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Abstract. We construct continuum many non-isomorphic count-
able digraphs which are highly arc-transitive, have finite out-valency
and infinite in-valency, and whose automorphism groups are prim-
itive.
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1. Introduction and Notation

By an unbalanced digraph we mean a directed graph in which vertices
have finite out-valency and infinite in-valency. A digraph is primitive
if its automorphism group is primitive on the set of vertices, that is,
the only equivalence relations on the vertex set which are preserved by
the automorphism group are the trivial ones.

Primitive unbalanced digraphs were first constructed in [4], answering a
question of Peter M. Neumann from [6]. The construction there gives
countably many countable examples. Neumann subsequently asked
(private communication) whether there are continuum many count-
able, primitive unbalanced digraphs. The main result of this paper
(Theorem 2.14) is a positive answer to this question. We show that
there are continuum many pairwise non-isomorphic highly arc transi-
tive directed graphs in which each vertex has finite out-valency and
infinite in-valency, and whose automorphism group is primitive on ver-
tices and transitive on directed edges.

The digraphs which we construct are highly arc transitive: the au-
tomorphism groups are transitive on the set of n-arcs, for all finite n
(and in fact on semi-infinite arcs). In our examples, the descendant
set of a vertex is a directed binary tree. Primitive highly arc transitive
digraphs with finite out-valency are analysed in detail in [1] and [2]. It
is shown that the descendant set of a vertex is quite constrained in such
a digraph, in particular, there are only countably many possibilities for
the descendant set. Thus whilst results in [1] suggest that there may be
a possibility of classifying descendant sets of vertices in highly arc tran-
sitive primitive digraphs, our results indicate that there is no possibility
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of classifying the ones with a given isomorphism type of descendant set.

The methods we use follow closely those in [4]. However, we will keep
this paper reasonably self-contained, and at times amplify on some of
the arguments in [4].

We will use the folowing notation and terminology throughout the rest
of the paper. We regard a digraph as a relational structure 〈A;RA〉
where RA ⊆ A2 is a binary relation. So A (the domain of the struc-
ture) is the set of vertices and RA(a, b) means that (a, b) ∈ RA and
there is a directed edge from a to b. Digraphs will be loopless and
without multiple edges.

Now suppose I ⊆ N\{0, 1, 2}. An LI-structure 〈A;RA, {RA
n : n ∈

I}〉with domain A is a relational structure where RA is as above and
for n ∈ I, RA

n ⊆ An is an n-ary relation (so if I = ∅, then the struc-
ture is just a digraph). An LI-structure 〈B;RB, {RB

n : n ∈ I}〉 is a
substructure of 〈A;RA, {RA

n : n ∈ I}〉 if B ⊆ A, RB = RA ∩ B2 and
RB

n = RA∩Bn for all n ∈ I. An isomorphism between LI-structures is
a bijection which preserves all the relations (both ways); an embedding
between LI-structures is an injective map B → A which gives an iso-
morphism between B and the substructure on its image. Henceforth we
freely confuse a structure with its domain (so refer to ‘the LI-structure
A’ rather than ‘〈A;RA, {RA

n : n ∈ I}〉’) and drop the superscript of RA

if it is clear from the context. We also write Rn instead of RA
n if the

context is clear. Given an LI-structure A we refer to 〈A;RA〉 as the
underlying digraph of the structure and denote it by A|R.

Acknowledgements: The work of the first Author has been supported by
a studentship from the EPSRC of Great Britain, and an Early Stage
Researcher fellowship from the European Community as part of the
Marie Curie Research Training Network MODNET.

2. The construction

For I ⊆ N\{0, 1, 2} we will construct a countable LI-structure N I

whose automorphism group is primitive, and whose underlying di-
graph N I |R is unbalanced. We do this in such a way that if I 6=
J ⊆ N\{0, 1, 2} then the underlying digraphs N I |R and NJ |R are non-
isomorphic. This will establish the theorem (the automorphism group
of the digraph contains the automorphism group of the LI-structure, so
is primitive). The construction follows [4]: we build N I as the Fräıssé
limit of a suitable amalgamation class (CI ,≤+).

2.1. The amalgamation classes. Denote the rooted (outward) di-
rected binary tree by T . If A is an LI-structure and a ∈ A then the
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set of descendants of a in A, descA(a) is the set of vertices (includ-
ing a) in A that can be reached from a by an outward directed path,
that is, {b : ∃a1, . . . , an ∈ A, (a, a1), (a1, a2), . . . , (an, b) ∈ R}. If X is
a set of vertices in A, then write descA(X) =

⋃
{descA(x) : x ∈ X}.

