < B with
d(cl(aC)) — 6(C) as small as possible (- this is an integer > 0) and cl(aC') N B = C. For
such a C we claim:
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Claim: cl(aC) U B < M; and is the free amalgam of cl(aC) and B over C.

Proof of Claim: Let A = cl(aC). It suffices to prove the claim when B is finite (- by
considering finite closed subsets of the original B). By definition of § if A, B are not
freely amalgamated over C' then d(cl(aB)) < 0(AU B) < 6(A) +6(B) — 6(C), which, after
rearranging the inequality, contradicts the choice of C'. We have a similar contradiction if
d(cl(aB)) < §(AU B), thus AU B < M. O

By the claim we see that tp(a/B) is determined by C' and the isomorphism type of cl(aC').
So the number of 1-types over B is at most maz(Ry,|B|). Thus T, is A-stable for all
infinite A.

THEOREM 2.8. If A, B,C C M, |= Ty then A LCB iff

e cl(AC) N cl(BC) = cl(C)
o cl(AC) and cl(BC) are freely amalgamated over cl(C)
e cl(ABC) = cl(AC) U cl(BC).

Sketch of Proof. Assuming the 3 conditions hold, the proof that A | o B is very similar
to the proof of Lemma 2.4. To simplify the notation we can assume that A, B are closed
and have intersection C' and we can assume that M, is highly saturated. We show that
tp(A/B) does not divide over C'. Suppose (B; : i < w) is a sequence of translates of B over
C. Let X be the closure of the union of these and let Y be the free amalgam of X and A
over C'. As B; < X we have that A and B; are freely amalgamated over C' and AUB; <Y.
We may assume that Y < M;. If A’ denotes the copy of A in Y then tp(A'B;) = tp(AB)
for each 1.

For the converse, we can use Lemma 2.6 and the fact that algebraic closure in M is self-
sufficient closure to obtain the first bullet point if A | o B- Moreover, we can assume as
before that A, B are closed and have intersection C'. To simplify the argument, assume also
that A, B are finite. Let (B; : i < w) be a sequence of translates of B over A which are freely
amalgamated over C' and such that the union of any subcollection of them is self-sufficient
in M;. Suppose for a contradiction that A, B are not freely amalgamated over C'. Then the
same is true of A and B; and there is s > 0 such that 6(AU B;) = §(A) +6(B;) —d(C) — s
for all . Then one computes that

J(AU LTJBZ) < 5(0 B;)+0(A) = C —rs.

i=1 i=1
If r is large enough, this contradicts |J;_, B; < M;. The third bullet point is similar. O

2.3. Triviality, one-basedness and C'M-triviality. Each of these three properties
limits the ‘complexity’ of independence in a stable theory. To the non-specialist, they will
look rather technical, but we give the definitions and illustrate them in the two examples.

DEFINITION 2.9. Suppose T is a complete, stable theory. We say that T is trivial if the
following holds over any parameters. Whenever a, b, ¢ are tuples of elements from a model
of T which are pairwise independent, then a | b, ¢ (over the parameters).
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EXAMPLE 2.10. We show that Ty is trivial. Indeed, let Ny be a (large, saturated) model
of Ty, suppose a, b, ¢ are tuples from N; and suppose we are working over some closed pa-
rameter set D. Let A, B, C denote cl'(aD) etc. To say that a, b, c are pairwise independent
over D means that A, B, C' have pairwise intersection D. Because closure is disintegrated

in Ny, we have cl'(BUC) =BUC,s0 A | ,BUC.

ExAMPLE 2.11. We show that T}, is non-trivial. There exists {a,b,c,d} < M such that
each of a,b,c is adjacent to d, but there are no other adjacencies. A simple calculation

shows that d € cl(a, b, ¢). Then (using the description of independence), a, b, ¢ are pairwise
independent (over () but a J b, c because {a,b,c} £ M.

DEFINITION 2.12. A complete, stable theory T is one-based if whenever A, B are alge-

braically closed sets in a model of T we have A |, . B.

Caveat: Here ‘algebraic closure’ means in the sense of 7°?: it includes imaginary elements.

It can be shown that our examples T); and Tx have weak elimination of imaginaries,
which means we can view algebraic closure as being taken in the models, without having
to consider imaginary elements. That said, we can see that Ty is one-based, but T}, is not
(for the latter, take A = {a} and B = {b, ¢} as in the example above).

DEFINITION 2.13. A complete, stable theory T is C'M-trivial if whenever A, B, D are
algebraically closed sets in a model of T" and A, B are independent over their intersection,
then AN D and BN D are independent over their intersection.

