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Abstract. We investigate the continuous cohomology of infinite
permutation groups on modules whose topology is profinite. To
obtain acyclics we expand the class of modules to include those
which are directed unions of their profinite submodules. As an
application we give a criterion which implies finiteness of the con-
tinuous cohomology groups on finitely generated profinite modules
for some familiar permutation groups.

Introduction

By a permutation group Γ on a set Ω we mean a subgroup of
Sym(Ω), the symmetric group on Ω (we may occasionally refer to ‘the
permutation group (Ω; Γ)’). We regard Γ as a topological group by tak-
ing pointwise stabilizers of finite sets as a base of open neighbourhoods
of the identity: this is simply the topology of pointwise convergence.
As is well-known, the closed subgroups of Sym(Ω) are precisely the
automorphism groups of first-order structures with domain Ω.

A permutation group is compact if and only if it is closed and
all of its orbits are finite. In this case it is a closed subgroup of a
direct product of finite groups, and is therefore profinite. Thus it is
quite natural to consider profinite modules for permutation groups and
the corresponding extension problem (for topological groups). In fact,
the extension problem can also be seen at the level of permutation
groups. It is easy to see that if K is a compact normal subgroup of a
permutation group Γ ≤ Sym(Ω), then the K-orbits form the classes of
a Γ-invariant equivalence relation ∼ on Ω. Moreover, if Γ is closed, then
the permutation group G induced on ∆ = Ω/ ∼ by Γ is closed. We say
that the surjective map (Ω; Γ)→ (∆; G) in the category of permutation
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groups is a finite cover of (∆; G). The cover problem is the extension
problem: describe the possibilities for (Ω; Γ), given (∆; G).

Questions of this nature arise naturally in model theory: of course,
one usually has extra hypotheses adding to the tractability of the prob-
lem. Not surprisingly, the case where K is abelian has a special role.
Here one has a continuous action of G on K making it into a topological
G-module. In this case, it has been useful to consider, for profinite G-
modules N , the cohomology group H1

c (G, N): continuous derivations
G→ N modulo inner derivations. The reader should consult [4, 6] for
details, applications and further references.

Our aim in this paper is to introduce higher cohomology groups
Hn

c (G, N) and to develop some basic cohomological machinery for them.
Of course, as far as the extension problem is concerned, the main in-
terest is in H2

c . But there seems little simplicfication to be gained by
ignoring the higher order groups.

A slightly unexpected feature of our approach is that in order to
construct acyclic modules (that is, modules M where Hn

c (G, M) = 0 for
n ≥ 1), we extend our category to include weakly profinite modules:
countable directed unions of profinite modules, topologised with the
weak topology from these. We can then define modules coinduced
from the identity subgroup of G and, in certain cases, prove injectivity
properties for these.

If N is a profinite G-module, we define H∗
c (G, N) to be the co-

homology of the cochain complex arising from the usual differential
restricted to continuous Gn → N . In Section 1 we show that this
obeys the long exact sequence, and Shapiro’s Lemma holds for profi-
nite modules coinduced from an open subgroup of G. In Section 2 we
prove that extensions in the category of permutation groups (as topo-
logical groups) are parametrised by the second continuous cohomology
group: suggesting that our definition is ‘correct.’

In Section 3 we derive some basic results about groups which are
countable direct limits of profinite groups, and in Section 4 we extend
our cohomology to include modules which are countable direct limits
of profinite submodules.

This technology is applied in Section 5 to compute continuous co-
homology groups on trivial (finite) modules. Theorem 5.10 gives a
straightforward criterion (on the permutation group) which guarantees
that these trivial modules are acyclic. In Corollary 5.13 this is used
to show that for certain familiar infinite permutation groups the con-
tinuous cohomology groups on finitely generated profinite modules are
finite.
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1. Continuous cohomology

Suppose G is a topological group. A topological abelian group N
with a continuous G-action G × N → N is called a continuous G-
module. Note that we always work with left modules.

Suppose N is a continuous G-module. For n ≥ 0 let Cn(G, N)
be the additive group of functions Gn → N and C̃n(G, N) the sub-
group consisting of the continuous functions. Let dn : Cn(G, N) →
Cn+1(G, N) be the usual differential, viz:

(dnf)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)+

n∑
i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1) + (−1)n+1f(x1, . . . , xn).

Then dn+1dn = 0 and dn(C̃n(G, N)) ⊆ C̃n+1(G, N). For convenience,
we let d−1 : {0} → C0(G, N) be the zero function. Let Zn(G, N) be the
kernel of dn (the n-cocycles), and Z̃n(G, N) the kernel of dn restricted
to C̃n(G, N) (the continuous cocycles). Let Bn(G, N) be the image of
dn−1 (the n-coboundaries) and B̃n(G, N) = dn−1(C̃

n−1(G, N)). Abus-
ing terminology, we refer to the latter as the continuous cobound-
aries. We then define Hn(G, N) = Zn(G, N)/Bn(G, N) as usual, and
H̃n(G, N) = Z̃n(G, N)/B̃n(G, N). Note that H0(G, N) = H̃0(G, N) =
NG, the fixed points of G on N .

Lemma 1.1 (The long exact sequence). Suppose 0 → A
ι→ B

¯→
C → 0 is a short exact sequence of continuous G-modules in which the
maps are continuous, open G-homomorphisms. Suppose further that

there is a continuous section γ : C → B of B
¯→ C. Then we have an

exact sequence:

0→ H0(G, A)→ H0(G, B)→ H0(G, C)→ H̃1(G, A)→ . . .

. . .→ H̃ i(G, C)→ H̃ i+1(G, A)→ H̃ i+1(G, B)→ H̃ i+1(G, C)→ . . .

