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(1.1) Strongly minimal structures

An infinite L-structure D is strongly minimal if every definable subset of
D is finite or cofinite in D, uniformly in the defining formula: for every
L-formula ϕ(x , ȳ) there is nϕ such that for all parameters ā either
{c ∈ D : D |= ϕ(c, ā)} or its complement in D has at most nϕ elements.

EXAMPLES:
1 Pure set (S; =)

2 K -vector space (V ; +, 0, (λs : s ∈ K )); K any division ring
3 Algebraically closed field (F ; +,−, ·, 0, 1)

4 Dµ : Hrushovski’s 3-ary structures from 1988 (published in 1993).
5 Fusions
6 ... ?
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(1.2) Algebraic closure

In any structure M, if X ⊆ M define the algebraic closure acl(X ) of X in
M to be the union of the finite X -definable subsets of M.

This is a (good) closure operator on M, and if M is strongly minimal,
then it satisfies the exchange property, giving us a pregeometry.
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(1.3) Pregeometries

Suppose A is any set; denote by P(A) the power set of A. A function
cl : P(A) → P(A) is a closure operation on A if for all X ⊆ Y ⊆ A:

X ⊆ cl(X )

cl(X ) ⊆ cl(Y )

cl(cl(X )) = cl(X )

cl(X ) =
⋃
{cl(X0) : X0 ⊆ X finite }.

We say that (A, cl) is a pregeometry if additionally it satisfies:
(Exchange) If a ∈ cl(X ∪ {b}) \ cl(X ) then b ∈ cl(X ∪ {a}).

Suppose X ⊆ Y ⊆ A. Say that X is an independent set if
a 6∈ cl(X \ {a}) for all a ∈ X . If also cl(X ) = cl(Y ), say that X is a basis
of Y . Then we have:

Any subset Y of A has a basis;
Any two bases of Y have the same cardinality, called the
dimension of Y .
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Geometries

A pregeometry (B, cl) is a geometry if it satisfies
cl(b) = {b} for all b ∈ B.

Given a pregeometry (A, cl) the relation

a ∼ b ⇔ cl(a) = cl(b)

is an equivalence relation on A \ cl(∅). The set Ã of equivalence
classes inherits a closure operation c̃l and (Ã, c̃l) is a geometry with
whose lattice of closed sets is naturally isomorphic to that of the
pregeometry (A, cl).

If X ⊆ A the localization of (A, cl) at X is the pregeometry on A with
closure clX (Y ) = cl(Y ∪ X ). The geometry of the localization has
lattice of closed sets isomorphic to the lattice of closed sets in (A, cl)
which contain cl(X ).
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(1.4) Examples from sm structures

Look at the geometry arising from algebraic closure in the examples of
sm structures:

Pure set (S; =). Here cl(X ) = X : the geometry is disintegrated.
K -Vector space (V ; +, 0, (λs : s ∈ K )): cl is linear closure and the
geometry is the projective geometry P(V ).
Algebraically closed field (F ; +, ·, (ce : e ∈ E)), E a subfield. cl is
algebraic closure over E ; denote the geometry by G(F/E).
Hrushovski examples Dµ: Study this.
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(1.5) Other examples of geometries from model theory

Arise from forking on a regular type.

EXAMPLE: In a model of DCF0, take the closure operation of
differential dependence.
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(1.6) Recovering the structure from the geometry

1 If dimK (V ) ≥ 3 the Fundamental Theorem of Projective Geometry
uniformly interprets K and V in P(V ).

2 If F ⊇ E are algebraically closed and trdeg(F/E) ≥ 5 then F and
E can be uniformly interpreted in G(F/E) (DE + E. Hrushovski,
1995).

3 Generalization of this where F , E not assumed algebraically
closed (J. Gismatullin, 2008).

4 If F |= DCF0 is saturated then the pure field F can be uniformly
interpreted in the geometry of differential dependence on F and
any automorphism of the geometry arises from a field
automorphism which preserves differential dependence
(R. Konnerth, 2002).