If X = {x1, . . . , xn} write descA(x1, . . . , xn) for descA(X). Say that a
set V of vertices of A is finitely generated with generators a1, . . . , an if
V = descA(a1, . . . , an). The set of ancestors of a vertex a ∈ A is the
set of vertices {b ∈ A : a ∈ descA(b)}. If it is clear which structure we
are working in then write desc(a) for descA(a) (in [4] the notation a⇒

is used for desc(a)). We say that d1, . . . , dn ∈ A are independent (in
A) if desc(di) ∩ desc(dj) = ∅ for i 6= j.

Definition 2.1. Let A ⊆ B be LI-structures. Say that A is descendant
closed in B, written A ≤ B if for all a ∈ A, descB(a) ⊆ A. For A ≤ B
and A finitely generated, define A ≤+ B to mean that for all b ∈ B,
desc(b) ∩ A is finitely generated and if desc(b)\A is finite then b ∈ A.

Definition 2.2. Let (CI ,≤+) consist of countable LI-structures A such
that R gives a digraph on A and the following conditions hold:

(1) for all a ∈ A we have that desc(a) is isomorphic to T ;
(2) for all a ∈ A, desc(a) ≤+ A;
(3) A is finitely generated;
(4) if a1, . . . , an ∈ A and RA

n (a1, . . . , an), then a1, . . . an are inde-
pendent in A, desc(a1, . . . , an) ≤+ A, and a1, . . . , an have no
common ancestor in A;

(5) the number of instances of the relations Rn on A is finite (i.e.⋃
n∈I R

A
n is a finite set).

Proposition 2.3 (Hereditary Property). If A ∈ CI and B ≤ A is a
finitely generated substructure of A, then B ∈ CI .

Proof. This is straightforward to check. �

Lemma 2.4. If C ∈ CI and A,B ≤ C are finitely generated, then
A ∩B is finitely generated.

Proof. Since A,B are finitely generated and A,B ≤ C we can write
A =

⋃
1≤i≤n descC(ai) and B =

⋃
1≤j≤m descC(bj) for some n,m ∈ N.

Then we have

A ∩B =
⋃

1≤i≤n
1≤j≤m

(descC(ai) ∩ descC(bj)) .

By condition 2 of Definition 2.2 we have descC(ai)∩descC(bj) is finitely
generated and so A ∩B is finitely generated. �

The following lemma is also found in [4] (as Lemma 2.2 (iv)) so the
proof is omitted. However, note that whilst the definition of A ≤+ B
is the same, the definition of A ≤ B is different in this case.
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Lemma 2.5 ([4], Lemma 2.2 (iv)). Let X ⊆ Y ⊆ Z ∈ CI . If X ≤+ Y
and Y ≤+ Z and X, Y are finitely generated, then X ≤+ Z . 2

We say that an embedding α : A → B between structures in CI is a
≤+-embedding if α(A) ≤+ B.

Proposition 2.6 (Amalgamation Property). Suppose A,B1, B2 ∈ CI
and αi : A → Bi are ≤+-embeddings. Then there is an LI-structure
C ∈ CI and ≤+-embeddings βi : Bi → C such that β1α1 = β2α2.

Proof. We may assume B1 ∩ B2 = A and αi is the identity on Bi, so
A ≤+ Bi for i = 1, 2. Let C be the free amalgam B1

∐
AB2. So C is

the LI-structure on the disjoint union B1 ∪ B2 over A where the only
relations are those induced from B1 and B2. We show that C ∈ CI and
Bi ≤+ C, so we can let the βi be the identity maps on the respective
Bi. Note that by construction, Bi ≤ C and C is finitely generated.

To show that C ∈ CI we need to check that the five conditions in
Definition 2.2 hold in C. Conditions 1, 3 and 5 are satisfied directly
from the construction of C. We next show that condition 4 holds.
Since C is the free amalgam of B1 and B2 over A, if RC

n (c1, . . . , cn)
holds then without loss of generality c1, . . . , cn ∈ B1. Hence, desc(ci)∩
desc(cj) = ∅ for i 6= j and desc(c1, . . . , cn) ≤+ B1. Using Lemma
2.5 we find desc(c1, . . . , cn) ≤+ C. Finally, c1, . . . , cn have no common
ancestor in B1, so have no common ancestor in C (otherwise they have
a common ancestor in B2 \A, and as C is a free amalgam this implies
c1, . . . , cn ∈ A, which then contradicts RB2

n (c1, . . . , cn)). This gives 4.