Proof. We believe this to be well-known: cf. ([9], 2.1), for exam-
ple. �

We remark that the case of particular interest to us is where A, B, C
are profinite. In this case, all we require is that the maps be continu-
ous homomorphisms: openness follows from the compactness, and ex-
istence of continuous sections is well-known (cf. [10], 2.1., Proposition
1).

Definition 1.2 (Coinduction from an open subgroup). Suppose G
is a topological group, H an open subgroup of G and M a continuous
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H-module. The coinduced module N = M⇑G
H is the additive group of

H-equivariant functions f : G → M (that is, f(hx) = hf(x) for all
h ∈ H and x ∈ G) with the G-action (gf)(x) = f(xg) for g, x ∈ G.
Note that there is a natural isomorphism (of abelian groups) N →
MG/H obtained by evaluating functions at a fixed set of right coset
representatives. We topologise N using the product topology on MG/H

(which is the same thing as considering N ⊆ MG with the product
topology).

Lemma 1.3. (i) With the above notation, N = M⇑G
H is a continuous

G-module.
(ii) If f : Gn → N is continuous, then the function f̂ : Gn+1 → M

given by f̂(x0, x1, . . . , xn) = f(x1, . . . , xn)(x0) is continuous.

Proof. (i) Suppose x ∈ G, O an open subset of M , g ∈ G and
f ∈ N such that (gf)(x) ∈ O. It suffices to find open neigbourhoods
T of g and Y of f such that if g′ ∈ T and f ′ ∈ Y then (g′f ′)(x) ∈ O.
Let z = (gf)(x). As the action H ×M → M is continuous and H
is open in G there exist an open neighbourhood Z ⊆ M of z and an
open neighbourhood X ⊆ G of 1 with X ⊆ H and XZ ⊆ O. Let
Y = {f ′ : f ′(xg) ∈ Z} and T = x−1Xxg. This works, as the reader
can easily check.

(ii) Suppose f(x1, . . . , xn)(x0) = y and Y is an open neighbour-
hood of y in M . As the action H×M →M is continuous, there is H0,
an open neighbourhood of the identity in H, and Z, an open neigh-
bourhood of y in M , with H0Z ⊆ Y . The composition of f with the
evaluation map at x0 is continuous, so there exist open neighbourhoods
X1, . . . , Xn of x1, . . . , xn in G such that f(X1, . . . , Xn)(x0) ⊆ Z. Then
X0 = H0x0 is an open neighbourhood of x0 in G and

f̂(X0, X1, . . . , Xn) = f(X1, . . . , Xn)(X0) = H0f(X1, . . . , Xn)(x0) ⊆ Y.

�

Again, we believe that the following is well-known, but are unable
to locate a proof of the result in this form. Versions of the result
exist for other families of continuous modules (in particular where G is
locally compact): see [7], for example. In the more familiar contexts,
the proof goes by induction on n, using exactness of coinduction from
H and acyclicity of modules coinduced from the trivial subgroup. We
do not (yet) have the latter in our context.

Lemma 1.4 (Lemma of Eckmann-Faddeev-Shapiro). Suppose G is a
topological group and H an open subgroup of G. Let M be a continuous
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H-module and N = M⇑G
H . Then for all n ∈ N:

H̃n(G, N) ∼= H̃n(H, M).

Proof. The proof is an explicit calculation extracted from stan-
dard proofs in the literature. We omit the (purely formal) checking of
various details.

By definition, H̃∗(G, N) and H̃∗(H, M) are the (co)homology of the
cochain complexes (C̃n(G, N); dn) and (C̃n(H, M); d′n) (where primes
here are just a notational convenience). We show that these complexes
are homotopic.

Define ρn : C̃n(G, N)→ C̃n(H, M) by restriction and evaluation at
1. Thus, if f ∈ C̃n(G, N) and x1, . . . , xn ∈ H:

(ρnf)(x1, . . . , xn) = f(x1, . . . , xn)(1).

It is easy to check that
ρn+1dn = d′nρn.

Next, we want to define maps φn : C̃(H, M) → C̃n(G, N). Let
τ : G→ G select a representative from each right coset of H in G. So
τ(hx) = τ(x) for h ∈ H and x ∈ G. Also take τ(1) = 1. As H is open
in G, τ is continuous. Define θ : G→ H by θ(x) = xτ(x)−1, and note
that this is continuous and θ(hx) = hθ(x) (for h ∈ H).

If k ∈ C̃n(H, M) define f : Gn → N by:

f(x1, . . . , xn)(x) =

θ(x)k(θ(x)−1θ(xx1), θ(xx1)
−1θ(xx1x2), . . . , θ(xx1 . . . xn−1)

−1θ(xx1 . . . xn)).

One sees easily that f(x1, . . . , xn) is H-equivariant and f is continuous
(using continuity of k, θ and the H-action on M). We define

φn(k) = f.

A routine calculation shows that:

dnφn = φn+1d
′
n.

Moreover, it is easy to see that:

ρnφn = identity on C̃n(H, M).

Thus to finish the proof we have to show that φnρn is homotopic
to ιn, the identity on C̃n(G, N). We define maps hn : C̃n+1(G, N) →
C̃n(G, N) as follows. If g ∈ C̃n+1(G, N) and x1, . . . , xn, x ∈ G let:

(hng)(x1, . . . , xn)(x) = g(x−1θ(x), θ(x)−1θ(xx1), θ(xx1)
−1θ(xx1x2), . . .)+

n∑
j=1

(−1)jg(x1, . . . , xj, (xx1 . . . xj)
−1θ(xx1 . . . xj), θ(xx1 . . . xj)

−1θ(xx1 . . . xj+1), . . .).
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Continuity of hng follows from continuity of g, θ and Lemma 1.3(ii). A
purely formal (if somewhat non-trivial) calculation then shows that:

dn−1hn−1 + hndn = φnρn − ιn,

which is as required. �

If M, N are continuous G-modules, denote by HomG(M, N) the
continuous G-homomorphisms from M to N . As usual we have:

Lemma 1.5 (Frobenius reciprocity). If N is a continuous G-module,
H an open subgroup of G and M a continuous H-module then

HomG(N, M⇑G
H) ∼= HomH(N, M).