Again, algebraic closure here is in the sense of 7. It should be clear that one-basedness
implies C'M-trivialty. It is fairly easy to check, given the description of independence in
Theorem 2.8 and assuming weak elimination of imaginaries, that Ty, is C'M-trivial.

There are various equivalent ways of defining C'M-triviality given in [7]. Another refor-
mulation was given by Pillay [10] where one-basedness and C'M-triviality are given as two
steps in a hierarchy of complexity of independence in a stable theory. Not being one-based
is called 1-ampleness in this hierarchy; not being C'M-trivial is called 2-ampleness. We will
not give the general definition of n-ampleness, but note the following:

DEFINITION 2.14. A complete, stable theory T is 2-ample if, possibly after adding param-
eters, there exist tuples a, b, ¢ in some model of T" such that:

(i) a f c
(i) a L, c
(iii) acl(a) Nacl(b) = acl(@) and acl(ab) N acl(ac) = acl(a).

Again, algebraic closure should be in the sense of T°¢ here. We omit the proof that 2-
ampleness is equivalent to non-C'M-triviality for a stable theory (see [10]).

REMARKS 2.15. (1) We have shown that Tl is a trivial, one-based stable theory with a
reduct Ty, which is neither one-based nor trivial. The fact that triviality is not preserved
under reducts answers a question from [5].
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(2) It has been known for a long time that one-basedness is not preserved under reducts:
probably this is due to Hodges (see [6] or [2]). Essentially Hodges’ example is what we
have done, but with 1-out digraphs.

(3) In [1], Baudisch and Pillay construct an w-stable, trivial, non-C'M-trivial structure.

(4) Pillay has recently shown [11] that the theory of a finitely generated non-abelian free
group (— known to be stable by work of Sela) is not C'M-trivial. He has conjectured that
there is a simple group of finite Morley rank which is 2-ample but not 3-ample (in particular,
it would be a counterexample to the Algebraicity Conjecture on groups of finite Morley
rank). Algebraically closed fields are n-ample for all n.

(5) A general presentation of the Hrushovski constructions and their stability can be found
in [14].

3. Avoiding CM-triviality

I now want to use the technique of taking a reduct of the Fraissé limit of a suitable amal-
gamation class to produce a stable structure which is non-trivial, non-CM-trivial. At the
beginning the idea of the construction is a little bit difficult to motivate: so I will try to do
this only after we have gone some distance into it.

To avoid unnecessary decoration of symbols, I will re-use symbols such as D,C,<,C, ...
from previous sections, giving them new meaning, but the same context.

3.1. Directed structures. We work with a first-order language in a signature con-
sisting of two binary relation symbols Vg(z,y), Vg(x,y), pronounced ‘y is a red descendant
of 7 and ‘y is a blue descendant of x’ respectively. The class Dy consists of structures in
which these relations are disjoint, and each of Vz, Vg gives a digraph in which all vertices
have at most 2 descendants. If C' C D € Dy we write C' C D if C is closed under taking
red and blue descendants in D. Again we write cl,(X) for the descendant closure of X in
D.

Write R(z,y) iff Vr(z,y) V Vr(y,x). Write B(x,y) iff V(z,y)V Va(y, ).

We will again consider undirected reducts, but we will also retain information about the
existence of certain paths (of length 2, of the form RB) between pairs of vertices when we
pass to the reduct. In the directed graphs the existence of such a path between two vertices
is not in general preserved between closed substructures. So we impose extra conditions on
the class in order to guarantee this.

DEFINITION 3.1. Let 6 be the closed formula which says:

if x,y,2 are such that Vg(z,z) A Vg(z,y), then there is w such that
Vr(z,w) A Vp(w,y) or Vp(y,w) A Vr(w, x) or Vr(z,w) A V(y, w).

Let D be the class of structures in Dy which satisfy this.

Clearly D is an elementarty class: i.e. the class of models of some theory T}p.
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If a,b,c € D € Dy satisty Vg(a,b) A Vg(b,c) or Vg(c,b) A Vg(b,a) or Vg(a,b) A Vg(c,b),
then we refer to a, b, c as a nice RB-path from a to c¢. The axiom 6 says that if there is an
RB-path from a to ¢, then there is a nice RB-path from a to ¢. Note that such a path lies
in the C-closure of a, ¢ thus we have:

LEmMMA 32. If CC D € D, then C € D.

As in Section 1 we have:

LemMmA 3.3. For D, E € D we have:

(i) IfCED and X C D then CNXC X.
(ii) fCC DC E then CC E.
(iii) (Full Amalgamation) Suppose D, E € D and C' is a sub-digraph of both D and E
and C C E. Let F be the disjoint union of D and E over C' (with no other directed
edges except those in D and E). Then F € D and D C F. O

We refer to F' in the above as the free amalgam of D and E over C'. It requires a little bit
of thought to see that F' satisfies 6.