For condition 2, suppose b1, b2 ∈ C. We need to show that desc(b1) ∩
desc(b2) is finitely generated and that if desc(b2)\desc(b1) is finite then
b2 ∈ desc(b1). If b1, b2 ∈ Bi for some i then this is immediate as Bi ≤ C
and Bi ∈ CI . So assume that bi ∈ Bi. Then desc(b1) ∩ desc(b2) =
(desc(b1)∩A)∩(desc(b2)∩A). Each of desc(bi)∩A is finitely generated
as A ≤+ Bi. Thus their intersection is finitely generated, by Lemma
2.4 applied in A. As desc(b2)\desc(b1) ⊇ desc(b2) \ A, if this is finite
then A ≤+ B2 implies b2 ∈ A, and so b2 ∈ desc(b1) because B1 ∈ CI .
This gives condition 2, and so C ∈ CI .

Finally we show (without loss of generality) that B1 ≤+ C. As B1 is
finitely generated and C ∈ CI , Lemma 2.4 shows that B1 ∩ desc(c) is
finitely generated for all c ∈ C. Suppose that c ∈ B2 and desc(c)\B1 is
finite. Then as above desc(c)\A is finite and it follows that c ∈ B1. �

Let A,A′, B,B′ ∈ CI and let f : A → B, f ′ : A′ → B′ be ≤+-
embeddings. We say that f is isomorphic to f ′ if there exist isomor-
phisms g : A→ A′, h : B → B′ such that f ′g = hf .

Proposition 2.7. There are countably many isomorphism types of ≤+-
embeddings in (CI ,≤+).
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Proof. Because each structure in CI has only finitely many instances
of the relations Rn, it is sufficient to show that there are countably
many isomorphism types of ≤+-embeddings between the underlying
digraphs of elements of CI . In other words, it is sufficient to prove the
Proposition in the case where I = ∅. This is done in Lemma 2.14 of
[4], but we give a sketch of the argument here.

First we show by induction on n ∈ N that there are countably many
isomorphism types of n-generator structures in C∅. This is clear for
n = 1. For the inductive step, note that if C = desc(c1, . . . , cn), then
C is the free amalgam of desc(c1, . . . , cn−1) and desc(cn) over their in-
tersection A, and there are only countably many possibilities for the
isomorphism type of the former. Moreover, A is finitely generated and
A = desc(a1, . . . , am) for some independent set a1, . . . , am, by definition
of C∅. There are only countably many possibilities for this independent
set within desc(c1, . . . , cn−1) and within desc(cn), and any automor-
phism of it extends to an automorphism of the latter. Thus there are
only countably many possibilities for the isomorphism type of C.

We now prove the stronger statement that if C,D ∈ C∅ then there
are countably many isomorphism types of ≤-embeddings α : C →
D. Again this is by induction on the number n of generators of C.
Suppose C = desc(c1, . . . , cn) and by induction we may assume that
α|desc(c1, . . . , cn−1) and α(cn) are fixed. As in [4], it then suffices to
observe that as B ∈ C∅, there is some natural number k such that any
automorphism of desc(cn) which fixes all vertices at out-distance at
most k from cn can be extended to an automorphism of B. For then
there are only finitely many possibilities for the isomorphism type of α
with the given α|desc(c1, . . . , cn−1) and α(cn). �

The above propositions give us that the classes (CI ,≤+) defined in
Definition 2.2 are amalgamation classes.

2.2. The Fräıssé limits.

Theorem 2.8. There is a countable LI-structure N I such that

(1) N I is the union of substructures N1 ⊆ N2 ⊆ . . . such that each
Ni ∈ CI and Ni ≤+ Ni+1 for i ∈ N;

(2) (Extension Property) whenever A ≤+ Ni is finitely generated
and θ : A → B ∈ CI is a ≤+-embedding, there is s ≥ i and a
≤+-embedding f : B → Ns with f(θ(a)) = a for all a ∈ A.

Moreover, N I is determined up to isomorphism by these two proper-
ties, and is ≤+-homogeneous: if A1, A2 ≤+ Ni are finitely generated
and f : A1 → A2 is an isomorphism, then f can be extended to an
automorphism of N I .
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We refer to N I in the above as the Fräıssé limit of the amalgamation
class (CI ,≤+). For finitely generated A ≤ N I we write A ≤+ N I to
indicate that A ≤+ Ni for some i (this depends only on N I).