Proof. If f ∈ HomG(N, M⇑G
H) define θ(f) : N →M by θ(f)(n) =

f(n)(1) (for n ∈ N). If e ∈ HomH(N, M) define γ(e) : N → M⇑G
H by

(γ(e)(n))(g) = e(gn) (for n ∈ N and g ∈ G). We leave the reader to
check that θ, γ give mutually inverse maps between HomG(N, M⇑G

H)
and HomH(N, M). �

2. Permutation groups and extensions

We denote by PG the class of Hausdorff topological groups whose
topology is generated by a family of open subgroups (which we always
take to be closed under finite intersections). Permutation groups with
the topology defined in the introduction are examples here. Conversely
if G ∈ PG then G is isomorphic to a subgroup of a symmetric group.
Indeed, if {Ui} is a family of open subgroups which generate the topol-
ogy on G, then the permutation representation on the union of the
left coset spaces G → Sym(

∐
G/Ui) gives an isomorphism between G

and a subgroup of this symmetric group. This is a closed subgroup
precisely when G is complete with respect to the two-sided uniformity
given by the Ui. Abusing terminology we refer to PG as the class of
permutation groups.

Lemma 2.1. Suppose G is a permutation group and M is a contin-
uous G-module. If N is an open subgroup of M , then there is an open
subgroup of N whose stabilizer in G is open.

Proof. The preimage in G × M of N contains (1, 0) and hence
contains a product H × U , where H is an open subgroup and U is
an open neighborhood of 0. We may assume that U ⊆ N . The open
subset HU generates an open subgroup P that is contained in N and
is H-invariant. �

Corollary 2.2. Suppose G is a permutation group and M is a
continuous profinite module.
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(1) If N is an open subgroup of M then its stabilizer in G is open.
(2) The G-action on the dual group M∨ is continuous.

Proof. Let P be an open subgroup of N whose stabilizer H is
open. Since P has finite index in M the centralizer in H of M/P is a
closed subgroup of finite index in H. This centralizer is therefore open
in G. Since the stabilizer of N contains the centralizer of M/P , the
stabilizer of N is open also.

Now consider the action on M∨. Since M is compact M∨ is discrete.
Let φ be any character. If H is the centralizer of M/ker(φ) then the
preimage in G×M∨ of the open set {φ} contains the open set H×{φ}.
Hence the G-action is continuous at φ. �

We refer to the properties in the conclusions above as strong conti-
nuity of G on M .

Lemma 2.3. Suppose Γ is a permutation group and N is a compact
normal subgroup of Γ. Then there is a continuous, closed section φ :
Γ/N → Γ of the natural homomorphism Γ→ Γ/N . In particular, Γ is
homeomorphic to (Γ/N)×N .

Proof. By ‘closed’ here, we mean that φ maps closed sets to closed
subsets of Γ. As φ is injective, this is the same as being a proper map.
Let G = Γ/N . The proof follows that of Proposition 1.2.1 in [10].

We let S be the set of pairs (S, s) where S is a closed subgroup of
N and s : G → (Γ : S) is a continuous closed section of the natural
map (Γ : S)→ G (where (Γ : S) denotes the left coset space). This is
ordered in the following way: (S, s) ≤ (S ′, s′) iff S ′ ≤ S and s is the
composition of s′ with the natural map (Γ : S ′) → (Γ : S). Note that
S 6= ∅ (by taking S = N).

Suppose S ′ is a chain in S: for convenience we write this as {(Si, si) :
i ∈ I} (where I is an appropriate indexing set). Let S =

⋂
i Si. By

([1], III 7.2, Corollary 3), (Γ : S) is naturally homeomorphic with
lim←−(Γ : Si) (which is a closed subspace of the product

∏
(Γ : Si)).

Moreover s = lim←− si : G → lim←−(Γ : Si) is proper (by ([1], I 10.2,
Corollary 4). Thus (S, s) is an upper bound for S ′ in S.

By Zorn’s Lemma and the above, there exists a maximal element
(S, s) of S. We claim S = 1 (and so we take φ = s). Suppose not.
Then there is an open subgroup Σ of Γ with S1 = Σ∩ S 6= S. We may
also assume that Σ is normalised by S. (This follows from the fact that
we are dealing with a permutation group on some set Ω. The N -orbits
on Ω are finite (by compactness of N) and pointwise stabilisers of finite
unions of these form a base of open neighbourhoods of the identity in
Γ and are all normalised by N .) For a contradiction, it is enough to
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prove that there is continuous closed map t : (Γ : S) → (Γ : S1) with
t(gS)S = gS for all g ∈ Γ.

Note that ΣS is an open subgroup of Γ. Let (gi : i ∈ I) be a
(normalised) system of left coset representatives for ΣS in Γ. Define t′ :
(Σ : S)→ (Γ : S1) by t′(gS) = gS1. This is well-defined, injective and
continuous. In fact it is also proper, as the natural map Γ → (Γ : S1)
is proper, by ([1], III 4.1, Corollary 2). Define ti : (giΣ : S)→ (Γ : S1)
for i ∈ I by translating this: ti(gixS) = gixS1. The sets (giΣ : S) are
pairwise disjoint and form a clopen covering of (Γ : S). The union t
of the ti is a continuous proper map (Γ : S) → (Γ : S1) which is a
section of (Γ : S1) → (Γ : S). (To see that t is proper, note that it is
injective so it is enough to show that it is a closed map. Its image is⋃

gi(Σ : S1). This is closed in (Γ : S1) as
⋃

giΣ is a clopen subset of
Γ. So it suffices to observe that t maps open subsets to open subsets of
the image. This is true for t′, and this is enough.) Then (S1, t ◦ s) ∈ S
and is greater than (S, s): a contradiction.