Using this we have:

PROPOSITION 3.4. There exists a countably infinite N € D satisfying the following prop-
erties:

(D1): N is the union of a chain of finite sub-digraphs

Cl ECQEC{;E all in D.

(D2): If C T N is finite and C T D € D where D is finite, then there is an embedding
f: D — N which is the identity on C' and satisfies f(D) C N.

Moreover, N is uniquely determined up to isomorphism by these two properties and s
C-homogeneous (i.e. any isomorphism between finite closed substructures extends to an
automorphism of N ). O

3.2. The reduct. Consider the following definable predicate P(z,y). Fora,b € C' € D
we write

C = P(a,b) & C = 32(R(a, z) A B(z,b)).
The point of the axiom 6 is to ensure:

LEMMA 3.5. If a,b € BC C €D then
B | P(a,b) & C = P(a,b).

Proof. We need to consider the possibility that ¢ witnessing C' = P(a,b) lies in C'\ B. As
B C C we must have C' |= Vg(c,a) A Vg(c,b). But then 6 guarantees that B = P(a,b). O

DEFINITION 3.6. We let C be the class of structures in the language {R, B, P} which arise
as a reduct of a structure in D. For D € D we might write D~ for the reduct in C and we
say that the directed structure D is an orientation of D~. Structures in D with the same
domain are equivalent if their reducts are the same. If A C B € C we write A < B to mean
that there is an orientation of B in which the subset A is a closed subset.
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WARNING: The class C is not closed under substructures. For example, take C' = {a, b, c} €
D with C |= Vg(a,c) A Vg(b,c). Then C | P(a,b), so C~ = P(a,b). But clearly {a,b}
itself is not the reduct of a structure in D. Nevertheless, by the definition, if A < B € C
then A € C.

LEMMA 3.7. (1) (Switching) Suppose A T C € D and Cy is obtained from C' by replacing
the substructure on A by an equivalent structure A;. Then Cy € D and Cy is equivalent to

C.
(2) [fA<C<DeC then A< D.

(3) (Free amalgamation) If A < C,D € C then the free amalgam F' of C and D over A is
m C and C, D < F.

We need to be more precise about what we mean by F' here. The domain is the disjoint
union of C'and D over A. The R and B relations are just those in C' and D, but in addition
to the P-relations in C, D we also have F' |= P(b,c) when b € D\ A and ¢ € C'\ A and
there is a € A with R(a,b) A B(a,c) (and similarly with the roles of D, C' interchanged).

Proof of Lemma. (1) It is easy to see that C; € Dy, so we check that Cy |= 6. To do this we
show that if there is a nice RB-path a, b, c from a to ¢ in C, then there is a nice RB-path
a,b',c from a to ¢ in Cy. If a,b,¢c € C'\ A there is nothing to do. If a,c € A then there is
an RB-path from a to ¢ in Ay, so there is a nice RB-path in A; as A; € D. We are left
to consider the case where one of a,cisin A, say a € A and ¢ € a. If b € A there is again
nothing to prove as none of the directions in the path gets changed when going from C' to
C1. So we are left with the case where b € A. As A C C we have C = Vg(c, b) and the
same is true in C;. So whatever direction is on the R-edge between a and b, the RB-path
a, b, c is nice.

The statement about equivalence is clear: the relations R and B are the same in both C'
and C7, and the relation P is determined by these.

(2) There is an orientation DT of D in which C' is closed and an orientation C* of C' in
which A is closed. Using (1), we can replace the oriented structure on C' in D* by C* and
obtain an orientation of D in which A is closed.

(3) Take an orientation Dt of D in which A is closed. By (1) and the fact that A < C,
the induced orientation AT on A extends to an orientation Ct of C. It is then easy to see
that the free amalgam of DT and CF over A" is an orientation of F. O

Notice that (2) and (3) follow from (1) and the corresponding properties in (D, C).

REMARKS 3.8. One difference from the previous case is that there is no closure operation
associated with <: it can happen that Ay, Ay < C € C and A; N Ay £ C. For example,
suppose C' has points a, by, bs, ¢ and relations R(a,b;), B(c,b;), P(a,c) (for i = 1,2). One
can check easily (by producing orientations) that C' € C and {a, by, c}, {a,be,c} < C. On
the other hand {a,c} £ C, as P(a,c).