Proof. The proof is standard, as in [3]. We construct the Ni inductively,
taking N1 = ∅, for example. For the purposes of the proof it will be
useful to fix a bijection η : N × N × N → N with the property that
η(a, b, c) ≥ a, b, c.

Suppose that we have constructed N1 ≤+ . . . ≤+ Ni ∈ CI . There are
countably many finitely generated ≤+-substructures of Ni, so we can
list these as (Ai

j : j ∈ N). For each Ai
j there are countably many

isomorphism types of ≤+-embeddings into elements of CI : list these as
θi

jk : Ai
j → Bk. Note that at stage i we will have done this for each Nm

with m ≤ i. The point is that the extension problem (as in Property
2) corresponding to θi

jk will be solved at stage s = η(i, j, k) + 1. So let

(i′, j′, k′) = η−1(i). We have θi′

j′k′ : Ai′

j′ → Bk′ and Ai′

j′ ≤+ Ni′ ≤+ Ni.

Then use the amalgamation property of CI on Ai′

j′ , Bk′ and Ni to get
Ni+1 ∈ CI such that Ni ≤+ Ni+1 and Bk′ ≤+ Ni+1. This completes the
inductive construction of the Nj with properties 1 and 2.

The proof of the ‘Moreover’ part is a standard back-and-forth argu-
ment. Suppose (Ñ I ; Ñi) also satisfy properties 1 and 2. Suppose
A ≤ N I and Ã ≤+ Ñ I are finitely generated and f : A → Ã is
an isomorphism. By countability, and by symmetry, it is enough to
show that if b ∈ N I then there exist finitely generated B ≤ N I and
B̃ ≤+ Ñ I , containing A and Ã respectively, with b ∈ B, and an iso-
morphism g : B → B̃ extending f . Using property 1 in N I we can find
a finitely generated B ≤+ N I containing A and b. Using property 2 in
Ñ I , we can extend f to a ≤+-embedding of B into N I . �

2.3. Primitivity of Aut(N I). We now prove some properties of the
Fräıssé limit of (CI ,≤+) and show that Aut(N I) is primitive.

If A ∈ CI and X ⊆ A, define the closure of X in A to be clA(X) =
{y ∈ A : descA(y)\descA(X) is finite}. It is clear that if X ⊆ Y ≤+ A
then clA(X) ⊆ Y and desc(X) ≤ clA(X) ≤ A. The following shows
that if X is finite then clA(X) is the smallest ≤+-subset of A which
contains X.

Lemma 2.9. Suppose A ∈ CI and X ⊆ A is finite. Then clA(X) is
finitely generated and clA(X) ≤+ A.

Proof. By Lemma 2.4 we only need to prove that clA(X) is finitely
generated. Let Y = descA(X). We claim that clA(X) \ Y is finite. If
b ∈ A then desc(b)∩ Y is finitely generated, equal to descA(c1, . . . , ck),
say. If c ∈ descA(b) ∩ (clA(X) \ Y )) then ci ∈ desc(c), for some i.
But there are only finitely many possibilities for such a c in desc(b),
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as the latter is a directed, rooted tree. Thus desc(b)∩ (clA(X) \ Y )) is
finite. As A is finitely generated, we obtain the claim, and hence the
Lemma. �

Note that we can make the same definition for clNI (X) when X is a
finite subset of N I , and the above lemma also holds (by property 1 of
N I).

Lemma 2.10. The digraph N I |R is connected.

Proof. Let a1, a2 ∈ N I . If desc(a1) ∩ desc(a2) 6= ∅ then there is an
undirected path from a1 to a2 going via this intersection. So suppose
a1, a2 are independent and let A = cl(a1, a2). The structure consisting
of the free amalgam of A and a binary tree T over ∅ is in CI so using
the extension property over A there exists b ∈ N I such that desc(b) ∪
A ≤+ N I and desc(b) ∩ A = ∅. Then desc(ai) ∩ desc(b) = ∅ and
desc(ai) ∪ desc(b) ≤+ N I . Therefore by the extension property there
exist ci ∈ N I such that ai, b ∈ desc(ci). In particular, a1 and a2 are
joined by an undirected path in N I |R. �

Proposition 2.11. The automorphism group Aut(N I) is primitive on
N I .