For the final part, define a map θ : G×N → Γ by θ(g, n) = φ(g)n.
This is a continuous bijection. It is the composition of maps

G×N
φ×ι→ Γ×N

·→ Γ.

The first of these is a closed map as φ is proper. Moreover the second
is also a proper map as N is compact (use ([1] III 4.1, Proposition 1).
So θ is a closed map, and therefore a homeomorphism. �

Theorem 2.4. Suppose G is a permutation group and N is a
profinite G-module. Then there is a bijective correspondence between
H̃2(G, N) and equivalence classes of extensions 1→ N → Γ→ G→ 1,
where the groups Γ are permutation groups, maps are continuous open,
and equivalence is up to topological isomorphism.

Proof. Given a continuous 2-cocycle h : G2 → N we define a
group structure on the (topological) product G×N in the usual way.
This gives a topological group Γ, and Corollary 2.2 means the topol-
ogy on Γ is generated by open subgroups. Conversely, the above lemma
shows such an extension Γ is, topologically, a product, and we obtain a
continuous cocycle in the usual way. Finally, one verifies that equiva-
lence of extensions corresponds to varying the cocycle by a continuous
coboundary, and again, there is nothing new to be done here. �

We remark that Γ is complete iff it is representable as a closed
permutation group iff G is complete iff G is representable as a closed
permutation group.
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3. Weakly profinite groups

In order to develop the cohomology theory further (and indeed to
calculate some cohomology groups) we need a supply of acyclic mod-
ules. The class of continuous G-modules which are of most interest
to us are profinite modules. These form an abelian category (with
continuous homomorphisms), but there is no reason to suppose this
category has enough injectives, or contains acyclic modules. To obtain
the latter we enlarge the category by taking countable direct limits of
profinite G-modules. In this section we develop some basic properties
of such topologised groups. The extension of the cohomology theory
to accommodate these weakly profinite G-modules, and constructions
of acyclics are in subsequent sections.

We work with abelian groups M equipped with a topology (a priori
this need not be a group topology). We say that M is weakly profinite
if it is the union of a countable upwardly directed family {Mi}i<ω of
profinite subgroups with respect to which it carries the weak topology.
This means that a subset of M is open precisely when its intersection
with each Mi is open. Equivalently, a map from M into any space is
continuous precisely when its restriction to each Mi is continuous. We
refer to the Mi here as a profinite system for M .

So here each Mi is a topological group and of course the group op-
eration and the topology on M are determined by their restrictions to
the Mi. In particular, translation by any element of M is a homeo-
morphism of M . We show that a weakly profinite abelian group M
is a topological group and its topology is independent of the profinite
family used to define it.

Lemma 3.1. Suppose M is weakly profinite with respect to {Mi}i<ω.
If K is a compact subset of M , then K is contained in one of the Mi.

Proof. Suppose not. Then K ∩ (Mi+1 \ Mi) is non-empty for
infinitely many i < ω. For each such i, choose an element of this set,
and let X be the set of these elements. So X is an infinite subset of
K whose intersection with each Mi is finite. From the latter it follows
that X is a closed, discrete subset of M , and therefore of K. But as
K is compact, this is impossible. �

We say that a subset of a weakly profinite group M =
⋃

i<ω Mi

is bounded if it is contained in some Mi. The lemma says that com-
pacta are bounded. Hence an equivalent definition is that the bounded
subsets are those whose closure is compact. Similarly a map to M is
bounded when its image is contained in a compact subset.
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Lemma 3.2. Closed subgroups and quotients of a weakly profinite
group by closed subgroups are weakly profinite.

Proof. Suppose M is weakly profinite with respect to a family
{Mi}i<ω and suppose N is closed in M . First we show that the relative
topology on N is the weak topology with respect to the subgroups
Ni = N ∩Mi. Clearly if X ⊆ M is closed then X ∩Ni is closed in Ni

for all i, so X ∩ N is closed in N with the weak topology determined
by the Ni. On the other hand, if Y ⊆ N and Y ∩Ni is closed in Ni for
all i, then as Ni is closed in M we have that Y ∩Mi is closed in Mi for
all i. So Y is closed in M .

Next, consider the quotient map p : M →M/N . We claim that the
quotient topology is the same as the weak topology generated by the
p(Mi). Suppose X̄ is a subset of M/N with the property that each
X̄ ∩ p(Mi) is open in p(Mi). Now

p−1(X̄) ∩Mi = p−1(X̄ ∩ p(Mi)) ∩Mi.

Since p is continuous this intersection is open in Mi. As M has the
weak topology we conclude that p−1(X̄) is open. Hence X̄ is open, by
definition of the quotient topology. �

Lemma 3.3. Suppose M , L are weakly profinite abelian groups and
θ : M → L is a continuous epimorphism. Then θ is an open map. In
particular, if θ is an isomorphism, it is a homeomorphism.

Proof. The induced map M/kerθ → L is continuous, so by the
above lemma it suffices to prove the final statement. So assume θ is a
continuous isomorphism. As L has the weak topology with respect to a
family of profinite subgroups it suffices to show that θ−1 is continuous
when restricted to one of these. The image of this is certainly closed
in M so (again by the above lemma) we reduce to the case where L is
profinite.