QUESTION: What happens with the Dµ?
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(2.1) Predimension

Language L: 3-ary relation symbol R.
If A is an L-structure the corresponding relation in A is RA ⊆ A3.
For a finite L-structure B the predimension of B is

δ(B) = |B| − |RB|.

For A ⊆ B say that A is self-sufficient in B and write A ≤ B if

δ(A) ≤ δ(B′) for all B′ with A ⊆ B′ ⊆ B.

Properties:
A ≤ B and X ⊆ B ⇒ X ∩ A ≤ X
A ≤ B ≤ C ⇒ A ≤ C
Self-sufficient closure: cl≤B (X ) :=

⋂
{A : X ⊆ A ≤ B} ≤ B

Extend to arbitrary L-structures A ⊆ B by:

A ≤ B ⇔ X ∩ A ≤ X for all finite X ⊆ B.
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(2.2) Dimension

Let C̄ be the class of L-structures A with ∅ ≤ A: so δ(X ) ≥ 0 for all finite
X ⊆ A. Let C be the finite structures in C̄.

If X is a finite subset of B ∈ C̄ there is a finite Y with X ⊆ Y ⊆ B and
δ(Y ) as small as possible. Then Y ≤ B and so cl≤B (X ) ⊆ Y is finite.

The dimension of X in B is:

dB(X ) = δ(cl≤B (X )).

The d-closure of X in B is:

cldB(X ) = {a ∈ B : dB(X ∪ {a}) = dB(X )}.

FACT: (B, cldB) is a pregeometry. Dimension in the pregeometry is dB.
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Examples

November 2008 () Barcelona MODNET Final Conference 11 / 21



(2.3) Free amalgamation and the generic structure

If B1, B2 ∈ C̄ have a common substructure A, the free amalgam

B1
∐
A

B2

of B1 and B2 over A is the structure whose domain is the disjoint union
of B1 and B2 over A and whose relations are just those of B1 and B2.

EASY AMALGAMATION LEMMA: If A ≤ B1 then B2 ≤ B1
∐

A B2 ∈ C̄.

So (C,≤) is an amalgamation class.

COROLLARY: There is a countable M3 ∈ C̄ with the property that
whenever A ≤ M3 is finite and A ≤ B ∈ C then there exists an
embedding f : B → M3 with f (a) = a for all a ∈ A and f (B) ≤ M3. This
property determines M3 up to isomorphism amongst countable
structures in C̄ and any isomorphism between finite ≤-substructures of
M3 extends to an automorphism of M3.
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(2.4) Properties of the generic structure

The structure M3 is called the generic structure associated to the
amalgamation class (C,≤).

FACTS:
M3 is ω-stable of MR ω

algebraic closure in M3 is equal to self-sufficient closure and does
not satisfy exchange
(M3, cld) is a pregeometry; denote the corresponding geometry by
G(M3).
there is a unique 1-type of rank ω: points of d-dimension 1 in M3.
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(2.5) Some results

We can repeat the construction with a 4-ary relation and obtain a
generic structure M4 and compare the resulting geometries.

THEOREM A (Marco Ferreira, 2007)
The following hold:

1 G(M3) is not isomorphic to G(M4);
2 G(M3) and G(M4) have the same finite subgeometries;
3 G(M3) is isomorphic to any of its localizations over a finite set.

In fact the same is true replacing 3, 4 here by any m 6= n. There is also
a statement about generic structures constructed using a
predimension of the form

|A| −
∑
i∈I

|RA
i |

where the Ri are relations of varying arities.
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(3.1) The Amalgamation class (Cµ,≤)

Want a similar construction where d-closure is equal to algebraic
closure (‘collapse’).

Keep the class C, the predimension δ, the notion of self-sufficient
embedding ≤ from the previous section.