Proof. This is similar to the proof of ([4], Theorem 2.9), though we offer
a different argument in Case 3 below as the original argument appears
to be somewhat inaccurate. We see that Aut(N I) is transitive on N I

due to its ≤+-homogeneity and by conditions 1 and 2 in Definition 2.2.
Suppose a 6= b ∈ N I and consider the orbital graph G with vertex set
the elements of N I and edge set E = {{fa, fb} : f ∈ Aut(N I)}. By
the criterion of D. G. Higman (from [5]) it will suffice to show that
all such G are connected. As N I is connected via R-edges by Lemma
2.10, it is enough to show that if x, y ∈ N I are such that (x, y) is an
R-edge of N I then x and y lie in the same connected component of G.
Without loss, we can assume x = a. Let H1 = clNI (a, b).

Case 1: Suppose desc(a) ∩ desc(b) = ∅. Let H2 be a copy of H1 with
a′, b′ ∈ H2 corresponding to a, b ∈ H1. Recalling that y is an out-vertex
of a, identify descH1(y) with descH2(b), and take the free amalgam H1,2

over descH1(y) of H1 and H2. It is easy to see that desc(a′)∪desc(b) ≤+

H1,2, so we can adjoin a finite set X of new vertices to H1,2 to obtain a
structure P ⊇ H1,2 in which H3 = clP (a′, b) = desc(a′, b)∪X is isomor-
phic to H1 (via an isomorphism taking a′ to a and b to b). So P is the
union of H1, H2 and H3, and H1 ∩ H3 = desc(b), H3 ∩ H2 = desc(a′)
and H1 ∩H2 = desc(y). Moreover, any edge (and any Rn relation) is
contained entirely within some Hi.
Claim. P ∈ CI .
Proof of Claim. It is clear by the construction of P that conditions
1, 3 and 5 in Definition 2.2 hold. For condition 2 note that each
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Hi is descendant closed in P . We see that desc(y) ≤+ H1 and also
desc(y) ≤+ H2, so by the amalgamation lemma H1 ≤+ H1,2. As
desc(b) ∪ desc(a′) ≤+ H1,2 and P is the free amalgam of H1,2 and
H3 over this, we get that H3 ≤+ P .

This argument can be seen to be symmetrical in 1, 2, 3 (where Hi,j is
the union of Hi and Hj: note that these are freely amalgamated over
their intersection in P ). So we have Hi ≤+ P for i = 1, 2, 3. Then this
gives us desc(p) ≤+ P for every p ∈ P , that is, condition 2 holds.

Finally, suppose RP
n (p1, . . . , pn) for some p1, . . . , pn ∈ P . By the con-

struction of P this implies that p1, . . . , pn ∈ Hi for some i. Therefore
RHi

n (p1, . . . , pn) and so the pj are independent, and desc(p1, . . . , pn) ≤+

Hi and hence by Lemma 2.5, desc(p1, . . . , pn) ≤+ P . Suppose for a
contradiction that p1, . . . , pn have a common ancestor, say q ∈ P . So
q ∈ Hj for some j 6= i. But Hi and Hj are freely amalgamated over
their intersection and as this is the descendent set of a single point,
not all of p1, . . . , pn are in the intersection. As Hi ∩Hj ≤ P , we have
q 6∈ Hi∩Hj. But this contradicts freeness of the amalgamation. There-
fore condition 4 holds and so we have P ∈ CI .

� Claim.

Now we use the extension property to obtain a ≤+-embedding φ : P →
N I which is the identity on H1. By ≤+-homogeneity and the construc-
tion of P , we have that a, φ(b), φ(a′), y is a path in the orbital graph
G. In particular, x = a and y are in the same connected component of
G.

Case 2: Suppose that b ∈ desc(a). In this case let b0 denote the
predecessor of b in desc(a), so (b0, b) is an R-edge in N I . Let b1 ∈
desc(a) be the other successor of b0. Then there is an automorphism
of N I fixing a and interchanging b and b1. So b and b1 are connected
in the orbital graph G. We have desc(b) ∩ desc(b1) = ∅ and hence
case 1 gives that the orbital graph with {b, b1} as an edge is connected.
Therefore the orbital graph G is also connected.