If M is also compact, then the result is well-known. So suppose M
is the union of a chain of proper compact subgroups {Mi}i<ω. Clearly
these must be of infinite index in M . Let Li = θ(Mi). So Li is a
compact (in particular, closed) proper subgroup of L. It is of infinite
index in L, so is nowhere dense. So we have that L is compact and the
union of a countable chain of nowhere dense subsets. This contradicts
Baire’s Theorem ([3], XI Theorem 10.1, for example). �

Remarks 3.4. Thus the topology on a weakly profinite group M is
determined by any countable chain of compact subgroups with union
M . Lemma 3.1 says that any two such chains are cofinal in each other.
Note also that we can define a weakly profinite group by a countable
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directed system of profinite submodules: any cofinal chain in such a
system gives the same weak topology.

Suppose {Mi} are topological groups, and let M be their (algebraic)
direct sum. For each finite set of indices I let MI = ⊕IMi, with the
product topology. If we endow M with the weak topology generated
by the MI then we obtain what is sometimes called the finite topology.
In general the finite topology is not a group topology. Nevertheless
the category of topological abelian groups does admit coproducts —
in general the coproduct is some rather mysterious topology on the
algebraic direct sum. If the finite topology is a group topology then it
is the coproduct topology. For more on this see [8].

Lemma 3.5. Suppose that {Mi}i<ω is a family of topological groups
each of whose topologies is generated by open subgroups. If M = ⊕Mi

with the finite topology then M is a topological group.

Proof. We show that the group operation M×M →M is contin-
uous. As translation by any particular element of M is a homeomor-
phism, it suffices to show that any open neighbourhood X ⊆M of the
identity contains an open subgroup. But X ∩Mj is open in Mj and so
contains an open subgroup Nj of Mj: thus X contains ⊕jNj. This is
easily seen to be open in M .

A similar argument shows that inversion is continuous. �

Corollary 3.6. Suppose L is a weakly profinite abelian group.
Then L is a topological group.

Proof. Let {Li}i<ω be a system of profinite subgroups for L. Let
M = ⊕Lj with the finite topology and θ : M → L the homomorphism
which is the identity on each direct summand. Clearly the restriction of
θ to any finite direct sum is continuous, so as M has the weak topology
with respect to these, θ is continuous. As M, L are weakly profinite
and θ is surjective, Lemma 3.3 shows that θ is an open map. Thus L is
isomorphic to the quotient M/kerθ, and is therefore a topological group
(as a quotient group of a topological group is a topological group). �

Remarks 3.7. It would have been more satisfactory to define weakly
profinite groups as arbitrary (rather than countable) directed unions
of profinite abelian groups. Indeed some of the results (in particular,
Corollary 3.6) also hold in this more general context. However we were
not able to prove Lemmas 3.1 and 3.3 in the wider context.



12 DAVID M. EVANS AND P R HEWITT

4. Weakly profinite modules and bounded cohomology
groups

We now consider countable directed unions of profinite G-modules.
We do not require that the G-action be continuous globally, but only on
compact submodules. A simple example should clarify the situation.
Let G = Sym(ω) be the symmetric group of countable degree, let
N = F2

ω be its natural permutation module over F2, and let M be
a countable direct sum of copies of N . The G-action on M is not
continuous, but is continuous on each finite direct sum. The problem
lies below the group action itself. The real issue is that the inclusion
A × ⊕Bi → ⊕(A × Bi) need not be continuous. If A1 ⊃ A2 ⊃ · · · is
an infinite descending chain of open subsets then the preimage of the
open set ⊕Ai ×Bi in A×⊕Bi is not open.

By a weakly profinite G-module M we intend the following:

(1) M is the countable union of the increasing chain of G-submodules
{Mi}i<ω.

(2) Each Mi is profinite.
(3) The G-action on each Mi is continuous.
(4) M has the weak topology determined by the Mi.

Again, we refer to the Mi here as a profinite system for M .
For much of what follows we could also work with arbitrary directed

unions of profinite G-modules (although in a few places would also
have to assume that various maps are open, and map bounded sets to
bounded sets).

Definition 4.1. Suppose G is a Hausdorff topological group and
M is a weakly profinite G-module (with a profinite system (Mi :
i < ω)). Define, for n ≥ 0, the bounded cochains (etc.) as fol-
lows. Let Cn

c (G, M) be the additive group of continuous bounded
maps Gn → M . Note that (as the Mi are submodules) the differen-
tial dn maps Cn

c (G, M) to a subgroup Bn+1
c (G, M) of Cn+1

c (G, M) and
has kernel denoted by Zn

c (G, M). The bounded cohomology groups
Hn

c (G, M) = Zn
c (G, M)/Bn

c (G, M) are the cohomology groups of the
cocomplex formd by these, and the restrictions of the dn.

Note that if M is profinite (and the profinite system just consists
of M), then Hn

c (G, M) = H̃n(G, M), as defined previously. Also, the
inclusion Mi ⊆Mj induces a homomorphism Hn

c (G, Mi)→ Hn
c (G, Mj)

(as in the long exact sequence).

Lemma 4.2. With the above notation, Hn
c (G, M) ∼= lim−→Hn

c (G, Mi).
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Proof. Clearly Zn
c (G, M) =

⋃
n Zn

c (G, Mi). Consider the natural
homomorphism φ : Zn

c (G, M) → lim−→Hn
c (G, Mi). This is surjective,

and for f ∈ Zn
c (G, Mi) we have φ(f) = 0 if and only if f ∈ Bn

c (G, Mj)
for some Mj ≥Mi. So the kernel of φ is Bn

c (G, M), as required. �

Corollary 4.3 (Long exact sequence). Suppose B is a weakly
profinite G-module, A is a closed submodule and C = B/A. Then
there is a long exact sequence:

0→ H0(G, A)→ H0(G, B)→ H0(G, C)→ H1
c (G, A)→ . . .

. . .→ H i
c(G, C)→ H i+1

c (G, A)→ H i+1
c (G, B)→ H i+1

c (G, C)→ . . .