3.3. Model theory of N. As in the monochrome case in Section 2 we can axiomatise
Ty = Th(N) by taking Tp together with axioms of the form
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VZ3Ag(Ax(z) — Ax.a(Z,9) Al (zg) = c'(Z) UY)
where A € D is finite, X T A, Ax(Z) denotes the basic diagram of X and Ax 4(Z,7)
denotes the basic diagram of A, where the variables § represent the elements of A\ X.
The condition ‘cl'(zy) = cl'(z) U §’ is expressed in a first-order way by saying that any
Vr/p-descendent of a variable in ¢ is one of the variables in 7y.

Note that if X is the closure of a finite set inside some w-saturated model N’ of T, and
X C A € D, where A is also the closure of a finite set, then, by compactness, there exists
an embedding over X of A into N’ with closed image. One can then argue exactly as before
to obtain:

LEMMA 3.9. (i) The theory Ty is consistent and complete. Moreover, n-tuples a,b in
models N1, Ny of Ty have the same type iff the map a — b extends to an isomorphism

between cly, (a) and cly, (D).
(it) The theory Ty is stable and if A, D, C" are subsets of a model N' of Ty, then A |, D <

cly (AC) N ey, (DC) = cly,(C). Moreover, Ty is one-based and trivial. O

3.4. Model theory of the reduct. We now consider the undirected reduct N~ of
N. We do not have an axiomatisation of T = Th(N~). The difficulty is that although
N~ is the Fraissé limit of the finite structures in (C, <), this class does not have full
amalgamation and so the limit is more difficult to axiomatize. Nevertheless, as the reduct
of a stable theory, it is stable; and it is the reduct of a complete, recursively axiomatized
theory, it is decidable. We investigate T by working more closely with Ty .

Henceforth we work with a large saturated model N of Ty. We let M denote its RBP-
reduct. So M is a saturated model of Tc. In the following, ‘small’ means of cardinality less
than |N|.

PROPOSITION 3.10. Suppose A C N is small and Ay € D is equivalent to A. Let Ny be the
structure obtained by replacing A by Ay in N. Then Ny is a saturated model of Ty .

Proof. By Lemma 3.7 (i) we have N, € D. So it will be be enough to show that N; satisfies
the following ‘genericity’ condition. Suppose B C N; and B C D € D is small. Then there
is an embedding ¢ : D — N, which is the identity on B, and which satisfies 6(D) C Ny
Indeed, if this condition holds, then N and N; are back-and-forth equivalent, so N =Ty,
and saturation is then clear from the description of types in Lemma 3.9.

As Ay and B are closed in ]\71 we have By = A{UB L Nl. Let D; be the free amalgam
over B of By and D. So Ay E By C Dy and D & D; € D. If we replace A; by the
equivalent structure A in B; we obtain A C By C N. Doing the same thing in D; we
obtain Dy € D (by Lemma 3.7) with A C B, T D,. By saturation of N (i.e. the above
genericity property), there is an embedding a : Dy — N which is the identity on B and
which has closed image in N. Now, D is not necessarily the domain of a closed substructure
of D5, but if we replace the structure on A by A; in both Dy and N, the map « gives us
an embedding D; — N (- same map, different structures!) with closed image and which
is the identity on Bj. If we restrict this to D C D;, we get the required embedding §. O
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COROLLARY 3.11. (i) If A C M is small, then A < M iff there is an orientation of M
which is a saturated model of Ty in which A is closed.

(i) If A < M is small and 3 : A — B is an embedding of A into some small B € C with
B(A) < B, then there exists an embedding v : B — M with ~v o 3 the identity on A and
¥(B) < M.

(111) If Ay, Ay < M are small and o Ay — Ay is an isomorphism, then o can be extended
to an automorphism of M.

Proof. (i) Suppose A < M is small. Let Q be an orientation of M in which A is closed.
There is a small subset B containing A which is closed in both @ and N. Let B, denote
the structure on B in ). So A C B;. Replace the structure on B in N by the equivalent
structure By. By Proposition 3.10 the result is still a saturated model Ny of Ty. So we
have A C B, C N1 and N1 is an orientation of M which is saturated and in which A is
closed.

(ii) This follows from (iii) and the fact that any small B € C can be <-embedded in M.

(iii) By Proposition 3.10 and (i), there exist orientations Ny, Ny of M which are saturated
models of Ty with A;, Ay (respectively) closed subsets and in which « gives an isomorphism
of the oriented structures on A;, A;. By Lemma 3.9 (i) this is a partial elementary map,
so by uniqueness of saturated models, it extends to an 1somorphlsm between N; and Ny.
Passing back to the reduct, we obtain an automorphism of M which extends o. O

We do not have a full characterization of forking in M. However, the following is useful.