By condition 2 in Definition 2.2, the only remaining case is:
Case 3: Suppose desc(b)\desc(a) and desc(a)\desc(b) are infinite. In
this case let x1, . . . , xr be a minimal generating set for desc(a)∩desc(b).
Thus x1, . . . , xr are independent, and we prove that the orbital graph G
is connected in this case by induction on r, taking r = 0 as the base case
(given by case 1 above). We can assume that xr is at maximal distance
from a, amongst the xi. Let z be the immediate predecessor of xr in
desc(a). Note that z 6∈ desc(a)∩desc(b) by minimality of the generating
set. As desc(a)∩desc(b) ≤+ desc(a), not all of the successors of z lie in
desc(a)∩desc(b). So we can choose x′r to be one of its successors which
is not amongst x1, . . . , xr. The distance of x′r from a in desc(a) is no
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smaller than the distance of that of any of the xi. Thus x1, . . . , xr−1, x
′
r

is independent and desc(x1, . . . , xr−1, x
′
r) ≤+ desc(a).

By a free amalgamation and the extension property there is b1 ∈ N I

such that desc(b1) ∩ cl(a, b) = desc(x1, . . . , xr−1, x
′
r) and there exists

an isomorphism f : cl(a, b) → cl(a, b1) with f(a, b, x1, . . . , xr−1, xr) =
(a, b1, x1, . . . , xr−1, x

′
r). By ≤+-homogeneity, this extends to an auto-

morphism of N I . Thus b and b1 are in the same connected component
of the orbital graph G. But desc(b) ∩ desc(b1) = desc(x1, . . . , xr−1),
and by the induction hypothesis the orbital graph with {b, b1} as an
edge is connected. Thus G is connected. �

2.4. Non-isomorphism of the underlying digraphs. Recall that
if I ⊆ N \ {0, 1, 2} then N I |R denotes the underlying digraph of the
LI-structure N I : thus we are forgetting about the relations Rn. We
show that different choices of I give non-isomorphic digraphs.

Proposition 2.12. Let n 6= 0, 1, 2 be a natural number. Then n ∈ I if
and only if there exist a1, . . . , an ∈ N I |R with the following properties:

(1) a1, . . . , an are independent and A = desc(a1, . . . , an) ≤+ N I |R;
(2) a1, . . . , an have no common ancestor in N I |R;
(3) every finite subset X of A with clA(X) 6= A has a common

ancestor in N I |R.

Proof. First suppose that n ∈ I. Then there exist a1, . . . , an ∈ N I

with Rn(a1, . . . , an) holding, and such that Rn(a1, . . . , an) is the only
instance of a relation Rm which holds on A = desc(a1, . . . , an) (simply
because this structure is in CI). So conditions 1 and 2 above hold. Now
let X be a finite subset of A with Y = clA(X) 6= A. We can assume
that X = {x1, . . . , xr} is a minimal generating set for Y . As A is just
n disjoint copies of T , the set {x1, . . . , xr} is independent. Note that
there are no instances of relations Rm on Y . We can therefore find a
copy of the structure Y as a ≤+-substructure of the tree T (it is simply
r disjoint copies of T ). By the extension property it follows that there
exists c ∈ N I with desc(c) ⊇ Y . In particular, c is a common ancestor
of the elements of X, so condition 3 also holds.

Now suppose that a1, . . . , an have the given properties 1, 2, 3 and, for
a contradiction, n /∈ I. Then there is no relationship between the
points of A except digraph relations. To see this let a′1, . . . , a

′
k ∈ A

and suppose RA
k (a′1, . . . , a

′
k). So of course k 6= n. Then by con-

dition 4 of Definition 2.2 we must have a′1, . . . , a
′
k independent and

desc(a′1, . . . , a
′
k) ≤+ A. As k 6= n we have clA(a′1, . . . , a

′
k) 6= A. Hence,

by condition 3 a′1, . . . , a
′
k have a common ancestor in N I |R, which con-

tradicts RA
k (a′1, . . . , a

′
k). But we can now use the same argument as

in the previous paragraph to show that there is some c ∈ N I with
A ⊆ desc(c). This gives a common ancestor of a1, . . . , an in N I , which
contradicts property 2 of a1, . . . , an. �
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Proposition 2.13. If I 6= J are subsets of N\{0, 1, 2} then the digraphs
N I |R and NJ |R are not isomorphic.

Proof. This follows immediately from Proposition 2.12: properties 1,
2, 3 there all relate to the digraph N I |R and allow us to recover I from
its structure. �

We therefore have our main result:

Theorem 2.14. There are continuum many pairwise non-isomorphic
countable highly arc transitive directed graphs in which each vertex has
finite out-valency and infinite in-valency, and whose automorphism
group is primitive.

Proof. As any automorphism of N I is a digraph automorphism, the
digraphs N I |R are certainly primitive and highly arc transitive. The
previous proposition shows that the continuum-many possible choices
for I result in non-isomorphic digraphs. �
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