Proof. Let {Bi}i<ω be a profinite system for B. Write Ai = A∩Bi

and Ci = Bi+A/A ∼= Bi/Ai (and note that these give profinite systems
for A and C, by Lemma 3.2). Then we have short exact sequences of
continuous homomorphisms 0→ Ai → Bi → Ci → 0. As the modules
are profinite, these maps are open and we have a continuous section of
Bi → Ci. So for each i we obtain a corresponding long exact sequence
Ki of continuous cohomology groups, using Lemma 1.1. If Bi ⊆ Bj

we also have inclusions Ai ⊆ Aj and Ci ⊆ Cj, which induce cocomplex
maps κji : Ki → Kj. (Why do squares commute here? All the maps
defined are natural, with the possible exception of the connecting maps,
which, a proiri, depend on the choice of continuous section (but in fact,
do not). However one can readily check commutativity of the squares
involving these.) Thus one has a directed system of exact cocomplexes,
and so we have a exact cocomplex of the direct limits involved. Then
Lemma 4.2 gives what we want. �

Corollary 4.4. Suppose Mi are weakly profinite G-modules and
di : Mi →Mi+1 are continuous G-homomorphisms such that

0→M0
d0→M1

d1→M2
d2→ · · ·

is exact. Suppose that Mi is acyclic if i > 0, that is, Hn
c (G, Mi) = 0

for n > 0. Then H∗
c (G, M0) is given by the homology of the fixed point

complex

MG
1

d̄1→MG
2

d̄2→MG
3 · · · .

Specifically, Hn
c (G, M0) ∼= kerd̄n+1/imd̄n.

Proof. This is a standard induction using the above long exact
sequence applied to the short exact sequences

0→ imdm−1 →Mm → imdm → 0.
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Note that imdm−1 = kerdm is closed in Mm, and d̄m−1 gives an isomor-
phism between imdm−1 (with the subspace topology) and Mm/kerdm

(with the quotient topology). �

We conclude this section by showing how weakly profinite modules
give acyclic modules and modules with injectivity properties. First we
give a fairly general construction of weakly profinite modules.

Suppose G is a permutation group on a countably infinite set. Then
G has a countable family U of open subgroups which forms a base of
open neighbourhoods of the identity. Suppose M is a weakly profinite
G-module, determined by profinite submodules {Mi}i<ω. We define the
coinduced module M⇑G to be the group of bounded maps f : G → M
each of which is equivariant with respect to some open subgroup of G.
The G-action is defined by the usual rule: (gf)(x) = f(xg). So M⇑G is
the (countable) directed union of modules Mi↓GU⇑G

U (with the obvious
inclusion maps between them), as U ranges over U and i < ω. As
each of these is a profinite G-module we can regard M⇑G as a weakly
profinite G-module. Moreover, the topology here does not depend on
the choice of U or the Mi (see Remarks 3.4).

We refer to a countable, discrete, torsion abelian group with trivial
G-action as a torsion G-module. We can obviously regard this as a
weakly profinite as it is a countable union of finite submodules.

Lemma 4.5 (Acyclic modules). Let G ∈ PG with topology generated
by a countable family U of open subgroups, and M a torsion weakly
profinite G-module. Then M⇑G is acyclic.

Proof. By Lemmas 1.4 and 4.2

Hn
c (G, M⇑G) = lim−→

i

lim−→
U

Hn
c (U,Mi)

where U ranges over U and Mi ranges over the profinite system for
M (and by assumption, these are finite). The maps in the inner direct
limit are given by restriction. Suppose f ∈ Zn

c (U,Mi). We may assume
that f(1, . . . , 1) = 0: this holds automatically if n is odd, and if n is
even we adjust by the coboundary arising from the constant function
with value f(1, . . . , 1). As f is continuous and G ∈ PG, there exists
an open subgroup U1 ≤ U such that f is zero on Un

1 . The result
follows. �

Lemma 4.6 (Injectivity). Let G ∈ PG with topology generated by
a countable family U of open subgroups, and suppose D is a divisible,
torsion G-module. Let N be a weakly profinite G-module, let M be a
closed submodule of N and suppose f : M → D⇑G is a continuous
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G-homomorphism. Then there is a continuous G-homomorphism g :
N → D⇑G extending f .

Proof. Let {Ni}i<ω be a profinite family for N . Set M1 = M ∩
N1. As M is closed in N , this is a compact submodule of N1. It
will suffice to show that f |M1 can be extended to a continuous G-
homomorphism N1 → D⇑G, for then we can proceed inductively (this
gives a continuous G-homomorphism with domain M + N1, and the
latter is a closed submodule of N).

By Lemma 3.1 there is a finite subgroup F of D and an open sub-
group H of G such that f(M1) ⊆ F⇑G

H . Composing this with the eval-
uation map at 1 we get a continuous H-equivariant homomorphism
f1 : M1 → F . As D is divisible, this extends to a continuous homo-
morphism g1 : N1 → F ′ for some finite subgroup F ′ of D (this is part
of Pontryagin duality for compact abelian groups). By Corollary 2.2 g1

is H1-equivariant for some open subgroup H1 of H. By reciprocity, we
obtain a continuous G-homomorphism g : N → F ′⇑G

H1
which extends

f |M1 . �

5. Continuous cohomology on trivial modules

In this section G denotes a permutation group on an infinite set Ω,
topologised in the usual way. Although not everything we do requires
this, we assume G is oligomorphic on Ω: it has finitely many orbits on
Ωn, for all n ∈ N. By a continuous G-space ∆, we mean one in which
point stabilisers are open subgroups of G, and on which G has finitely
many orbits. In this case, G is oligomorphic on ∆ also. Throughout, F
denotes a finite abelian group regarded as a trivial G-module. We are
interested in computing H∗

c (G, F ). We realise this as the homology of a
cocomplex constructed from orbits of G on various continuous G-spaces
and give a criterion for this cocomplex to be contractible.