DEFINITION: A pair of structures A ≤ B ∈ C with A 6= B is a
algebraic extension if δ(A) = δ(B)

simple algebraic extension if also δ(A) < δ(B′) whenever
A ⊂ B′ ⊂ B
minimal simple algebraic extension if also for every A′ ⊂ A the
extension A′ ⊆ A′ ∪ (B \ A) is not simply algebraic.

Now fix a function µ from the class of isomorphism types of msa
extensions to N such that for each msa A ≤ B we have

µ(A, B) ≥ δ(A).
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DEFINITION: The class Cµ consists of all structures X in C which for
every msa A ≤ B omit µ(A, B) + 1 copies of B over A. More precisely,
if B1, . . . , Bn ⊆ X have pairwise intersection A0 and (A0, Bi) is
isomorphic to (A, B) for each i ≤ n, then n ≤ µ(A, B).

THEOREM (Ehud Hrushovski, 1993)
The class (Cµ,≤) is an amalgamation class.
There is a (unique) countable structure Dµ ∈ C̄µ with the property
that whenever A ≤ Dµ is finite and A ≤ B ∈ Cµ, there is an
embedding f : B → Dµ with f (a) = a for all a ∈ A and f (B) ≤ Dµ.
Algebraic closure in Dµ is equal to d-closure.
Dµ is strongly minimal.

– Get continuum many non-isomorphic strongly minimal structures by
varying µ.
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(3.2) Geometry of the Dµ

THEOREM B (Marco Ferreira, 2008)
The geometry G(Dµ) of algebraic closure in Dµ is isomorphic to the
geometry G(M3) of d-closure in the ‘uncollapsed’ M3.
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(3.3) Questions

1 What about the geometries of other models of Th(Dµ) and Th(M3)
and localizations over infinite subsets?

2 There is a variation on the construction, again due to Hrushovski,
which produces sm sets D′

µ where the algebraic closure of a pair
of points has size 3: non-isomorphic structures give
non-isomorphic geometries. Are the localizations of these
geometries (over, say a 2-dimensional set) isomorphic to G(M3)?
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(4.1) Methods of proof: Theorem A

3-ary language; take δ, (C,≤), M3 as before.

IDEA: Given B ∈ C̄, change the structure on some finite A ≤ B to
A′ ∈ C (– same set, different structure). This gives a new structure B′

with the same underlying set as B.

Changing Lemmas
1 A′ ≤ B′ and B′ ∈ C̄.
2 If B = M3 then B′ ∼= M3.
3 If d-closure is the same in A and A′ then it is the same in B and B′.
4 If d(A′) = 0 then the pregeometry on B′ is the localization of B

over A.

A similar result holds for n-ary structures.
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(4.2) Embedding pregeometries

For A ∈ C let PG(A) denote the pregeometry (A, cldA). Let P be the
resulting class of pregeometries. Make this into a functor:

(C,≤)
PG
 (P,�).

Thus for A ⊆ B ∈ P we have A � B iff there are structures Ã ≤ B̃ ∈ C
with underlying sets A, B whose d-closure gives the pregeometry on B.

THEOREM C
1 (P,�) is an amalgamation class.
2 The pregeometry which is the generic structure of this class is

isomorphic to PG(M3).

Similar results hold for n-ary structures.

November 2008 () Barcelona MODNET Final Conference 20 / 21



(4.3) Proof of Theorem B

The Changing Lemma fails for Cµ. Instead we have:

Hard Changing Lemma
Suppose A ≤ B ∈ C and A ∈ Cµ. Then there is B′ ∈ Cµ with

A ≤ B′ and PG(B) � PG(B′).

REMARKS:
Cannot take B a substructure of B′ here.
Together with the Changing Lemmas for M3, this allows us to build
an isomorphism PG(M3) ∼= PG(Dµ) by back and forth.
Result should hold for n-ary structures, but the details are hard.
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