LEMMA 3.12. Suppose A, B,C" are small subsets of M with ANB = C < M; A B <
AUB < M and AU B the free amalgam over C' of A and B. Then A \LCB.

Proof. This is similar to the proof of Lemma 2.8: we show that tp,;(A/B) does not divide
over C. Let (B; : i < w) be a sequence of translates over C' of B = Bj. So in particular
B; < M. First, we show that there is a small D < M with B; < D for all © < w. To see
this, note that for each ¢ there is an orientation Nl of M in which C and B; are closed.
As the closure of a small set is small in any orientation, there is a small subset D which
contains all the B; and which is closed in N and all the ]\7Z It follows that B; < D < M
for all i.

Let F be the free amalgam over C' of D with a copy over C of A (call it A;). By Corollary
3.11(ii), we may assume that F < M. As A; < F < M we have that A and A; have
the same type over C'. Now we claim that Ay, B; < A; U B; < F for each . Indeed,
there is an orientation D’ of D in which C, B; are closed. Extend the orientation C’ on
C' to an orientation A} of A; (using Lemma 3.7). The free amalgam (in D) of A} and D’
over (' is an orientation of F' in which A;, B; and A; U B; are closed. The establishes
the claim and also shows that A; U B; is the free amalgam over C' of A; and B;. Thus
tpy (Bid1) = tpy (BA) for all ¢, by Corollary 3.11(iii). O

Again, note that the proofs of these are formal, given the switching property and propertites
of (D,C0).
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4. 2-ampleness of the reduct

We continue to use the notation of the previous subsection. Let A = {a,b,¢} < M be such
that M = R(a,b) A B(b,c) A P(a,c). We have:

THEOREM 4.1. The structure M is non-trivial and 2-ample. In fact:

(i) al,c

(i) a f ¢ and in fact P(a,y) divides over ();
(iii) acl(a) Nacl(b) = acl();
(iv) acl(ab) Nacl(ac) = acl(a).

Proof. Non-triviality can be seen just by using the relation R (as in non-triviality of the
Hrushovski structure in Section 1). To prove 2-ampleness, we verify (i)-(iv).

(i) We can orient A so that Vz(a,b) A Vg(c,a). Thus {b},{a,b},{c,b} < M, and so (i)
follows from Lemma 3.12.

(ii) As P(a,y) € tpy(c/a), it is enough to prove that P(a,y) divides over (). As in (i) but
using a different orientation we have that {¢} < M. Let C' = {¢; : i < w} < M have all
atomic relations P, B, R empty on C'. Thus ¢; < M for each 1, and these are indiscernible
and of the same type as ¢ over ). We show that there is no a’ € M with M = \>_, P(d', c;).
Suppose there is such an a’. There is an orientation of M in which C is C-closed. In this
there is a RB-path from a’ to each ¢; and as C' is C-closed (and there are no atomic relations
on (') these paths can be taken to be good RB-paths of the form Vg(a,b;) A Vg (b;, ¢;) for
some b;. The b; need not be distinct here, but cy,...,cs are distinct: this is impossible as
each vertex has at most 2 red descendants and 2 blue descendants in the orientation.

(iii) Suppose e € acl(a) Nacl(b). There is a sequence {b; : j < w} of distinct elements
of M with b = by, M = R(a,b;) for each j, and no other atomic relations holding on
B = {a,bg, by ...} < M. Then ab; < M and the b; are all of the same type over a (by
automorphisms). The same is true of any pair of the b;. As e € acl(a) it follows that by, by
have the same type over ae.

Thus e € acl(a) Nacl(by), so e € acl(by) Nacl(by). Now, Lemma 3.12 shows that by | by,
which implies acl(bg) Nacl(by) = acl(0).

(iv) This is similar to (iii). Take e € acl(ab) N acl(ac). There exist distinct (b; : j < w)
with b = by and D = {a,c,b; : j <w} < M with R(a,b;) A B(b;, c) for all j being the only
atomic relations on D (apart from P(a,c)). To see this, note that the orientation with

Via(a, bo) A Vis(e,bo) A\ Vi(bs,a) A Vi(b, c)

7>0

is in D. By replacing by by any of the other b;, we see that abjc < D < M. In particular,
the b; are of the same type over ac. As e € acl(ac) we can therefore assume that by, b; are
of the same type over ace, so e € acl(aby) N acl(aby). By choosing a different orientation

~

we can see aby < aboby < abgbic < M (- take an orientation of D where by, by are red
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descendants of a and blue descendants of ¢). Thus by Lemma 3.12 again, by | _b; and so
e € acl(a). O

=

ENES

[14]
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