We consider FΩ, the group of functions f : Ω → F as a profinite
G-module by giving it the product topology and setting (gf)(x) =
f(g−1a) (for g ∈ G and a ∈ Ω). Note that this is isomorphic to the
direct sum of FΩi where Ωi ranges over the G-orbits on Ω. So by the
following FΩ is a direct sum of coinduced modules.

Lemma 5.1. If G is transitive on Ω, then F⇑G
U
∼= FΩ where U is

the stabiliser of a point a in Ω.

Proof. Well-known: define ϕ : FΩ → F⇑G
U by ϕ(f)(g) = f(g−1a)

and check this is an isomorphism of G-modules. �

Definition 5.2. Suppose (∆i : i ∈ N) is a sequence of continuous
G-spaces with surjective G-maps pi : ∆i+1 → ∆i. If j > i define
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pj,i : ∆j → ∆i to be pj−1 ◦ · · · ◦ pi. We say that (∆i, p
i)i∈N is a full

sequence of G-spaces if for every i there is a transversal Ti of the G-
orbits on ∆i such that for every open U ⊆ G there is j > i such that
for every G-orbit X on ∆j there is x ∈ X such that Gx ≤ U and
pj,i(x) ∈ Ti, where Gx denotes the stabiliser of x in G.

Given (∆i, p
i) as above we have continuous, injective G-module

homomorphisms qi : F∆i → F∆i+1 given by qif = fpi. We form the
direct limit lim−→F∆i , and regard this as a weakly profinite G-module.

Lemma 5.3. If (∆i, p
i) is full, then lim−→F∆i is acyclic.

Proof. This is similar to the proof of 4.5. Suppose f : Gn → F∆i

is a continuous cocycle. We show that there is j > i such that the
image of f in Hn

c (G, F∆j) is zero.
Let Ti be the particular system of orbit representatives on ∆i guar-

anteed by fullness. Let s = |Ti| and f̄ : Gn → F s obtained by evaluat-
ing at the elements of Ti. Then f̄ is continuous and (as in 4.5) we may
assume that f̄(1, . . . , 1) = 0. Thus there is an open subgroup U of G
such that f̄ is identically zero on Un.

Now let j be as in the definition of fullness. Let ∆j,k (for k ≤ t) be
the G-orbits on ∆j. Let {xk : k ≤ t} be representatives for these with
pj,i(xk) ∈ Ti and Uk = Gxk

≤ U for all k. Then

Hn
c (G, F∆j) ∼= ⊕k≤tH

n
c (G, F∆j,k) ∼= ⊕kH

n
c (Uk, F, )

the latter from Lemma 5.1 and Shapiro’s lemma (1.4). The image of f
in the k-th direct factor here is f restricted to Un

k evaluated at pj,i(xk)
(modulo Bn

c (Uk, F )), and this is zero, as required. �

If i ∈ N, let Ωi denote the set of i-tuples of elements of Ω, regarded
as a (continuous) G-space (with g(a1, . . . , ai) = (ga1, . . . , gai)). Define

simplicial maps di : FΩi → FΩi+1
by

(dif)(a1, . . . , ai+1) =
∑

j≤i+1

(−1)jf(a1, . . . , âj, . . . , ai+1),

where as usual the hat means that aj is omitted from the tuple. Clearly
this is a G-map. Then as usual:

Lemma 5.4. The sequence

0→ F → FΩ d1→ FΩ2 d2→ FΩ3 d3→ · · ·
is exact (where F is embedded into FΩ as the constant functions).

Corollary 5.5. Suppose (∆i, p
i)i∈N is a full sequence of continu-

ous G-spaces. Let Mi,j be the G-module F∆j
i ; let di,j : Mi,j → Mi,j+1
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be the simplicial maps; let qi,j : Mi,j → Mi+1,j be induced by the pi.
Let Mj be the direct limit lim−→i

Mi,j considered as a weakly profinite
G-module. As qi,j+1di,j = di+1,jqi,j, the di,j induce continuous maps
dj : Mj →Mj+1. Then:
(i) the Mj are acyclic weakly profinite G-modules;

(ii) 0→ F →M1
d1→M2

d2→M3 · · · is exact;
(iii)

Hn
c (G, F ) = lim−→ ker(MG

i,n+1

di,n+1→ MG
i,n+2)/im(MG

i,n

di,n→ MG
i,n+1).

Proof. (i) For fixed j, the sequence of maps (pi)j : ∆j
i+1 → ∆j

i is
full. So Mj is acyclic, by Lemma 5.3.
(ii) This follows from commutativity of the maps, and exactness of the
‘rows’ (i.e. for fixed i, from Lemma 5.4).
(iii) This follows from Corollary 4.4. �

Remarks 5.6. Note that MG
i,n+1 is finite: it is a direct sum of r

copies of F , where r is the number of G-orbits on ∆n+1
i . But in general

the groups Hn
c (G, F ) need not be finite. Nevertheless, we develop a

criterion which in particular cases guaratees that they are zero if n > 0.

Definition 5.7. Suppose ∆ is a continuous G-space. If X ⊆ ∆,
let GX = {g ∈ G : gx = x for all x ∈ X}. Consider a function p which
assigns to every finite X ⊆ ∆ a GX-orbit p(X) on ∆ \X. We say that
p is a strong type (over ∅) for (∆; G) if:
(i) whenever X1 ⊆ X2 are finite, then p(X1) ⊇ p(X2);
(ii) if g ∈ G and X is finite subset of ∆, then gp(X) = p(gX).

This definition appeared in ([5], Definition 2.1), and the terminol-
ogy originates in model theory. It would be more accurate to refer to p
as a type (over ∆) which is non-splitting over the emptyset. In fact, as
we are assuming G is oligomorphic, p is a type which is definable over
∅. In any case, the point of introducing this here is the following.

Lemma 5.8. Suppose p is a strong type for (∆; G). Then the com-
plex of G-fixed points

(F∆)G d1→ (F∆2

)G d2→ (F∆3

)G d3→ · · ·
is exact.

Proof. We show that the complex is contractible. Note first that
Di = (F∆i

)G is the set of maps which are constant on each G-orbit
on ∆i. Define si : Di+1 → Di as follows. Let f ∈ Di+1 and x ∈ ∆i.
Let y ∈ p(x). Set (sif)(x) = f(y, x). As p is a strong type and f is
G-invariant, this is a well-defined function which is G-invariant.
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Then one checks that sidi + di−1si−1 = −ι, the identity map on
Di: the only point at which this deviates from the usual calculation
is to notice that if x′ is x with one of its coordinates deleted, then
y ∈ p(x′). �

From now on, suppose p is a strong type for (Ω; G). Let ∆n consist
of all (a1, . . . , an) ∈ Ωn with a1 ∈ p(∅) and ai+1 ∈ p(a1, . . . , ai) (for
1 ≤ i ≤ n − 1): call these p-sequences (of length n). Note that G
is transitive on ∆n and (∆n; G) also has a strong type pn: if X is a
finite subset of ∆n let X1 be the elements of Ω appearing in tuples in
X, and let pn(X) be the GX-orbit which contains (y1, . . . , yn) where
y1 ∈ p(X1), y2 ∈ p(X1 ∪ {y1}) . . . . It is easy to check that pn is a
well-defined strong type on ∆n. Denote by πi : ∆i+1 → ∆i the map
given by projection to the first i coordinates.

Definition 5.9. With the above notation, we say that p is a full
strong type for (Ω; G) if for any p-sequence b and finite X ⊆ Ω there
is a p-sequence a extending b such that Gb ≤ GX .

Theorem 5.10. Suppose p is a full strong type for (Ω; G).

(i) The trivial module F is acyclic.
(ii) The G-modules F∆m are acyclic, for all m.

Proof. (i) We apply Corollary 5.5 to the sequence of G-spaces
(∆i, π

i)i∈N. As every open subgroup of G contains some GX with X
finite, and G is transitive on ∆i, fullness of p means that this is a full
sequence. By Lemma 5.8 and the above observations, the groups in the
direct limit in Corollary 5.5(iii) are zero if n > 0, whence the result.

(ii) Let c ∈ ∆m. Define p′(Y ) = p(Y c), for Y a finite subset of
Ω. This is a full strong type for (Ω; Gc). So Hn

c (Gc, F ) = 0 for all
n > 0. The result then follows from Shapiro’s Lemma (1.4) and Lemma
5.1. �

Definition 5.11. Let G be a permutation group. Denote byM(G)
the category whose objects are closed submodules of (profinite) mod-
ules A⇑G

U , where U is an open subgroup of G and A is a finite abelian
group (with trivial G-action). Morphisms are continuous G-homomor-
phisms.

It is clear that as the modules are compact, the morphisms here
are open maps with closed images. Also,M(G) is an additive category
with finite (sums and) products. In general, however, it is not clear
thatM(G) will be closed under quotients (by closed submodules).

Corollary 5.12. Suppose (Ω; G) is a permutation group with a
full strong type p. Suppose also that M(G) is closed under quotients.
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ThenM(G) is an abelian category with enough acyclics and Hn
c (G, M)

is finite for all n ∈ N and M ∈M(G).

Proof. By the above remarks, we clearly have an abelian category.
By defintion, any M ∈ M(G) embeds into some coinduced module
A⇑G

H , and any one of these embeds into a finite direct sum of modules
F∆m (in the notation of Theorem 5.10). But these are acyclic (by
Theorem 5.10).

The remaining claim follows by dimension shifting (as in Corollary
4.4) and the fact that H0

c (G, F∆m) ∼= F (because G is transitive on
∆m). �

Corollary 5.13. Suppose G is one of the following permutation
groups. Then M(G) satisfies the conclusions of Corollary 5.12.
(i) Sym(Ω) acting on Ω.
(ii) An infinite dimensional general linear group over a finite field act-
ing on its natural module.
(iii) The group of isometries of a countable dimensional classical space:
a vector space V over a finite field equipped with a symplectic, unitary
or non-degenerate quadratic form.

Proof. In each case the coinduced modules F⇑G
U satisfy the de-

scending chain condition on closed submodules. The same is therefore
true for any element ofM(G), and it then follows thatM(G) is closed
under quotients. (See 7.2 - 7.7 in [6] for this, phrased in rather different
language).

So we need to exhibit a full strong type in each case.
(i) Take p(X) = Ω \X.
(ii) Take p(X) to be the vectors independent from X.
(iii) For the orthogonal spaces (not characteristic 2) and for the unitary
spaces we take p(∅) = {v ∈ V : (v, v) = 1} and p(X) = p(∅)∩(X⊥\〈X〉)
(where (., .) is the bilinear form). Thus p-sequences are orthonormal
sequences, and it is clear this gives a full strong type.

For the symplectic spaces we consider instead G acting on Ω, (an or-
bit on) tuples which enumerate hyperbolic planes (i.e. non-degenerate
2-spaces). This permutation action is faithful and gives rise to the
same topology on G as its action on V . If X is a finite subset of Ω let
p(X) consist of (suitably enumerated) hyperbolic planes in 〈X〉⊥ which
are independent from X. By Witt’s theorem this is a single GX-orbit,
and p is therefore a strong type. But any finite dimensional subspace
is contained in a non-degenerate one, which is the orthogonal sum of
hyperbolic planes. So p is full.
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A similar argument handles the case of the orthogonal spaces in
characteristic 2. �
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